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Abstract

Natural Language Query interfaces allow the end-users to access the desired information without
the need to know any specialized query language, data storage, or schema details. Even with
the recent advances in NLP research space, the state-of-the-art QA systems fall short of under-
standing implicit intents of real-world Business Intelligence (BI) queries in enterprise systems as
Natural Language Understanding remains an AI-hard problem. We posit that deploying ontology
reasoning over domain semantics can help in achieving better natural language understanding for
QA systems. In this paper, we specifically focus on building a Schema Aware Semantic Reason-
ing Framework that translates natural language interpretation as a sequence of solvable tasks by
an ontology reasoner. We apply our framework on top of an ontology-based, state-of-the-art nat-
ural language question-answering system ATHENA, and experiment with 4 benchmarks focused
on BI queries. Our experimental numbers empirically show that the Schema Aware Semantic
Reasoning indeed helps in achieving significantly better results for handling BI queries with an
average accuracy improvement of 30%

1 Introduction
Natural Language Query (NLQ) interfaces for information access (e.g., Alexa, Google Assistant, and
Siri) have gained popularity in recent times as they allow the end-users to specify their information
needs in natural language. In enterprise settings, systems with NLQ interfaces (Li and Jagadish, 2014;
Saha et al., 2016; Sen et al., 2020) are especially desirable as they enable the business analysts to access
domain-specific knowledge without having to learn specialized query languages such as SQL, SPARQL,
or other customized query languages. NLQ interfaces also allow the end-user to explore and analyze the
data without the need to learn about the storage mechanism and schema-specific details of the underlying
system. Thus such systems can help boost analyst productivity and minimize training costs and time.
Current State of NLQ Systems: To retrieve required results from the underlying database, NLQ based
systems need to translate the input natural language query to a structured query (e.g., SQL, SPARQL) that
is then used to query the database. Recent advances in NLP research has produced many machine learn-
ing based systems which try to model the QA pipeline as a sequence-to-sequence architecture (Zhong et
al., 2017a; Xu et al., 2017; Guo et al., 2019). However, they focus on rather simple queries on a single
table or on a relatively simple schema with a few tables. For example, RAT-SQL (Wang et al., 2020) is
a state-of-the-art on Spider (Yu et al., 2018) dataset, where Spider dev set has an average of only 4 tables
per Database and less complex queries than typical BI queries seen with complex nesting (Sen et al.,
2020). Therefore, such systems in their current capacity, are not yet aimed towards handling complex BI
queries over large databases. An alternate approach is to utilize domain-specific ontologies and knowl-
edge to translate the input natural language query to an intermediate meaning representation like OQL
(Ontology Query Language) (Saha et al., 2016; Sen et al., 2020) or AMR (abstract meaning representa-
tion) (Banarescu et al., 2013) that can then be converted to the structured query (Saha et al., 2016; Li and
Jagadish, 2014). However, these systems work well only if the user explicitly specifies the information
need in the query. Such systems fail to capture and interpret the implicit intents implied in the query.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: (a) Ontology Snapshot (b) Motivating Examples
Improving Query Interpretation by Reasoning: We posit that ontology reasoning can serve as a
useful tool for interpreting and inferring the implicit intents in natural language queries. To understand
the intuition, let us consider a financial domain analyst interested in obtaining a list of traders who traded
more stocks as compared to a well-known trader X. This can be expressed by the two equivalent natural
language queries:
Q1: List the traders buying stocks of total value more than the total value of stock bought by trader X.
Q2: List the traders who traded more stocks than trader X.

Here, note that Q1 explicitly specifies that the system needs to return the list of traders such that the
value of stocks traded by them is more than the value of stocks traded by trader X. On the other hand, this
requirement is not made explicit in Q2, although to a person working in the financial domain, this implicit
information is obvious, and in fact, Q2 represents the commonly used language of the domain. While
state-of-the-art NLQ systems can handle queries like Q1 where the information required for computation
is explicitly present in the query, they fail to answer queries like Q2 where the user intent is implicit.

