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Anne Lauscher1 Ivan Vulić2 Edoardo M. Ponti2 Anna Korhonen2 Goran Glavaš1

1Data and Web Science Group, University of Mannheim, Germany
2Language Technology Lab, University of Cambridge, UK
1{anne,goran}@informatik.uni-mannheim.de,

2{iv250,ep490,alk23}@cam.ac.uk

Abstract

Unsupervised pretraining models have been shown to facilitate a wide range of downstream NLP
applications. These models, however, retain some of the limitations of traditional static word
embeddings. In particular, they encode only the distributional knowledge available in raw text
corpora, incorporated through language modeling objectives. In this work, we complement such
distributional knowledge with external lexical knowledge, that is, we integrate the discrete knowl-
edge on word-level semantic similarity into pretraining. To this end, we generalize the standard
BERT model to a multi-task learning setting where we couple BERT’s masked language modeling
and next sentence prediction objectives with an auxiliary task of binary word relation classification.
Our experiments suggest that our “Lexically Informed” BERT (LIBERT), specialized for the
word-level semantic similarity, yields better performance than the lexically blind “vanilla” BERT
on several language understanding tasks. Concretely, LIBERT outperforms BERT in 9 out of 10
tasks of the GLUE benchmark and is on a par with BERT in the remaining one. Moreover, we
show consistent gains on 3 benchmarks for lexical simplification, a task where knowledge about
word-level semantic similarity is paramount, as well as large gains on lexical reasoning probes.

1 Introduction

Unsupervised pretraining models, such as GPT and GPT-2 (Radford et al., 2018; Radford et al., 2019),
ELMo (Peters et al., 2018), and BERT (Devlin et al., 2019) yield state-of-the-art performance on a wide
range of natural language processing tasks. All these models rely on language modeling (LM) objectives
that exploit the knowledge encoded in large text corpora. BERT (Devlin et al., 2019), as one of the current
state-of-the-art models, is pretrained on a joint objective consisting of two parts: (1) masked language
modeling (MLM), and (2) next sentence prediction (NSP). Through both of these objectives, BERT still
consumes only the distributional knowledge encoded by word co-occurrences.

While several concurrent research threads are focused on making BERT optimization more robust (Liu
et al., 2019) or on imprinting external world knowledge on its representations (Sun et al., 2019; Zhang et
al., 2019; Sun et al., 2020; Liu et al., 2020; Peters et al., 2019; Wang et al., 2020, inter alia), no study yet
has been dedicated to mitigating a severe limitation that contextualized representations and unsupervised
pretraining inherited from static word embeddings: every model that relies on distributional patterns has a
tendency to conflate together pure lexical semantic similarity with broader topical relatedness (Schwartz
et al., 2015; Mrkšić et al., 2017).

In the past, a plethora of models have been proposed for injecting linguistic constraints (i.e., lexical
knowledge) from external resources to static word embeddings (Faruqui et al., 2015; Wieting et al.,
2015; Mrkšić et al., 2017; Ponti et al., 2018, inter alia) in order to emphasize a particular lexical relation
in a specialized embedding space. For instance, lexically informed word vectors specialized for pure
semantic similarity result in substantial gains in a number of downstream tasks where such similarity
plays an important role, e.g., in dialog state tracking (Mrkšić et al., 2017; Ren et al., 2018) or for lexical
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simplification (Glavaš and Vulić, 2018; Ponti et al., 2019). Existing specialization methods are, however,
not directly applicable to unsupervised pretraining models because they are either (1) tied to a particular
training objective of a static word embedding model, or (2) predicated on the existence of an embedding
space in which pairwise distances can be modified.

In this work, we hypothesize that supplementing unsupervised LM-based pretraining with clean lexical
information from structured external resources may also lead to improved performance in language
understanding tasks, especially in tasks where distinguishing between pure semantic similarity and
conceptual relatedness is paramount. We propose a novel method to inject linguistic constraints, available
from lexico-semantic resources like WordNet (Miller, 1995) and BabelNet (Navigli and Ponzetto, 2012),
into unsupervised pretraining models, and steer them towards capturing word-level semantic similarity.
To train the Lexically Informed BERT (LIBERT), we (1) feed semantic similarity constraints to BERT as
additional training instances and (2) predict lexico-semantic relations from the constraint embeddings
produced by BERT’s encoder (Vaswani et al., 2017). In other words, LIBERT adds lexical relation
classification (LRC) as the third pretraining task to BERT’s multi-task learning framework.

