
Proceedings of the 28th International Conference on Computational Linguistics, pages 1312–1322
Barcelona, Spain (Online), December 8-13, 2020

1312

A BERT-based Dual Embedding Model for
Chinese Idiom Prediction

Minghuan Tan
School of Information Systems

Singapore Management University
mhtan.2017@phdcs.smu.edu.sg

Jing Jiang
School of Information Systems

Singapore Management University
jingjiang@smu.edu.sg

Abstract

Chinese idioms are special fixed phrases usually derived from ancient stories, whose meanings
are oftentimes highly idiomatic and non-compositional. The Chinese idiom prediction task is to
select the correct idiom from a set of candidate idioms given a context with a blank. We pro-
pose a BERT-based dual embedding model to encode the contextual words as well as to learn
dual embeddings of the idioms. Specifically, we first match the embedding of each candidate
idiom with the hidden representation corresponding to the blank in the context. We then match
the embedding of each candidate idiom with the hidden representations of all the tokens in the
context thorough context pooling. We further propose to use two separate idiom embeddings for
the two kinds of matching. Experiments on a recently released Chinese idiom cloze test dataset
show that our proposed method performs better than the existing state of the art. Ablation exper-
iments also show that both context pooling and dual embedding contribute to the improvement
of performance.

1 Introduction

In this paper, we study Chinese idiom prediction, a language understanding problem that has not been
extensively explored before in computational linguistics. Chinese idioms, mainly Chengyu (成语) (set
phrases) (Wang and Yu, 2010; Wang, 2019), have fixed forms in structure; the component charac-
ters (mostly four) cannot be changed. Chinese idioms are characterized by rich contents, concise forms
and frequent use (Wang, 2019) with properties of structural regularity, semantic fusion, and functional
integrity (Shao, 2018; Wang, 2019). Chinese idioms are commonly used in both written and spoken
Chinese, and understanding Chinese idioms is important for learning Chinese as a second language.

The meaning of each Chinese idiom may not be literally understood through the composition of its
characters, especially for those which are derived from historical stories or formulated using ancient
Chinese grammars. For example, “一定不易” is literally interpreted as “it must be not easy” in modern
Chinese. However, the idiom is constructed from grammars and word senses of ancient Chinese. Its
idiomatic meaning is “once decided, never change”, which is not even close to the literal meaning. As
a result, the usage of Chinese idioms poses a challenge on language understanding not only for humans
but also for artificial intelligence. Due to their pervasive usage, Chinese idiom prediction is an important
task in Chinese language understanding.

There have been several studies focusing on representing Chinese idioms using neural network mod-
els (Jiang et al., 2018; Liu et al., 2019b), but they were limited by the amount of data available for
training. Recently, Zheng et al. (2019) released a large-scale Chinese IDiom Dataset (ChID) to facilitate
machine comprehension of Chinese idioms. The ChID dataset contains more than 500K passages and
600K blanks, making it possible for researchers to train deep neural network models. The dataset is in
cloze test style that target Chinese idioms in passages are replaced by blanks. For each blank, a set of
candidate Chinese idioms is provided and the task is to pick the correct one based on the context. Table 1
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Passage: 戴尔克·施特略夫把自己的工作全部撂下，整天服侍病人，又体贴，又关切。他的手脚
非常利索，把病人弄得舒舒服服。大夫开了药，他总是连哄带骗地劝病人按时服用，我从来没
想到他的手段这么巧妙。无论做什么事他都不嫌麻烦。尽避他的收入一向只够维持夫妻两人的
生活，从来就不宽裕，现在他却 ，购买时令已过、价钱昂贵的美味，想方设法叫思特里
克兰德多吃一点东西（他的胃口时好时坏，叫人无法捉摸）。
Dirk Stroeve, giving up his work entirely, nursed Strickland with tenderness and sympathy. He was
dexterous to make him comfortable, and he exercised a cunning of which I should never have thought
him capable to induce him to take the medicines prescribed by the doctor. Nothing was too much trouble
for him. Though his means were adequate to the needs of himself and his wife, he certainly had no
money to waste; but now he was in the purchase of delicacies, out of season and dear, which
might tempt Strickland’s capricious appetite.