This is where we propose to apply a schema-aware semantic reasoning framework, which can reason
that more than operation applies to numeric values and thus, can not be applied directly to entities of
type stock. It can then use the domain knowledge to identify that stocks are associated with the sale and
purchase transactions having monetary (numerical) values on which more than can be applied.

Our Focus: Admitting that the fully automated interpretation of natural language queries is AI-hard
(Yampolskiy, 2013), we focus on a specific aspect of natural language query interpretation in enterprise
settings where ontology reasoning can prove beneficial.
Capturing domain semantics: Consider the example questions in Figure 1 that are typical of queries a
financial analyst may have. Note that the three questions seem very similar in their linguistic structure and
use the same tokens except for salary (Q1), trading accounts (Q2), and stocks (Q3). From the perspective
of natural language phrasing, all the queries look very similar in structure and hence will produce very
similar outputs for any language processing operation. However, due to different semantics associated
with the argument of more than operation, the system needs to perform very different operations to fetch
the desired results for the user (intended interpretation column in Figure 1) For Q1, more than being a
numeric comparison can be applied on Salary, which is a numeric field. However, for Q2, trading
accounts is a concept (i.e., a collection of entities) and not a numeric field. The intended operation here
is the count of the number of trading accounts. Likewise, in Q3, more than in the context of stocks
correspond to not the count of individual stock symbols but the sum of all stock units transacted per
transaction. Therefore, to interpret the query correctly, the system needs to utilize the domain knowledge
to infer the implied operations requested in the query.
Our Contributions: We propose a framework for schema-aware semantic reasoning for natural lan-
guage query interpretation. To capture implicit intents in the query, we construct a generic ontology for
semantic reasoning that can be applied across different domains as a guide to deduce semantically valid
meaning representations of natural language queries. We also propose novel algorithms (Section 3) to
combine linguistic analysis of a query with domain-specific facts to translate query interpretation as a
sequence of solvable tasks by an ontology reasoner such as consistency checking, instance retrievals, etc.
over the domain ontology augmented with domain-specific logical facts. We implement the proposed
approach on top of a state-of-the-art ontology-based NLQ interface ATHENA (Saha et al., 2016) and
evaluate on multiple benchmark data sets (Section 4). We achieve 30% improvements in interpretation
accuracy over ATHENA.
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2 Related Work
Our work lies at the intersection of natural language query answering systems and applications of ontol-
ogy reasoning. Therefore, we cover both the segments to study the recent research trends in them.

Natural language question answering(NL QA). NL QA in general refers to a large body of works
segmented by the backend data store and resources used to answer the question. Natural language inter-
faces over linked data (Unger et al., 2014; Usbeck et al., 2015), RDF stores (Zou et al., 2014) are pri-
marily meant for supporting question answering on text data. This is still an active area of research with
many running challenges (QAL, 2016). On the other hand, Natural Language Interfaces to databases
(NLIDB) are meant to support the NL question answering over structured data like databases. In re-
cent days NLIDB systems have gained immense popularity and significant research exposure. NLIDB
systems have mostly seen rule-based solutions (Popescu et al., 2003; Li and Jagadish, 2014; Saha et
al., 2016) using database schema as one the primary resource. Although machine learning based sys-
tems (Zhong et al., 2017a; Utama et al., 2018) have been proposed recently, they often suffer from a
lack of domain-specific training data to learn complex query classes and join paths among multiple ta-
bles. With the limited training data available, Seq2SQL (Zhong et al., 2017a) can handle only single
table select and project queries without joins and therefore, is easily outperformed by state-of-the-art
rule-based systems (Li and Jagadish, 2014; Saha et al., 2016). ATHENA (Saha et al., 2016) is one of the
state-of-the-art NLIDB systems which outperformed its predecessor NALIR (Li and Jagadish, 2014) by
introducing the use of domain ontology to resolve ambiguities in query interpretation.