We compare LIBERT to a lexically blind “vanilla” BERT on the GLUE benchmark (Wang et al., 2018)
and report their performance on corresponding development and test portions. LIBERT yields performance
gains over BERT on 9/10 GLUE tasks (and is on a par with BERT on the remaining one), with especially
wide margins on tasks involving complex or rare linguistic structures such as Diagnostic Natural Language
Inference and Linguistic Acceptability. Moreover, we assess the robustness and effectiveness of LIBERT
on 3 different datasets for lexical simplification (LS), a task proven to benefit from word-level similarity
specialization (Ponti et al., 2019). We report LS improvements of up to 8.2% when using LIBERT in lieu
of BERT. For direct comparability, we train both LIBERT and BERT from scratch, and monitor the gains
from specialization across iterations. Interestingly, these do not vanish over time, which seems to suggest
that our specialization approach is suitable also for models trained on massive amounts of raw text data.

2 Related Work

2.1 Specialization for Semantic Similarity

The conflation of disparate lexico-semantic relations in static word representations is an extensively
researched problem. For instance, clearly discerning between true/pure semantic similarity and broader
conceptual relatedness in static embeddings benefits a range of natural language understanding tasks
such as dialog state tracking (Mrkšić et al., 2017), text simplification (Glavaš and Vulić, 2018), and
spoken language understanding (Kim et al., 2016). The most widespread solution relies on the use of
specialization algorithms to enrich word embeddings with external lexical knowledge and steer them
towards a desired lexical relation.

Joint specialization models (Yu and Dredze, 2014; Kiela et al., 2015; Liu et al., 2015; Osborne et al.,
2016; Nguyen et al., 2017, inter alia) jointly train word embedding models from scratch and enforce
the external constraints with an auxiliary objective. On the other hand, retrofitting models are post-
processors that fine-tune pretrained word embeddings by gauging pairwise distances according to the
external constraints (Faruqui et al., 2015; Wieting et al., 2015; Mrkšić et al., 2016; Mrkšić et al., 2017; Jo
and Choi, 2018; Lengerich et al., 2018).

More recently, retrofitting models have been extended to specialize not only words found in the external
constraints, but rather the entire embedding space. In explicit retrofitting models (Glavaš and Vulić,
2018; Glavaš and Vulić, 2019), a (deep, non-linear) specialization function is directly learned from
external constraints. Post-specialization models (Vulić et al., 2018; Ponti et al., 2018; Kamath et al., 2019;
Biesialska et al., 2020), instead, propagate lexico-semantic information to unseen words by imitating the
transformation undergone by seen words during the initial specialization. This family of models can also
transfer specialization across languages (Glavaš and Vulić, 2018; Ponti et al., 2019; Zhang et al., 2020).

The goal of this work is to move beyond similarity-based specialization of static word embeddings only.
We present a novel methodology for enriching unsupervised pretraining models such as BERT (Devlin et
al., 2019) with readily available discrete lexico-semantic knowledge, and measure the benefits of such
semantic specialization on similarity-oriented downstream applications.
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2.2 Injecting Knowledge into Unsupervised Pretraining Models

Unsupervised pretraining models do retain some of the limitations of static word embeddings. First,
they still conflate separate lexico-semantic relations, as they learn from distributional patterns. Second,
they fail to fully capture the world knowledge necessary for human reasoning: masked language models
struggle to recover knowledge base triples from raw texts (Petroni et al., 2019). Recent work has, for
the most part, focused on mitigating the latter limitation by injecting structured world knowledge into
unsupervised pretraining and contextualized representations (Wang et al., 2020).

In particular, these techniques fall into the following broad categories: i) masking higher linguistic
units of meanings, such as phrases or named entities, rather than individual WordPieces or BPE tokens
(Sun et al., 2019); ii) including an auxiliary task in the objective, such as denoising auto-encoding
of entities aligned with text (Zhang et al., 2019), or continuous learning frameworks over a series of
unsupervised or weakly supervised tasks (e.g., capitalization prediction or sentence reordering) (Sun et
al., 2020); iii) hybridizing texts and graphs. Liu et al. (2020) proposed a special attention mask and soft
position embeddings to preserve their graph structure while preventing unwanted entity-word interactions.
Peters et al. (2019) fuse language modeling with an end-to-end entity linker, updating contextual word
representations with word-to-entity attention. On a high level, the most similar work to ours is SenseBERT
(Levine et al., 2020) which uses WordNet supersenses to inform distributional BERT about word senses.
However, our proposed model and SenseBERT substantially differ in the nature of the additional objective
(semantic similarity classification versus supersense prediction) and in their intended usage and evaluation
(simple intrinsic sense-level tasks with SenseBERT).