Candidates:
◦月明星稀 The moon is bright and stars are few; with a clear moon and few stars
◦苦尽甘来 bitterness ends and happiness begins
◦坐吃山空 even a great fortune can be depleted by idleness
 大手大脚 extravagant or wasteful
◦斤斤计较 haggle over every ounce
◦不见天日 a world of darkness; total absence of justice
◦好吃懒做 be fond of eating and averse to work; be gluttonous and lazy

Table 1: An example showing a passage with a blank and seven candidate idioms. The idiom with
the solid circle is the ground truth idiom. The passage is from a Chinese translation of The Moon and
Sixpence. Translations of idioms are extracted from online dictionary http://dict.cn.

shows an example from the testing set of ChID. We can see that among the seven candidates, most can
fit into the local context “现在他却 ” (“but now he was ”) well grammatically, but to select
the best answer we need to understand the entire passage.

In this paper, we propose a BERT-based dual embedding model for the Chinese idiom prediction
task. We first present two baseline models that use BERT to process and match passages and candidate
answers in order to rank the candidates. Observing that these baselines do not explicitly model the
global, long-range contextual information in the given passage for Chinese idiom prediction, we propose
a context-aware pooling operation to force the model to explicitly consider all contextual words when
matching a candidate idiom with the passage. Furthermore, we propose to split the embedding vector of
each Chinese idiom into two separate vectors, one modeling its local properties and the other modeling its
global properties. We expect the embedding for local properties to capture the syntactic properties of an
idiom, while the embedding for global properties to capture its topical meaning. In addition, using idiom
embeddings makes it possible for us to consider the entire Chinese idiom vocabulary as the candidate
set, which is computationally intractable compared to pretrained BERT models with multiple-sequence
classification. we apply this enlarged candidates heuristic to all the models with idiom embeddings to
further strengthen the performance.

To evaluate the effectiveness of the BERT-based dual embedding model, we conduct experiments
on the ChID dataset. Our experiments show that our method can outperform several existing methods
tested by Zheng et al. (2019) as well as our baseline methods. We also find that both context-aware
pooling and dual embedding contribute to the performance improvement. To prove the effectiveness of
our model, we also evaluate it against a public leaderboard of ChID Competition. The results show that
our model is competitive compared to the top-ranked systems. We can also achieve better performance
with a large margin compared with several methods using pretrained language models. We also conduct
further analysis using a gradient-based attribution method to check if our model can indeed capture global
information to make correct predictions. Some case studies show that indeed our method makes use of
more global contextual information to make predictions.
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2 Related Work

2.1 Cloze-style Reading Comprehension

Cloze-style reading comprehension is an important form in assessing machine reading abilities.
Researchers created many large-scale cloze-style reading comprehension datasets like CNN/Daily
Mail (Hermann et al., 2015), Children’s Book Test (CBT) (Hill et al., 2015) and RACE (Lai et al.,
2017). These datasets have inspired the design of various neural-based models (Hermann et al., 2015;
Chen et al., 2016) and some become benchmarks for machine reading comprehension. The dataset ChID
used in this paper is also a large scale cloze-style dataset but focuses on Chinese idiom prediction.

2.2 Pre-trained Language Models

Language model pre-training has been proven to be effective over a list of natural language tasks at
both sentence level (Bowman et al., 2015) and token level (Tjong Kim Sang and De Meulder, 2003;
Rajpurkar et al., 2016). Existing strategies of using pre-trained language models include feature-based
methods like ELMO (Peters et al., 2018) and fine-tuning methods such as OpenAI GPT (Radford et al.,
2018) and BERT (Devlin et al., 2019). BERT-based fine-tuning strategy and its extensions (Cui et al.,
2019; Yang et al., 2019; Liu et al., 2019a) are pushing performance of neural models to near-human or
super-human level. In this paper, we use pre-trained Chinese BERT with Whole Word Masking (Cui et
al., 2019) as text sequence processor.

2.3 Modelling Figurative Language

Figurative (or non-literal) language is different from literal language where words or characters in literal
language act in accordance with conventionally accepted meanings or denotation. In figurative language,
meaning can be detached from the words or characters while a more complicated meaning or heightened
effect is reattached. As a special type of figurative language, idioms have been actively researched
in tasks like Idiom Identification (Muzny and Zettlemoyer, 2013), Idiom Recommendation (Liu et al.,
2019b) and Idiom Representation (Gutiérrez et al., 2016; Liu et al., 2017; Jiang et al., 2018; Zheng et
al., 2019). In this paper, we will focus on the representations of Chinese idioms using a BERT-based
approach.