Ontology Reasoning. Ontology reasoning has been widely used in data stores with an open-world as-
sumption, where all facts may not be explicitly stated. Such data stores can broadly be called Knowledge
Bases (KBs), where using ontology axioms over the existing facts can result in inferring lot more facts
for the domain. This is known as Ontology-Based Data Access (OBDA) (Ortiz, 2013). OBDA systems
and ontology reasoning have been extensively used across different tasks and domains (Ortiz, 2013).
There are several available reasoners (Sattler and Matentzoglu, 2014) with varying support of constructs
and expressivity in axioms along with a trade-off on time-bound efficiency. The most important task
a reasoner does is to support question answering over an ontology by taking into account the implicit
facts that can be inferred with the axioms. In question answering space, there has been some work on
ontology reasoning for ambiguity resolution in dialogues (Estival et al., 2004) or combining answers
from multiple knowledge bases by interpreting explicit operators like existential qualifiers (Waldinger et
al., 2018). Further, ontology reasoning has also found successful applications in different aspects of nat-
ural language understanding such as modeling common sense reasoning via ontologies and subsequent
reasoning tasks (Rashkin et al., 2018; Sap et al., 2018).

We build upon these two bodies of work and utilize the advances made in the field of ontology reason-
ing to address a specific challenge in natural language-based information access systems – interpreting
implicit intents in the query by reasoning over domain knowledge.

3 System
In this section, we detail the proposed reasoning framework for natural language query interpretation.
We start with the overall system architecture and then discuss each of the components in detail.

The proposed framework, as illustrated in Figure 2, can be divided into (i) an offline part and (ii) an
online part. The offline part consists of components that are curated one time for a target domain and
are used as resources later to facilitate reasoning for query interpretation. The online part consists of
components that work on each input natural language query and help interpret the query in the context
of the target domain by using the offline components for domain reasoning.

3.1 System Components

3.1.1 Domain Ontology
Domain Ontology is used to represent the target domain on which natural language queries are
to be interpreted. The domain ontology captures target domain semantics in terms of different
concepts in the domain, their attributes as data properties, and interactions with other concepts
as object properties. Figure 1 captures a partial snapshot of the Finance domain ontology with
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Figure 2: System Architecture
CONCEPT s like SecuritiesTransaction having PROPERTY such as hasLegalName or specifically
T IME PROPERTY like hasSettlementDate, and RELAT ION such as hasLastTradedValue with
MonetaryAmount.

3.1.2 Reasoning Knowledgebase

We design Reasoning Knowledgebase (RKB) to model the generic rules for making semantically valid
interpretations, e.g. numeric aggregation (average, sum, etc.) can only be applied on a numeric property.
Figure 3 shows a tiny fraction of RKB, with three components
• Concepts: RKB has concepts like CONCEPT S,PROPERT IES, NUMERIC PROPERT IES,
NUMERIC COMPARISON, NUMERIC AGGREGAT ION, etc. which are generic entities to write rules
for semantically valid interpretation.
• TBox Axioms: The TBox axioms in RKB are used to describe the different types of relations between
concepts and more importantly it enforces domain agnostic semantic constraints which are universally
true for any valid interpretation. For example, the axiom NUMERIC COMPARISON ⊂MEASURE en-
forces that any numeric comparison has to be an instance of MEASURE. Another axiom MEASURE =
NUMERIC AGGREGAT ION∪NUMERIC PROPERTY defines measure to be a union class of numeric
aggregation and numeric properties. In effect, both these axioms enforce that any numeric comparison
like more than, less than, etc. can be applied only on a numeric property or an aggregation. It also
contains axioms about query-specific annotations to enforce (and later inferred via correction) intent
completeness of an input query. For example, a query asking to retrieve top entities must also have an
order to rank the entities.
• ABox Facts: Given a domain ontology, we collect the domain-specific facts which are useful for rea-
soning with RKB axioms. For example, to work in the Finance domain, we need to know that Executive
is not a NUMERIC PROPERTY but a CONCEPT , hence MORE T HAN can not be applied directly
to Executive. ABox facts are such domain-specific facts that we derive from a domain ontology (in
Algorithm 1) and populate to RKB for subsequent reasoning and inference (in Algorithm 2).