As the main contribution of our work, we incorporate external lexico-semantic knowledge, rather than
world or sense knowledge, in order to rectify the first limitation, namely the distortions originating from
the distributional signal. In fact, Liu et al. (2020) hybridized texts also with linguistic triples relating words
to sememes (minimal semantic components); however, this incurs into the opposite effect of reinforcing
the distributional signal based on co-occurrence. On the contrary, we propose a new technique to enable
the model to distinguish between purely similar and broadly related words, and show that distinguishing
between the two during pretraining matters for similarity-oriented language understanding tasks such as
lexical simplification.

3 Specializing for Word-Level Similarity

LIBERT, illustrated in Figure 1, is a joint specialization model. It augments BERT’s two pretraining tasks
– masked language modeling (1. MLM) and next sentence prediction (2. NSP) – with an additional task of
identifying (i.e., classifying) valid lexico-semantic relations from an external resource (3. LRC). LIBERT
is first pretrained jointly on all three tasks. Similarly to BERT, after pretraining, LIBERT is fine-tuned on
training datasets of downstream tasks. For completeness, we first briefly outline the base BERT model
and then provide the details of our lexically informed augmentation.

3.1 BERT: Transformer-Based Encoder

The core of the BERT model is a multi-layer bidirectional Transformer (Vaswani et al., 2017), pretrained
using two objectives: (1) masked language modeling (MLM) and (2) next sentence prediction (NSP).
MLM is a token-level prediction task, also referred to as Cloze task (Taylor, 1953): among the input data, a
certain percentage of tokens is masked out and needs to be recovered. NSP operates on the sentence-level
and can, therefore, be seen as a higher-level sequence modeling task that captures information across
sentences. NSP predicts if two given sentences are adjacent in text (negative examples are created by
randomly pairing sentences).

3.2 LIBERT: Lexically-Informed (Specialized) Pretraining

The base BERT model consumes only the distributional information. We aim to steer the model towards
capturing true semantic similarity (as opposed to conceptual relatedness) by exposing it to clean external
knowledge presented as the set of linguistic constraints C = {(w1,w2)i}N

i=1, i.e., pairs of words that stand
in the desired relation (i.e., true semantic similarity) in some external lexico-semantic resource. Following



1374

BERT

LIBERT

Transformer

[CLS] t11 ... t1i [SEP] t21 ... t2j [SEP]

[CLS] token representation

Next Sentence Prediction

[MASK] token representations

...

Masked Language Model

LLM

[CLS] token representation

Lexical Relation Classification

LLRC

Figure 1: Architecture of LIBERT, lexically-informed BERT specialized with lexical similarity constraints.

the successful work on semantic specialization of static word embeddings (see §2.1), in this work we
select pairs of synonyms (e.g., car and automobile) and direct hyponym-hypernym pairs (e.g., car and
vehicle) as our semantic similarity constraints (label 1 for the binary classifier).1

We transform the constraints from C into a BERT-compatible input format and feed them as additional
training examples for the model. The encoding of a constraint is then forwarded to the relation classifier,
which predicts whether the input word pair represents a valid lexical relation.

From Linguistic Constraints to Training Instances. We start from a set of linguistic constraints
C = {(w1,w2)i}N

i=1 and an auxiliary static word embedding space Xaux ∈ Rd . The space Xaux can be
obtained via any standard static word embedding model such as Skip-Gram (Mikolov et al., 2013) or
fastText (Bojanowski et al., 2017) (used in this work). Each constraint c = (w1,w2) corresponds to a
true/positive relation of semantic similarity, and thus represents a positive training example for the model
(label 1). For each positive example c, we create corresponding negative examples following prior work
on specialization of static embeddings (Wieting et al., 2015; Glavaš and Vulić, 2018; Ponti et al., 2019).
We first group positive constraints from C into mini-batches Bp of size k. For each positive example
c = (w1,w2), we create two negatives ĉ1 = (ŵ1,w2) and ĉ2 = (w1, ŵ2) such that ŵ1 is the word from batch
Bp (other than w1) closest to w2 and ŵ2 the word (other than w2) closest to w1, respectively, in terms of the
cosine similarity of their vectors in Xaux. This way we create a batch Bn of 2k negative training instances
from a batch Bp of k positive training instances.