3 Method

3.1 Task Definition and Dataset

We formally define the Chinese idiom prediction task as follows. Given a passage P , represented as a
sequence of tokens (p1, p2, . . . , pn), where each token is either a Chinese character or the special “blank”
token [MASK], and a set of K candidate Chinese idioms denoted as A = {a1, a2, . . . , aK}, our goal is
to select an idiom a∗ ∈ A that best fits the blank in P . See the example in Table 1.

We assume that a set of training examples in the form of triplets, each containing a passage, a candidate
set and the ground truth answer, is given. We denote the training data as {(Pi,Ai, a

∗
i )}Ni=1. We use V to

denote the vocabulary of all Chinese idioms observed in the training data, i.e., V = ∪Ni=1Ai.
To facilitate the study of Chinese idiom comprehension using deep learning models, Zheng et

al. (2019) released the ChID dataset. The dataset was created in the “cloze” style. The authors col-
lected diverse passages from novels and essays on the Internet and news articles from THUCTC (Guo et
al., 2016). The authors then replaced target Chinese idioms found in these passages with the blank token.
To construct the candidate answer set for each blank, the authors considered synonyms, near-synonyms
and other idioms either irrelevant or opposite in meaning to the ground truth idiom (Zheng et al., 2019).

3.2 BERT Baselines

Previous methods applied to the ChID dataset are not based on BERT (Devlin et al., 2019) or Trans-
former (Vaswani et al., 2017) architecture. Because of the success of BERT for many NLP tasks, here
we first present two BERT baselines. The first one treats a Chinese idiom as a sequence of characters.
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It combines the passage with each candidate idiom into a single sequence and processes multiple se-
quences, one for each candidate, using BERT. The second one treats a Chinese idiom as a single token
that has its own embedding vector. The method uses BERT to process the passage and then matches the
encoded passage with each candidate idiom’s embedding. These baselines can be regarded as standard
ways to solve the Chinese idiom prediction problem using BERT.

For the second baseline that uses idiom embeddings, we also present a heuristic that uses an enlarged
candidate set to improve learning. This heuristic is only applicable to the second baseline because it
would be computationally too expensive for the first baseline.

BERT Baseline with Idioms as Character Sequences: A straightforward way to apply BERT
for Chinese idiom prediction is as follows. Given a passage P = (p1, p2, . . . ,[MASK], . . . , pn)
and a candidate answer ak ∈ A, we first concatenate them into a single sequence
([CLS], p1, p2, . . . , pn,[SEP], ak,1, ak,2, ak,3, ak,4,[SEP]), where ak,1 to ak,4 are the four Chinese
characters that idiom ak is composed of. We can then directly use BERT to process this sequence and
obtain the hidden representation for [CLS] on the last (L-th) layer, denoted by hL

k,0 ∈ Rd. To select the
best answer idiom, we first use a linear layer to process hL

k,0 for k = 1, 2, . . . ,K and then use standard
softmax to obtain the probabilities of each candidate. To train the model, we use standard negative log
likelihood as the loss function.

BERT Baseline with Idiom Embeddings: Many Chinese idioms are non-compositional and therefore
their meanings should not be directly derived from the embeddings of its four individual characters, as
the baseline above does. E.g., “狐假虎威” literally means a fox assuming the majesty of a tiger, but it
is usually used to describe someone flaunting his powerful connections. Therefore, we hypothesize that
learning a single embedding vector for the entire idiom can help the understanding of idioms.

In this second BERT baseline, instead of concatenating the passage and a candidate answer into a
single sequence for BERT to process, we keep them separated. We only use BERT to process the passage
sequence ([CLS], p1, p2, . . . ,[MASK], . . . , pn,[SEP]). Afterwards, we use the hidden representation
of [MASK] at the last (L-th) layer, denoted as hL

b , to match each candidate answer. In this way, no
matter how many candidate answers there are, BERT is used to process the passage only once. On the
other hand, each Chinese idiom has a hidden embedding vector, which is to be learned.