Figure 3: (a) Logical Snapshot of Reasoning KB (b) Logical Snapshot of Correction Unit
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3.1.3 Correction Unit
While Reasoning Knowledgebase RKB is modeled to catch semantically invalid interpretations, we design
Correction Unit intending to detect the cause of semantic invalidity which can be corrected by inferring
the implicit intent through action axioms. Therefore, the Correction Unit has axioms divided into two sets
(1) Detection Axioms to detect the specific causes of invalid interpretations and (2) For every detection
axiom, we have corresponding action axioms configured to take a set of actions to make the interpretation
semantically valid.

As shown in Figure 3(Row 3), the detection axiom tries to detect if there is a
NUMERIC COMPARISON applied on a CONCEPT C, where the concept already has a config-
ured MEASURE PROPERTY M in the domain ontology. Note that, NUMERIC COMPARISON
on a CONCEPT is not semantically valid, thus the corresponding action axiom corrects the
NUMERIC COMPARISON to apply instead on an aggregation which is the SUM on M.

3.2 Query Flow

Although Figure 3 shows only a tiny fraction of RKB and Correction Unit axioms, the key point of using
axioms to model the semantic validity and subsequently its detection and correction is to translate the
hard task of implicit intent understanding and producing semantically valid interpretations, into tradi-
tional reasoner tasks such as consistency check, satisfiability, and instance retrieval. We demonstrate that
in Figure 4 via a running example which is the same query that we presented in motivation Section 1. We
describe each of the online components to show how the offline components are used with an ontology
reasoner for natural language query interpretation. Figure 4 reuses the example natural language query
we presented during motivation in Section 1.

Figure 4: Illustrative Query Interpretation Flow

• Language Processors Language processors scan through the query applying general natural lan-
guage processing tools and produce some logical annotations for different query clauses like Select,
Where, Comparisons, Group By, etc. with associated tokens from the query. It is a standard layer in
every question answering system. We chose to use the same language processor layer from the state-of-
the-art ontology-based question answering system ATHENA (Saha et al., 2016). The system can choose
to borrow annotators from other implementations as well. Because language processor annotations may
or may not be correct for the target domain, we call them proposals. Figure 4 shows the Proposals as
obtained from language processors applied to the example question.
• Consistency Checker: This acts as the first layer of the proposed system. Given a set of proposals,

an ontology reasoner is used to check the consistency of the proposals for the axioms modeled in RKB.
Reasoner produces a binary output to signal if the proposals are consistent with RKB or not.
• Interpreter: Given a set of proposals that can not produce a semantically valid interpretation to pass

the Consistency Checker, the Interpreter makes use of Correction Unit axioms to detect and correct the
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proposals. It uses an ontology reasoner to check if any of the detection axioms is satisfiable. If so, it
uses the reasoner to retrieve instances of the class expression captured in the corresponding action axiom
and performs the designated sequence of actions on those instances to convert the inconsistent proposals
into consistent facts that can now produce semantically valid interpretations. Figure 4 shows the rele-
vant axioms from the Correction Unit in detecting inconsistent proposals, as well as the corresponding
corrective actions to convert them to valid facts over RKB.

3.3 Algorithms

Having described individual components of our reasoning framework and illustrated their usage with
examples, we now present the overview of the formal algorithms such that it can easily be implemented
using core reasoning libraries.

Algorithm 1: Algorithm to initialize Reasoning Re-
sources to be used for query interpretation

Input: Domain Ontology OD
Output: Reasoning KB RKB,

1 OWLOntology RKB←
loadReasoningOntology(reasoning.owl);

2 foreach Concept c ∈ OD do
3 RKB.addAxiom(CONCEPT(c));
4 foreach Property p ∈ OD do
5 RKB.addAxiom(PROPERTY(p));

6 foreach Relation p ∈ OD do
7 RKB.addAxiom(RELATION(p));

8 foreach AnnotationAxioma ∈ OD do
9 Annotation annot← a.getAnnotation();

10 Element el← a.getOntologyElement();
11 RKB.addAxiom(annot(el)));

12 Return RKB

Algorithm 2: Algorithm to detect and correct inconsistent proposals to pro-
duce valid facts

Input: NL Query Q, Reasoning KB RKB,
Output: Set[Facts] interpretedProposals

1 Set[Fact] proposalSet = LanguageProcessor(Q);
2 RKB.addFacts(proposalSet);
3 if Reasoner.isConsistent(RKB) then
4 return proposals;