Next, we transform each instance (i.e., a pair of words) into a “BERT-compatible” format, i.e., into a
sequence of WordPiece (Wu et al., 2016) tokens.2 We split both w1 and w2 into WordPiece tokens, insert
the special separator token (with a randomly initialized embedding) before and after the tokens of w2
and prepend the whole sequence with BERT’s sequence start token, as shown in this example for the
constraint (mended, regenerated):3

1As the goal is to inform the BERT model on the relation of true semantic similarity between words (Hill et al., 2015),
according to prior work on static word embeddings, the sets of both synonym pairs and direct hyponym-hypernym pairs are
useful to boost the model’s ability to capture true semantic similarity, which in turn has a positive effect on downstream language
understanding applications. See the work of Hill et al. (2015) and Vulić (2018) for further details regarding the relationship
between direct hyponym-hypernym pairs and true semantic similarity.

2We use the same 30K WordPiece vocabulary as Devlin et al. (2019). Sharing WordPieces helps our word-level task as
lexico-semantic relationships are similar for words composed of the same morphemes.

3The sign # denotes split WordPiece tokens.
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[CLS] men #ded [SEP] reg #ener #ated [SEP]
0 0 0 0 1 1 1 1

As in the original work (Devlin et al., 2019), we sum the WordPiece embedding of each token with the
embeddings of the segment and position of the token. We assign the segment ID of 0 to the [CLS]
token, all w1 tokens, and the first [SEP] token; segment ID 1 is assigned to all tokens of w2 and the final
[SEP] token.

Lexical Relation Classifier. Original BERT feeds Transformer-encoded token representations to two
classifiers: MLM classifier (predicting the masked tokens), and the NSP classifier (predicting whether
two sentences are adjacent). LIBERT introduces the third pretraining classifier: it is a binary classifier
that predicts whether an encoded word pair represents a desired lexico-semantic relation (i.e., a positive
example where two words stand in the relation of true semantic similarity – synonyms or direct hypernym-
hyponym pairs) or not. Let xCLS ∈ RH be the transformed vector representation of the sequence start
token [CLS] that encodes the whole constraint (w1,w2). Our lexical relation predictor (LRC) is a softmax
classifier formulated as follows:

ŷ = softmax(xCLSW>
LRC +bLRC) , (1)

with WLRC ∈ RH×2 and bLRC ∈ R2 as the classifier’s trainable parameters. Relation classification loss
LLRC is then simply the negative log-likelihood over k instances in the training batch:

LLRC =−∑
k

ln ŷk ·yk. (2)

where y ∈ {[0,1], [1,0]} is the true relation label for a word-pair training instance.

4 Language Understanding Evaluation

To isolate the effects of injecting linguistic knowledge into BERT, we train base BERT and LIBERT in the
same setting: the only difference is that we additionally update the parameters of LIBERT’s Transformer
encoder based on the gradients of the LRC loss LLRC from Eq. (2). In the first set of experiments, we
probe the usefulness of injecting semantic similarity knowledge on the well-known suite of GLUE tasks
(Wang et al., 2018), while we also present the results on lexical simplification, another task that has been
shown to benefit from lexico-semantic similarity specialization (Glavaš and Vulić, 2018), later in §5.

4.1 Experimental Setup

Pretraining Data. We minimize BERT’s original objective LMLM +LNSP on training examples coming
from English Wikipedia.4 We obtain the set of constraints C for the LLRC term from the body of previous
work on semantic specialization of static word embeddings (Zhang et al., 2014; Vulić et al., 2018; Ponti et
al., 2018). In particular, we collect 1,023,082 synonymy pairs from WordNet (Miller, 1995) and Roget’s
Thesaurus (Kipfer, 2009) and 326,187 direct hyponym-hypernym pairs (Vulić and Mrkšić, 2018) from
WordNet, and use them as positive instances for the binary classifier (LRC).5

Fine-Tuning (Downstream) Tasks. We evaluate BERT and LIBERT on the the following tasks from
the GLUE benchmark (Wang et al., 2018), where sizes of training, development, and test datasets for each
task are provided in Table 1:

CoLA (Warstadt et al., 2019): Binary sentence classification, predicting if sentences from linguistic
publications are grammatically acceptable;

4We acknowledge that training the models on larger corpora would likely lead to better absolute downstream scores; however,
the main goal of this work is not to achieve state-of-the-art downstream performance, but to compare the base model against its
lexically informed counterpart.

5Note again that similar to work of Vulić (2018), both WordNet synonyms and direct hyponym-hypernym pairs are treated
exactly the same: as positive examples for the relation of true semantic similarity. Another potential source of external linguistic
constraints, not used in this work, are BabelNet synsets and taxonomy (Navigli and Ponzetto, 2012).
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CoLA SST-2 MRPC STS-B QQP MNLI-
m

MNLI-
mm

QNLI RTE AX

# Train 8,551 67,349 3,668 5,749 363,870 392,702 392,702 104,743 2,490 –
# Dev 1,042 872 408 1,501 40,431 9,815 9,832 5,463 278 –
# Test 1,063 1,821 1,725 1,379 390,964 9,796 9,847 5,463 3,000 1,104

Table 1: dataset sizes for tasks in the GLUE benchmark (Wang et al., 2018).

CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm QNLI RTE AX
MCC Acc F1/Acc Pears F1/Acc Acc Acc Acc Acc MCC

Dev
BERT 29.4 88.7 87.1/81.6 86.4 85.9/89.5 78.2 78.8 86.2 63.9 –
LIBERT 35.3 89.9 87.9/82.6 87.2 86.3/89.8 78.5 78.7 86.5 65.3 –
∆ +5.9 +1.2 +0.8/+1.0 +0.8 +0.4/+0.3 +0.3 -0.1 +0.3 +1.4 –1M

Test
BERT 21.5 87.9 84.8/78.8 80.8 68.6/87.9 78.2 77.6 85.8 61.3 26.8
LIBERT 31.4 89.6 86.1/80.4 80.5 69.0/88.1 78.4 77.4 86.2 62.6 32.8
∆ +9.9 +1.7 +1.3/+1.6 -0.3 +0.4/+0.2 +0.2 -0.2 +0.4 +1.3 +6.0

Dev
BERT 30.0 88.5 86.4/81.1 87.0 86.3/89.8 78.8 79.3 86.6 64.3 –
LIBERT 37.2 89.3 88.7/84.1 88.3 86.5/90.0 79.6 80.0 87.7 66.4 –
∆ +7.2 +0.8 +2.3/+3.0 +1.3 +0.2/+0.2 +0.8 +0.7 +1.1 +2.1 –2M

Test
BERT 28.8 89.7 84.9/79.1 81.1 69.0/88.0 78.6 78.1 87.2 63.4 30.8
LIBERT 35.3 90.8 86.6/81.7 82.6 69.3/88.2 79.8 78.8 87.2 63.6 33.3
∆ +6.5 +1.1 +1.7/+2.6 +1.5 +0.3/+0.2 +1.2 +0.7 +0.0 +0.2 +2.5

Table 2: Results on 10 GLUE tasks after 1M and 2M MLM+NSP steps with BERT and LIBERT.

SST-2 (Socher et al., 2013): Binary sentence classification, predicting sentiment (positive or negative) for
movie review sentences;

MRPC (Dolan and Brockett, 2005): Binary sentence-pair classification, predicting whether two sentences
are mutual paraphrases;

STS-B (Cer et al., 2017): Sentence-pair regression task, predicting the degree of semantic similarity for a
pair of sentences;

QQP (Chen et al., 2018): Binary classification task, recognizing question paraphrases;

MNLI (Williams et al., 2018): Ternary natural language inference (NLI) classification of sentence pairs.
Two test sets are given: a matched version (MNLI-m) in which the test domains match with training data
domains, and a mismatched version (MNLI-mm) with different test domains;

QNLI: A binary classification version of the Stanford Q&A dataset (Rajpurkar et al., 2016);

RTE (Bentivogli et al., 2009): Another NLI dataset, ternary entailment classification for sentence pairs;

AX (Wang et al., 2018): A small, manually curated NLI dataset (i.e., a ternary classification task), with
examples encompassing different linguistic phenomena relevant for entailment.6

Training and Evaluation. We train both BERT and LIBERT from scratch, with the configuration of the
BERTBASE model (Devlin et al., 2019): L = 12 transformer layers with the hidden state size of H = 768,
and A = 12 self-attention heads. We train in batches of k = 16 instances;7 the input sequence length is
128. The learning rate for both models is 2 ·10−5 with a warm-up over the first 1,000 training steps. Other
hyperparameters are set to the values reported by Devlin et al. (2019).

LIBERT combines BERT’s MLM and NSP objectives with our LRC objective in a multi-task learning
setup. We update its parameters in a balanced alternating regime: (1) we first minimize BERT’s LMLM +
LNSP objective on one batch of masked sentence pairs and then (2) minimize the LRC objective LLRC on
one batch of training instances created from linguistic constraints.

During fine-tuning, for each task, we independently find the optimal hyperparameter configurations of

6Following Devlin et al. (2019), we do not evaluate on the Winograd NLI (WNLI), given its well-documented issues.
7Due to hardware restrictions, we train in smaller batches than in the the original work (Devlin et al., 2019) (k = 256). This

means that for the same number of update steps, our models will have observed less training data than the original BERT model
of Devlin et al. (2019).
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Figure 2: Accuracy over time for BERT and LIBERT on (a) SST-2 and (b) MRPC on the corresponding
development sets.