We use ak to denote the embedding vector for candidate ak ∈ A. The hidden representation hL
b is

fused with each candidate idiom via element-wise multiplication. Then the probability of selecting ak
among all the candidates A is defined as follows:

pk =
exp(w · (ak � hL

b ) + b)∑K
k′=1 exp(w · (ak′ � hL

b ) + b)
, (1)

where w ∈ Rd and b ∈ R are model parameters, and � is element-wise multiplication. To train the
model, we again use negative log likelihood as the loss function.

Heuristic with Enlarged Candidate Set: The ChID dataset uses only a small set of negative answers
in each candidate set and these negatives are fixed for each example during training. It is reasonable to
expect that most of the remaining Chinese idioms not in the candidate set are also negative answers and
including them in the training data may help. We therefore use a heuristic that considers an enlarged
candidate set to further boost the performance.

To apply this heuristic, we define a candidate setA′ to be the same as V (i.e., the vocabulary containing
all Chinese idioms observed in the training data), and then define a second term in the loss function that
is the negative log likelihood of selecting the correct answer from this enlarged candidate set.

Note that because A′ is large, this heuristic is not feasible to be applied to the character sequence-
based BERT baseline, because it would require inserting each candidate into the passage for BERT to
process, which would be computationally too expensive. Therefore, this enlarged candidate set heuristic
is only applied to the idiom embedding-based BERT baseline. Specifically, we can define the probability
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of selecting answer a ∈ A′ as follows:

qa =
exp(a · hL

b )∑
c∈A′ exp(c · hL

b )
. (2)

Let q∗i denote the probability of selecting the ground truth idiom among all candidates in A′ for the
i-th training example, and p∗i denote the probability of selecting the correct answer among the original
candidate set A for the i-th training example. Our training loss function is then defined as follows:

L = −
N∑
i=1

(log(p∗i ) + log(q∗i )). (3)

3.3 Our Dual Embedding Model
The BERT baselines presented above are reasonable baselines, but they have a potential problem. We
observe that in order for an idiom to fit into a passage well, it has to not only grammatically (i.e., syntac-
tically) fit into the local context surrounding the [MASK] token but also show semantic relevance to the
whole passage. In the example shown in Table 1, a correct answer has to first be an adjective rather than,
say, a noun or a verb. In addition, given the global context of the entire passage, it is understood that the
correct answer should convey the meaning of “extravagant.”

Based on the observation above, we introduce the following two changes to the second BERT baseline,
i.e., the idiom embedding-based BERT baseline, introduced in Section 3.2.

3.3.1 Context-aware Pooling
As we have pointed out earlier, oftentimes Chinese idioms have non-compositional meanings, and to
evaluate whether a Chinese idiom is suitable in a passage, we need to understand the semantic meaning
of the entire passage. Therefore, it is important for us to not only try to match an idiom with the local
context it is to be placed in (which can roughly be modeled by hL

b ) but also to match it with the entire
passage. Let us use ak to denote the embedding for idiom ak. Recall that HL = (hL

0 ,h
L
1 , . . . ,h

L
n)

represents the hidden states of the last layer of BERT after it processes the passage sequence. Our
method with context-aware pooling can be represented as follows:

pk =
exp(ak · hL

b +maxni=0(ak · hL
i ))∑K

k′=1 exp(ak′ · hL
b +maxni=0(ak′ · hL

i ))
. (4)

3.3.2 Dual Embeddings
Because we need to match an idiom with both hL

b and the entire passage, the second idea we propose
is to split the embedding of an idiom into two “sub-embedding” vectors, which we refer to as “dual
embeddings.” Let us use auk and avk to denote the two embeddings for idiom ak.

We then calculate the probability of selecting candidate ak as follows:

pk =
exp(auk · hL

b +maxni=0(a
v
k · hL

i ))∑K
k′=1 exp(a

u
k′ · hL

b +maxni=0(a
v
k′ · hL

i ))
. (5)

We also adopt the heuristic of enlarged candidate set from Section 3.2. With the candidate set A′ to
be the same as V , we still use dual embeddings to represent each idiom, but when we match the dual
embeddings with the passage, we use both au and av to match hL

b only. This is because it would be too
expensive to match av of each candidate with the entire sequence of hidden states HL as we now have
many candidates. So we define the probability of selecting answer a ∈ A′, i.e., selecting the ground truth
answer from the entire vocabulary of Chinese idioms, as follows:

qa =
exp(au · hL

b + av · hL
b )∑

c∈A′ exp(cu · hL
b + cv · hL

b )
. (6)

Similarly, to train the model, we use negative log likelihood as shown before.
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4 Experiments

In this section, we evaluate our proposed dual embedding method using the ChID dataset. We also use
an attribution method to visualize how each proposed method works on some selected cases.