5 Set[Axioms] validProposals = {};
6 OWLOntology OC ← loadCorrectionOntology(correctionAxioms.owl);
7 RKB.addAxioms(OC .getAxioms());
8 while (!Reasoner.isConsistent(RKB)) do
9 foreach Axiom tbox ∈ OC .getT BoxAxioms() do

10 foreach ClassExpression ce ∈ tbox.nestedClassExpression do
11 Set[Instance] correctionInstance =

Reasoner.getInstances(ce,RKB)
12 if ce.isCorrectionDetectionAxiom() & correctionInstance 6=

empty then
13 RKB.removeAxioms(actionClass(correctionInstance))

14 if ce.isCorrectionActionAxiom() & correctionInstance 6=
empty then

15 RKB.addAxioms(correctedClass(correctionInstance))
16 validProposals.addAll(correctedClass(correctionInstance))

17 return validProposals;

Algorithm 1 is built to set up the necessary offline resources to utilize ontology reasoning for query
interpretation. Algorithm 2 further utilizes known reasoner tasks such as consistency checking for pro-
ducing semantically valid facts for interpretation for each natural language query.

Algorithm 1 iterates over the different ontology resources like concepts, properties, and relations
from the target domain ontology OD to create domain-specific facts on RKB vocabulary to ingest into
RKB(Line 3-Line 11). Note that, in Line 8, Algorithm 1 also reads various annotations present in OD
to ingest corresponding ABox facts into RKB, such as annotating key properties or default measures for
concepts, etc. as seen in Figure 3 ABox facts. These are typically provided by SMEs (Subject Matter Ex-
pert) to capture finer aspects of the domain. Facts like hasKeyProp, hasMeasureProp, etc. are produced
for these SME provided annotations.

Algorithm 2 outlines the sequence of tasks performed to reason over a natural language query accu-
rately as outlined in Section 3.1. For proposals obtained from a query Q that are inconsistent with RKB,
Correction ontology OC is iterated over to detect the Detection axiom designated to the cause of incon-
sistency. The corresponding Action axiom is determined using conceptual linking employing a shared
naming convention and index. The detected conflicting class expression is deleted, provided an action is
found for the same. The Action axiom further inserts the corrected class into RKB. The algorithm con-
tinues to search and correct inconsistent proposals until RKB becomes consistent. Therefore, if a Query
q requires N inferences, the algorithm complexity will be O(N ∗P(|RKB|)) where P(|RKB|) represents
polynomial time complexity of reasoner tasks on knowledgebase size |RKB|. From our experiments, we
know the number of inferences needed for a single query is typically upper bounded by 6, therefore,
Algorithm 2 is effectively a polynomial-time algorithm on knowledge-base size |RKB|.
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Ontology |C| |P| |RF | #RKB f acts #Query #QReasoning

FIBEN 152 664 159 866 144 109
GOSALES 25 156 31 230 112 92
QALD 214 2279 161 2868 50 28
Spider 4.1 25.9 3.3 37.4 1034 161

Table 1: Ontology statistics.
4 Experiments

In this section, we present a comprehensive evaluation of our proposed system. We describe in detail
the experimental setup, benchmarks on which our prototype has been tested, followed by the set of
evaluation metrics we have used, and finally the results with in-depth analysis.

As described in Section 3, we used our reasoning approach on top of existing state-of-the-art
ATHENA. We have reused the existing language processors from ATHENA, whereas the algorithms
with reasoning components e.g. Consistency Checker, Interpreter, etc. are implemented using JFact
Reasoner (Palmisano, 2015) to create our prototype ReasonedATHENA. The modular architecture of our
reasoning framework allows it to be built on top of any other state-of-the-art QA systems as well which
rely on an intermediate level of annotations as ATHENA. This allows our proposed framework to be
adaptable to different state-of-the-art implementations too.