Coarse-grained Fine-grained

Model All LS PAS Lo KCS LE MN Fa Re NE Qu

1M
BERT 26.8 24.5 38.8 19.6 12.8 17.5 29.3 04.9 22.5 15.6 57.2
LIBERT 32.8 35.2 39.7 25.3 19.4 28.5 51.4 18.7 59.2 18.0 56.9
∆ 6.0 10.7 0.9 5.7 6.6 11.0 22.2 13.8 36.7 2.4 -0.3

2M
BERT 30.8 31.3 40.0 21.7 19.7 21.2 51.3 09.1 59.2 21.0 60.5
LIBERT 33.3 40.6 39.9 24.5 18.3 33.2 72.0 21.0 59.2 18.3 68.4
∆ 2.5 9.3 -0.1 2.8 -1.4 12.0 20.7 11.9 0.0 -2.7 7.9

Table 3: Linguistic analysis on the Diagnostic dataset. The scores are R3 coefficients between gold and
predicted labels, scaled by 100, for sentences containing linguistic phenomena of interest. We report
all the coarse-grained categories: Lexical Semantics (LS), Predicate-Argument Structure (PAS), Logic
(Lo), and Knowledge and Common Sense (KCS). Moreover, we report fine-grained categories for Lexical
Semantics: Lexical Entailment (LE), Morphological Negation (MN), Factivity (Fa), Redundancy (Re),
Named Entities (NE), and Quantifiers (Qu).

the downstream classifiers for the pretrained BERT and LIBERT: this implies that it is valid to compare
their performances on the downstream development sets. Finally, we evaluate fine-tuned BERT and
LIBERT on all 10 test sets.

4.2 Results and Discussion

Main Results. The main results are summarized in Table 2: we report both dev set and test set
performance. After 1M MLM+NSP steps, LIBERT outperforms BERT on 8/9 tasks (dev) and 8/10 tasks
(test). After 2M MLM+NSP steps, LIBERT is superior in 9/9 tasks (dev) and 9/10 tasks (test). For the test
set of the tenth task (QNLI), LIBERT is on a par with BERT. While large gains are reported on CoLA,
AX, and visible gains appear on SST-2 and MRPC, it is encouraging to see that slight and consistent gains
are observed on almost all other tasks. These results suggest that available external lexical knowledge
can be used to supplement unsupervised pretraining models with useful information which cannot be
fully captured solely through large text data and their distributional signal. Overall, they indicate that
LIBERT, our lexically informed multi-task method, successfully blends such curated linguistic knowledge
with distributional learning signals. Based on the statistics from Table 1, it seems that the gains with
LIBERT are more pronounced for GLUE tasks with a smaller number of training examples (e.g., CoLA,
MRPC), suggesting its potential in scenarios with fewer distributional data for pretraining, which we plan
to investigate further in future work. The results also further validate intuitions from relevant work on
specializing static word embeddings (Wieting et al., 2015; Mrkšić et al., 2017) that steering distributional
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Candidate Generation Full Simplification Pipeline
BenchLS LexMTurk NNSeval BenchLS LexMTurk NNSeval

# Steps P R F1 P R F1 P R F1 A A A

1M
BERT .2167 .1765 .1945 .3043 .1420 .1937 .1499 .1200 .1333 .3854 .5260 .2469
LIBERT .2348 .1912 .2108 .3253 .1518 .2072 .1646 .1318 .1464 .4338 .6080 .2678
∆ .0181 .0147 .0163 .0210 .0098 .0135 .0147 .0118 .0131 .0484 .0820 .0209

2M
BERT .2408 .1960 .2161 .3267 .1524 .2079 .1583 .1267 .1408 .4241 .5920 .2594
LIBERT .2766 .2252 .2483 .3700 .1727 .2354 .1925 .1541 .1712 .4887 .6540 .2803
∆ .0358 .0292 .0322 .0433 .0203 .0275 .0342 .0274 .0304 .0646 .0620 .0209

Table 4: Results on the lexical simplification candidate generation task and for the full pipeline on three
datasets: BenchLS, LexMTurk, and NNSeval. For each dataset we report the performance after 1M
and 2M MLM+NSP steps (# Steps) with BERT and LIBERT in terms of Precision (P), Recall (R) and
F1-measure (F1) for candidate generation and accuracy (A) for the full pipeline.

models towards capturing true semantic similarity (as also done here) has a positive impact on language
understanding applications in general.