4.1 Evaluation on ChID-Official

In-domain Out-of-domain Total

Train Dev Test Total Out Total

Passages 520,711 20,000 20,000 560,711 20,096 580,807
Distinct idioms 3,848 3,458 3,502 3,848 3,626 3,848
Total blanks 648,920 24,822 24,948 698,690 30,023 728,713

Table 2: Some statistics of the ChID dataset.

Data Split: In the first set of experiments, We use the official release of ChID1, denoted as ChID-
Official. The data has a training set, a development set and a few different test sets. Besides the standard
test set Test, the authors also constructed the following test sets: Ran: In this test set, the candidate
idioms are randomly sampled from the vocabulary V . No synonyms or near-synonyms were intentionally
added as candidates. Sim: In this test set, the candidates are sampled from the top-10 similar idioms and
are more challenging than the Ran test dataset. The only difference of Test, Ran and Sim is the candidate
sets. Out: This is an out-of-domain test dataset. The passages come from essays (whereas the training
and development data comes from news and novels). Statistics of the data can be found in Table 2.

Methods Compared: We compare the following different methods. Performance of the first three
baselines are directly taken from (Zheng et al., 2019). It is worth noting that the three baselines use
BiLSTM as their backbones while our methods use BERT (Transformer) as our backbones. Although
BiLSTM with attention can also capture the global contextual information in the passages, our experi-
ments below will show that empirically our BERT-based methods are more effective.

Language Model (LM): This method is based on standard bidirectional LSTM (BiLSTM) (Hochreiter
and Schmidhuber, 1997; Zhou et al., 2016). It uses BiLSTM to encode the given passage and obtain the
hidden state of the blank. Then it compares the blank state with the embedding vector of each candidate
idiom to choose the best idiom.

Attentive Reader (AR): This method also uses BiLSTM but augments it with attention mechanism.
It is based on the Attentive Reader model by (Hermann et al., 2015).

Standard Attentive Reader (SAR): This is an altered version of Attentive Reader, where attention
weights are computed using a bilinear matrix (Chen et al., 2016).

BL-CharSeq: This is the first BERT baseline treating idioms as character sequences.
BL-IdmEmb (w/o EC): This is the second BERT baseline using idiom embeddings. In this version,

we do not use enlarged candidate set.
BL-IdmEmb: This baseline is the same as BL-IdmEmb (w/o EC) but incorporates the heuristic of

enlarged candidate set.
Ours-CP: This is our method with contextual pooling (CP) as presented in Section 3.3.1. This method

also incorporates the enlarged candidate set heuristic.
Ours-Full (CP+DE): This is our method with both context pooling (CP) and dual embedding (DE),

as presented in Section 3.3.2. This method also uses the enlarged candidate set heuristic.

Evaluation Metrics: A standard metric for the task of Chinese idiom prediction is accuracy, which is
the percentage of test examples where our predicted idiom is the same as the ground truth idiom. Here
besides accuracy, we also consider another setting where we do not have a pre-defined set of candidate
idioms, or in other words, we consider all Chinese idioms in our vocabulary as candidates. For this

1https://github.com/zhengcj1/ChID-Dataset
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Dev Test Ran Sim Out

ACC MRR ACC MRR ACC MRR ACC MRR ACC MRR

Human (Zheng et al., 2019) - - 87.1 - 97.6 - 82.2 - 86.2 -

LM (Zheng et al., 2019) 71.8 - 71.5 - 80.7 - 65.6 - 61.5 -
AR (Zheng et al., 2019) 72.7 - 72.4 - 82.0 - 66.2 - 62.9 -
SAR (Zheng et al., 2019) 71.7 - 71.5 - 80.0 - 64.9 - 61.7 -

BL-CharSeq 79.33 - 79.42 - 88.84 - 72.93 - 73.11 -
BL-IdmEmb (w/o EC) 73.59 0.017 73.31 0.017 81.05 0.017 68.13 0.017 63.82 0.012
BL-IdmEmb 80.24 0.433 79.76 0.429 91.87 0.429 71.93 0.429 72.17 0.332

Ours-CP 82.03 0.436 81.86 0.434 92.46 0.434 74.71 0.434 74.82 0.328
Ours-Full (CP+DE) 82.58 0.450 82.40 0.447 92.73 0.447 75.02 0.447 75.73 0.354

Table 3: The experiment results on ChID. We only compute MRR for methods that have idiom embed-
dings.

setting, we use Mean Reciprocal Rank (MRR) (Voorhees, 1999; Radev et al., 2002), a well-established
metric for ranking problems, as the evaluation metric.