4.1 Domains

To test the effectiveness of ReasonedATHENA we need benchmarks with BI queries. However, there
is no specific benchmark already known to the community that specifically focuses on the challenges
of BI queries. Therefore, we take 2 closest existing benchmarks in (1) Spider and (2) QALD6: QA on
statistical modelling data. Apart from these, we create our own BI query benchmarks for 2 widely used
domains in enterprise applications for business analytics as (3) Finance and (4) Sales. We describe each
of these domains below:
• Spider: (Yu et al., 2018) is a widely used benchmark for NLIDB systems, and it is the dataset that
comes closest to providing multi-table dependent question answering queries with an average of 4.1
tables in a domain. Unlike the relatively straightforward queries in WikiSQL (Zhong et al., 2017b), Spi-
der provides a better degree of complexity involving aggregations, negations, numeric comparisons, etc.
which are closer towards analytic queries seen in BI applications.
• QALD6-Statistical question answering (QAL, 2016): This task specifically focused on understand-
ing implicit intents for answering statistical intent queries, which are also very close to analytic intent
queries in BI applications.
• Finance Benchmark Ontology: FIBEN is a complex business intelligence benchmark ontology on
Finance, first proposed in (Sen et al., 2019). It combines two standard ontologies in Finance, (i) FRO and
(ii) FIBO. FIBEN models information about various financial metrics of companies, insiders working in
companies, their stock transactions and holding accounts, etc., thus emulating a typical real-world data
mart in Finance.
• Sales Benchmark Data model: GOSALES (gos, 2020) is a standard data model that is used as a
benchmark in IBM’s Cognos Business Intelligence Offerings (Browne and others, 2010). GOSALES
contains information about various measures like sales target, product forecast across various dimen-
sions like location, time, etc. The combinations of various measures and dimensions make it suitable for
BI use cases.

Table 1 provides basic statistics for all the domain ontologies. In addition to the number of concepts
and properties, Table 1 also shows the number of domain-specific facts added to the reasoning knowledge
base prior to query interpretation by Algorithm 1.

4.2 Workload

We re-used the existing benchmark for QALD6 and dev set of queries for Spider. For FIBEN and
GOSALES, we aimed to create a workload specifically focused on BI queries. We asked a group of 6
users including 3 domain SMEs (subject matter expert) and 3 business analysts to ask different types of



1341

NL queries on these domains. These users were aware of the domains, their underlying data. Moreover,
their job role made them experienced with typical day-to-day BI information needs on these domains.
They were encouraged to try all variants of queries starting from simple and explicit queries to complex
business intelligence queries (in natural language) needing implicit intent understanding and reasoning.

Table 1 also lists the number of queries we experimented with for each domain and how many of
these queries needed reasoning. It shows that for FIBEN and GOSALES a large portion of queries
(>80%) effectively need reasoning for semantic validation or/and inference of complete intents. Thus
the query workloads becomes a suitable benchmark to address challenges in BI query interpretation. The
ontologies and the query benchmarks are made public to promote further reuse1.

4.3 Experimental Setup and Evaluation Metrics
4.3.1 Baselines:
We use two state-of-the-art baselines, one from rule-based solution paradigms and another from machine
learning based approaches. They are as follows:
(Rule-Based) ATHENA: ATHENA becomes a natural baseline to compare the performance boost ob-
tained by applying our reasoning framework on top of it. Also, ATHENA being a state-of-the-art NLIDB
system, comparing our performance with ATHENA subsumes comparison with other rule-based NLIDB
systems such as NALIR (Li and Jagadish, 2014).
(ML Based) IRNet: We also take another NLIDB system IRNet (Guo et al., 2019) which adopts a neural
machine translation-based approach to be one of the state-of-the-art systems on Spider.

4.3.2 Metrics:
We use the following measures to evaluate the gains achieved by better query interpretation:
Accuracy: # of questions producing correct answers / # of questions asked to the system.

While accuracy is measured for the complete set of questions, we use precision and recall to measure
the performance of domain reasoning specifically concerning the queries which need reasoning. We
define precision and recall for domain reasoning in question answering as follows:
Precision: # of NL queries producing correct intent with domain reasoning / # of NL Queries which had
some inferences made by domain reasoning
Recall: # of NL queries which produced correct intent with domain reasoning / # of NL Queries that
actually needed domain reasoning 2

Conceptually, precision measures the utility of the domain reasoning framework in doing correct in-
ferences needed for accurate query interpretation, while recall measures how accurately the domain
reasoning framework can detect the need for reasoning and respond with correct inferences.