Fine-grained Analysis. To better understand how lexical information corroborates the model predic-
tions, we perform a fine-grained analysis on the Diagnostic dataset (Wang et al., 2018), measuring the
performance of LIBERT on specific subsets of sentences annotated for the linguistic phenomena they
contain. We report the results in Table 3. As expected, Lexical Semantics is the category of phenomena
that benefits the most (+43.7% for 1M iterations, +29.7% for 2M), but with significant gains also in
phenomena related to Logic (+29.1% for 1M and +29.1% for 2M) and Knowledge & Common Sense
(+51.7% for 1M). Interestingly, these results seem to suggest that knowledge about semantic similarity
and lexical relations also partially encompasses factual knowledge about the world.

By inspecting even finer-grained phenomena related to Lexical Semantics, LIBERT outdistances its
baseline by a large margin in: i) Lexical Entailment (+62.9% for 1M, +56.6% for 2M), as expected from
the guidance of hypernym-hyponym pairs; ii) Morphological Negation (+75.8% for 1M, +40.4% for 2M).
Crucially, the lower performance of BERT cannot be explained by the low frequency of morphologically
derived words (prevented by the WordPiece tokenization), but exactly because of the distributional bias. iii)
Factivity (+281.7% for 1M, +130.8% for 2M), which is a lexical entailment between a clause and the entire
sentence it is embedded in. Since it depends on specific lexical triggers (usually verbs or adverbs), it is
clear that lexico-semantic knowledge better characterizes the trigger meanings. The improvement margin
for Redundancy and Quantifiers fluctuate across different amounts of iterations, hence no conclusions can
be drawn from the current empirical evidence.

Performance over Time. Further, an analysis of performance over time (in terms of MLM+NSP training
steps for BERT and LIBERT) for one single-sentence task (SST-2) and one sentence-pair classification
task (MRPC) is reported in Figures 2a and 2b, respectively. The scores clearly suggest that the impact of
external knowledge does not vanish over time: the gains with the lexically-informed LIBERT persist at
different time steps. This finding again indicates the complementarity of useful signals coded in large text
data versus lexical resources (Faruqui, 2016; Mrkšić et al., 2017), warranting more elaborate investigation
of that complementarity in future work.

5 Similarity-Oriented Downstream Evaluation: Lexical Simplification

Task Description. The goal of lexical simplification is to replace a target word w in a context sentence
S with simpler alternatives of equivalent meaning. Generally, the task can be divided into two main
parts: (1) generation of substitute candidates, and (2) candidate ranking, in which the simplest candidate
is selected (Paetzold and Specia, 2017). Unsupervised approaches to candidate generation seem to be
predominant lately (Glavaš and Štajner, 2015; Ponti et al., 2019). In this task, discerning between pure
semantic similarity and broad topical relatedness (as well as from other lexical relations such as antonymy)
is crucial. Consider the example: “Einstein unlocked the door to the atomic age,” where unlocked is the
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target word. In this context, the model should avoid confusion both with related words (e.g. repaired) and
opposite words (e.g. closed) that fit in context but alter the original meaning.

Experimental Setup. In order to evaluate the simplification capabilities of LIBERT versus BERT, we
adopt a standard BERT-based approach to lexical simplification (Qiang et al., 2019), dubbed BERT-LS. It
exploits the BERT MLM pretraining task objective for candidate generation. Given the complex word w
and a context sentence S, we mask w in a new sequence S′. Next, we concatenate S and S′ as a sentence pair
and create the BERT-style input by running WordPiece tokenization on the sentences, adding the [CLS]
and [SEP] tokens before, in-between, and after the sequence, and setting segment IDs accordingly. We
then feed the input either to BERT or LIBERT, and obtain the probability distribution over the vocabulary
output by the MLM predictor based on the masked token p(·|S,S′\{w}). Based on this, we select the
candidates as the top k words according to their probabilities, excluding morphological variations of the
masked word.

For the substitution ranking component, we also follow Qiang et al. (2019). Given the set of candidate
tokens C, we compute for each ci in C a set of features: (1) BERT prediction probability, (2) loss of the
likelihood of the whole sequence according to the MLM when choosing ci instead of w, (3) semantic
similarity between the fastText vectors (Bojanowski et al., 2017) of the original word w and the candidate
ci, and (4) word frequency of ci in the top 12 million texts of Wikipedia and in the Children’s Book Test
corpus.8 Based on the individual features, we next rank the candidates in C and consequently, obtain a set
of ranks for each ci. The best candidate is chosen according to its average rank across all features. In our
experiments, we fix the number of candidates k to 6.

Evaluation Data. We run the evaluation on three standard datasets for lexical simplification:

(1) LexMTurk (Horn et al., 2014). The dataset consists of 500 English instances, which are collected
from Wikipedia. The complex word and the simpler substitutions were annotated by 50 crowd workers on
Amazon Mechanical Turk.