Other Settings: We use pre-trained BERT for Chinese with Whole Word Masking (WWM) (Cui et al.,
2019)2. To reduce computational cost, we choose 128 as the maximum length for the input sequence,
and we truncate passages longer than this limit by keeping only the 128 characters surrounding [MASK],
with [MASK] in the middle.

We use 4 Nvidia 1080Ti GPU cards and a batch size of 10 per card with a total 5 training epochs. The
initial learning rate is set to 5e−5 with 1000 warm-up steps. We use the optimizer AdamW in accordance
with a learning rate scheduler WarmupLinearSchedule. Our code has been made available online3.

Results: We show the comparison of the performance of the various methods together with the human
performance in Table 3. For Human, LM, AR and SAR, the performance shown in the table is taken
directly from ChID (Zheng et al., 2019).

We can observe the following from the table. (1) In general, methods using BERT (including both
the baselines and our methods) perform substantially better than previous methods based on BiLSTMs.
This is not surprising and confirms the general observation that pre-trained BERT is generally very
effective for many NLP tasks. (2) Our two methods that use context pooling to explicitly incorporate
more contextual information consistently work better than the BERT-based baselines that do not perform
context pooling. This shows the importance of using context pooling to encode long-range contextual
information for the task of Chinese idiom prediction. (3) Comparing Ours-Full (CP+DE) with Ours-
CP, we can see that Ours-Full (CP+DE) consistently outperforms Ours-CP, for all evaluation splits
in terms of both accuracy and MRR. This shows that our full model using dual embeddings coupled
with context-aware pooling makes the model more expressive and captures the underlying meanings
of Chinese idioms better. It is also worth noting that on the Out split, Ours-Full (CP+DE) achieves
significant improvement over Ours-CP, showing better generalization ability of the dual embeddings.

It is interesting to observe that although we hypothesize that the meanings of Chinese idioms are of-
tentimes not compositional, BL-CharSeq performs better than BL-IdmEmb (w/o EC). We suspect that
this is because the BL-CharSeq method allows cross attention between the passage and the characters
in each candidate idiom, whereas BL-IdmEmb (w/o EC) encodes both the passage and a candidate as a
vectors without allowing any cross attention between them. However, the design of BL-IdmEmb (w/o
EC) allows a large number of candidates to be considered, and when we use the enlarged candidate
set, we see that BL-IdmEmb performs similarly to BL-CharSeq. When we subsequently incorporate
context pooling and dual embedding, we are able to achieve better performance than BL-CharSeq.

2https://github.com/ymcui/Chinese-BERT-wwm
3https://github.com/VisualJoyce/ChengyuBERT
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Model Dev Test Out

Top-1 (wssb) 88.35 90.57 85.54
Top-2 (On The Road) 90.59 91.35 84.93
Top-3 (Beenle) 81.94 89.27 84.72

BERT-base 82.20 82.04 -
ERNIE-base 82.46 82.28 -
RoBERTa-large 85.31 84.50 -
RoBERTa-wwm-large-ext 85.81 85.37 -

Ours-Full 89.68 89.55 84.43

Table 4: Experiment results on ChID-Competition.

Overall, we can see that the experiment results demonstrate that both context-aware pooling and dual
embeddings are effective, and our proposed full method generally can outperform all the other methods
we consider that represent the state of the art.

4.2 Evaluation on ChID-Competition
In the second set of experiments, we use ChID-Competition4, which is the data for an online compe-
tition5 on Chinese idiom comprehension. Different from ChID, for each entry in ChID-Competition, a
list of passages are provided with the same candidate set, and therefore some heuristic strategies can be
used (for instance, the exclusion method). The challenge is that ground truth answers will be similar in
semantic meanings, and prediction models need to focus on their differences while comparing similar
contexts to make the correct predictions. ChID-Competition is divided into Train, Dev, Test and Out
splits for different evaluation stages.