Along with the traditional metrics of the QA community, we also want to measure the performance of
domain reasoning module individually as an independent module in terms of soundness and complete-
ness which we define as follows:
Soundness: # of correct inferences produced by domain reasoning / # inferences produced by domain
reasoning
Completeness: # of correct inferences produced by domain reasoning / # of inferences needed to be
produced by domain reasoning

4.4 Results
Table 2 captures the accuracy numbers of IRNet, ATHENA, and ReasonedATHENA. As seen in Table 2,
domain reasoning indeed helps ReasonedATHENA to gain a significant leap in accuracy of almost 50%
for GOSALES and FIBEN which are specifically concentrated on BI queries. This can be correlated
with Table 1 findings where more than 80% of queries required domain reasoning. ReasonedATHENA
achieves higher accuracy for Spider and QALD as well, although the difference in QALD is around 12%,
as these benchmarks have a mix of non-BI queries which may not require reasoning.

1https://github.com/jdpsen/ReasoningForNLQ
2Queries needing reasoning are manually annotated after seeing the gold standard queries.
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Ontology IRNet ATHENA ReasonedATHENA

FIBEN 36.2 45.13 88.89
GOSALES 30 46.42 91.96

QALD 41.2 72 84
Spider 52.8 54.98 67.02

Table 2: Overall Accuracy percentage.

Table 3: Precision and Recall

Ontology Precision Recall

FIBEN 88.03 86.55
GOSALES 97.39 94.91
QALD 92.59 89.28
Spider 92.59 87.63

Table 4: Soundness and Completion

Ontology Soundness Completeness

FIBEN 97.31 95.90
GOSALES 98.54 93.11
QALD 94.11 91.42
Spider 95.41 90.11

IRNet adopts a grammar-based neural model that helps it to answer complex and cross-domain queries
but due to its very limited reasoning capabilities, it fails to infer implicit intent to answer BI queries.
ATHENA being an ontology-aware system can utilize SME populated configurations to handle some
very basic levels of reasoning like choosing a configured key property for a concept in a select clause
or doing aggregation for a configured measure property and etc. but ATHENA fails to extend it to more
involved generic cases of reasoning modeled in RKB, which are often required in analytic queries.

Table 3 shows the precision and recall numbers achieved by ReasonedATHENA for NL query interpre-
tation. A precision value of 88−97% can be considered reasonably high and signifies that most of the
inferences done by domain reasoning framework produce the correct interpretation. Also, a high recall
value of 86−94% further indicates that the domain reasoning framework is also quite sensitive to detect
any need for domain reasoning for producing correct interpretation and doing correct inferences when-
ever needed. A high value of precision and recall together gives the confidence that the domain reasoning
framework can be used to infer semantically valid and correct intents without introducing noise in terms
of erroneous inferences.

Table 4 shows the soundness and completeness values of the proposed domain reasoning framework
in ReasonedATHENA as an independent module. These values show a good correlation with Table 3
numbers, which is expected given that accurate interpretation needs correct inferences. Note that, sound-
ness and completeness numbers are higher than precision and recall numbers respectively. This too can
be explained by the fact that a question most often needs multiple inferences to be done correctly in
order to get to the right interpretation. Therefore, a single incorrect inference can make the complete
query interpretation counted as wrong and thus, has a larger influence on the ratio of precision and recall
numbers than soundness and completeness numbers.