(2) BenchLS (Paetzold and Specia, 2016) is a merge of LexMTurk and LSeval (De Belder and Moens,
2010) containing 929 sentences. The latter dataset focuses on text simplification for children. The authors
of BenchLS applied additional corrections over the instances of the two datasets.

(3) NNSeval (Paetzold and Specia, 2017) is an English dataset focused on text simplification for non-native
speakers and consists in total of 239 instances. Similar to BenchLS, the dataset is based on LexMTurk, but
filtered for a) instances that contain a complex target word for non-native speakers, and b) simplification
candidates that were found to be non-complex by non-native speakers.

We report the scores on all three datasets in terms of Precision, Recall and F1 for the candidate
generation sub-task, and in terms of the standard lexical simplification metric of accurracy (A) (Horn et
al., 2014; Glavaš and Štajner, 2015) for the full simplification pipeline. This metric computes the number
of correct simplifications (i.e., when the replacement made by the system is found in the list of gold
standard replacements) divided by the total number of target complex words.

Results and Discussion. The results for BERT and LIBERT for the simplification candidate generation
task and for the full pipeline evaluation are provided in Table 4. We report the performance of both models
after 1M and 2M MLM+NSP pretraining steps. We observe that LIBERT consistently outperforms BERT
by at least 0.9 percentage points across all evaluation setups, measures, and for all three evaluation sets.
Same as in GLUE evaluation, the gains do not vanish as we train both models for a longer period of time
(i.e., compare the differences between the two models after 1M vs. 2M training steps). On the contrary, for
the candidate generation task, the gains of LIBERT over BERT are even higher after 2M steps. The gains
achieved by LIBERT are also visible in the full simplification pipeline: e.g., on LexMTurk, replacing
BERT with LIBERT yields a gain of 8.2 percentage points. In sum, these results confirm the importance
of similarity specialization for a similarity-oriented downstream task such as lexical simplification.

8A detailed description of these features can be found in the original work.
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6 Conclusion and Future Work

We have presented LIBERT, a lexically informed extension of the state-of-the-art unsupervised pretraining
model BERT. Our model is based on a multi-task framework that allows us to steer (i.e., specialize) the
purely distributional BERT model to accentuate a lexico-semantic relation of true semantic similarity
(as opposed to broader semantic relatedness). The framework combines standard BERT objectives with
a third objective formulated as a relation classification task. The gains stemming from such explicit
injection of lexical knowledge into pretraining were observed for 9 out of 10 language understanding tasks
from the GLUE benchmark, as well as for 3 lexical simplification benchmarks. These results suggest
that complementing distributional information with lexical knowledge is beneficial for unsupervised
pretraining models.

In the future, we will work on more sophisticated specialization methods, and also investigate the use
of adapter modules (Houlsby et al., 2019; Pfeiffer et al., 2020; Lauscher et al., 2020) for more efficient
fine-tuning. We will also explore methods to encode the knowledge on asymmetric relations such as
meronymy and lexical entailment. Finally, we will port this new framework to other languages and other
pretrained language models (Liu et al., 2019; Clark et al., 2020; Conneau et al., 2020). We also plan to
experiment with applications of our approach to resource-poor scenarios in the vein of Ponti et al. (2019),
and also to specialized domains (e.g., (bio)medicine, law) (Lee et al., 2020; Chalkidis et al., 2020), where
the transferred and/or external in-domain lexical information might prove particularly useful.
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2020. Common sense or world knowledge? investigating adapter-based knowledge injection into pretrained
transformers. arXiv preprint arXiv:2005.11787.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2020.
BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics,
36(4):1234–1240.

Benjamin J. Lengerich, Andrew L. Maas, and Christopher Potts. 2018. Retrofitting distributional embeddings to
knowledge graphs with functional relations. In Proceedings of COLING, pages 2423–2436.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon Shashua, and
Yoav Shoham. 2020. SenseBERT: Driving some sense into BERT. In Proceedings of ACL, pages 4656–4667.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and Yu Hu. 2015. Learning semantic word embeddings based on
ordinal knowledge constraints. In Proceedings of ACL, pages 1501–1511.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. 2020. K-BERT: Enabling
language representation with knowledge graph. In Proceedings of AAAI, pages 2901–2908.



1382

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S Corrado, and Jeffrey Dean. 2013. Distributed representations
of words and phrases and their compositionality. In Proceedings of NeurIPS, pages 3111–3119.

George A. Miller. 1995. WordNet: A lexical database for English. Commun. ACM, 38(11):39–41, November.
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