To further test the competency of our model, we evaluate the full model Ours-Full on ChID-
Competition. Considering the differences between ChID-Official and ChID-Competition, we use some
heuristic methods to postprocess the predictions in order to optimize the results globally for a candidate
set. Without changing the training paradigm, we treat this problem an assignment problem during post-
processing and use Linear Sum Optimization to optimize the assignment. The linear sum assignment
problem is also known as minimum weight matching in bipartite graphs. The method we used is the
Hungarian algorithm, also known as the Munkres or Kuhn-Munkres algorithm. Suppose for each blank,
we get a probability distribution over the candidate set C. Then define a cost matrix Z where Zi,j repre-
sents the log probability of the i-th blank choosing cj . Formally, let X be a boolean matrix where Xi,j

is 1 if the i-th blank chooses the candidate j. Our optimization problem can be written as

min
∑
i

∑
j

Zi,jXi,j , (7)

so that each candidate is assigned to at most one blank, and each blank to at most one candidate.
The comparison between our method and previous methods is listed in Table 4. In the first section of

the table, we list the top-ranked competitors from the competition leaderboard. It is worth noting that
these systems are used for competition purposes and may not be publicly available. We then show the
results using several pre-trained language models, where the results are found on the CLUE leaderboard6.
Finally, we list our own full model Ours-Full, which used a larger pre-trained RoBERTa for Chinese7.
The experiment results show that our full model achieves competitive results compared with the top
ranked systems of the competition.

4https://github.com/zhengcj1/ChID-Dataset/tree/master/Competition
5https://biendata.com/competition/idiom/
6We show representative systems on the leaderboard as of the submission date of this paper. https://github.com/

CLUEbenchmark/CLUE.
7https://github.com/brightmart/roberta_zh



1320

4.3 Further Analysis Through Attribution Method
To better understand how our models achieve consistent improvement, we adopt the gradient based
attribution method, Integrated Gradients (IG) (Sundararajan et al., 2017), to visualize how each character
contributes to the final prediction. To make the visualization more readable, we first perform Chinese
word segmentation to merge characters into words. The attribution value of a word is the highest absolute
value of all merged characters.

We show some cases in Figure 1, where red color represents positive correlation with the prediction
and blue color represents negative correlation with the prediction. For the example on the left, both
“供不应求” (in great demand) and “大名鼎鼎” (famous) are positive idioms with a sense of “being
abundant in”, but the correct answer is “大名鼎鼎” based on the context, because the context suggests
that this idiom serves as an adjective to modify a person, and only “大名鼎鼎” is used to describe a
person. On the one hand, we hypothesize that BL-IdmEmb may have learned the correlation between
“多年” (for many years) and “供不应求,” and thus makes a wrong prediction solely based on this signal.
On the other hand, Ours-CP chooses “大名鼎鼎”, likely because it is consistent with the word “顾
问” (consultant), which is a person, together with the conjunction word “以及” (and), suggesting that
context-aware pooling may have helped the understanding of the context.

For the example on the right hand side of the figure, the two candidates “斤斤计较” (to haggle over ev-
ery ounce) and “大手大脚” (extravagant) are antonyms and represent different attitudes towards spend-
ing money. Both idioms suit the context well syntactically. However, the context has the word “却” (but)
and the word “价钱昂贵” (expensive), suggesting the person is extravagant with money, making “大
手大脚” the correct candidate. This example shows that for more complex contextual understanding,
Ours-Full has advantages over Ours-CP.

Attribution from BL-IdmEmb

Attribution from Ours-CP Attribution from Ours-Full

Attribution from Ours-CP供不应求

大名鼎鼎

斤斤计较

大手大脚

Figure 1: Example cases with attribution values of words shown in red and blue. Red indicates positive
correlation with the prediction while blue indicates negative correlation with the prediction.

5 Conclusion

In this paper, we proposed a BERT-based dual embedding method to study Chinese idiom prediction. We
used a dual-embedding to not only capture local context information but also match the whole context
passage. Our experiments showed that our dual-embedding design can improve the performance of the
base model, and both the idea of context-aware pooling and the idea of dual embedding can help improve
the idiom prediction performance compared to the baseline methods on the ChID dataset.
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