We also analyzed the number of inferences needed for answering a query. Among the queries which
needed some form of reasoning, Table 5 shows the distribution of such queries depending on the number
of inferences needed to answer each query. For example, in GOSALES 61 queries (66%) need 2− 3
inferences as compared to 18 needing only 1 and 13 needing more than 3. The trend is similar for other
benchmarks too except FIBEN which being the largest ontology requires a larger number of queries with
more than 3 inferences. In general, the distribution of Table 5 shows a good percentage of queries require
multiple inferences, although more than 3 inferences at a time are not so common. Table 6 captures a
time analysis for all the domains. For each domain, it computes the average number of inferences needed
to answer queries in that domain and also the average time taken to complete the inferences. Time taken
to complete inferences is correlated with the number of inferences and also the domain complexity i.e.
the size of facts populated in the domain. In correlation with Table 1, FIBEN being the most complex
domain has the highest average number of inferences needed and thus the highest average time needed as
well. Even in FIBEN, the average time needed per query is around 4 seconds, which is quite affordable
to allow real-time query interpretation.
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Table 5: # queries by # Inferences needed

Ontology =1 2-3 >3

FIBEN 16 44 50
GOSALES 18 61 13

QALD 23 5 0
Spider 41 108 12

Table 6: Average # of Inferences and Average Time

Ontology Avg #Inferences Avg Time(in sec)

FIBEN 3.81 4.34
GOSALES 1.83 2.09

QALD 1.25 1.86
Spider 1.78 2.12

4.5 Lessons, Key Takeaways, Future Work

Generalizability: We have modeled the reasoning knowledge base (RKB) and Correction unit axioms in a
domain agnostic way and used target domain ontology only as a plug-in, so as to provide generalizability
to any application domain. These axioms are a flexible artifact which can also be extended further to
model more involved reasoning needs in QA across different use-cases. Although we have applied our
reasoning framework over ATHENA, the modular design ensures the same reasoning framework can
easily be adapted and applied on top of any other state-of-the-art QA system to infer semantically valid
implicit intents. Moreover, the inherent rule-based nature of the proposed framework ensures that the
requirement of a large amount of training data is curbed. The performance improvements we see in
our experiments also hints that reasoning over domain semantics might be sufficient for a QA system to
provide accurate interpretation and subsequent results efficiently.
Error Analysis reveals an important trade-off that serves as an alert to NOT design highly generic axioms
while handling inconsistencies, as it may lead to incorrect or redundant inferences. We found that the
queries where reasoning framework produced erroneous results can be categorized as follows:

Precision Fails: For some queries, the reasoning framework inferred facts that were incorrect, result-
ing in a drop in precision. For example, in FIBEN, for any numeric comparison on “Holding” concept,
reasoner infers the correct interpretation to be compared with the SUM(holding.stockCount). This is
correct for most of the queries like “who has more holdings of IBM stocks than Warren Buffet”. How-
ever, consider another query “How many persons have more than 1 holding account with MSFT stocks”
in this case the query is genuinely asking to count the number of accounts holding MSFT stocks and
correct interpretation in comparison with COUNT (Account).

Recall Fails: For some queries, although some reasoning was necessary to get to the correct inter-
pretation, our current reasoning framework has not yet modeled such cases. For example, consider the
FIBEN domain query “On Dec 2019, whose stock valuation was worth the most”. “Stock valuation” in
this query is to be interpreted as ∑Count(Stock)∗Current Value(Stock). However, this is equivalent to
learning a new concept called “stock valuation” for the domain, which we do not support yet.
Future Work: The cases which we could not handle yet with our reasoning framework offer avenues of
possible future work. Ideally, an ontology reasoning framework should be capable of doing all kinds of
common sense reasoning, new concept learning, etc. i.e. what a human can do over a domain. Also, the
reasoning framework is well suited to provide more explainable models for query interpretation. In the
future, we plan to use this for solving explainability for QA systems.

5 Summary

We proposed a novel schema-aware semantic reasoning framework where we have used ontology rea-
soning as a tool to help natural language query interpretation, specifically to interpret complex BI queries
across domains. Ontology reasoning, being a well studied problem and with a theoretically sound solu-
tion framework, provides us a sound foundation to develop a robust query interpretation framework. For a
quantitative evaluation, we have applied our reasoning framework over a state-of-the-art ontology-based
question answering system ATHENA and observed significant improvements in accuracy and coverage
of query interpretation across 4 benchmarks. Deep domain understanding and domain reasoning are
some of the hard challenges faced by QA systems today, limiting their applicability in enterprise set-
tings. Our proposed reasoning framework can provide the necessary bridge to use QA systems for BI
queries in enterprise settings.
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