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Abstract

Work with neural word embeddings and lexical relations has largely focused on confirmatory
experiments which use human-curated examples of semantic and syntactic relations to validate
against. In this paper, we explore the degree to which lexical relations, such as those found in
popular validation sets, can be derived and extended from a variety of neural embeddings us-
ing classical clustering methods. We show that the Word2Vec space of word-pairs (i.e., offset
vectors) significantly outperforms other more contemporary methods, even in the presence of a
large number of noisy offsets. Moreover, we show that via a simple nearest neighbor approach
in the offset space, new examples of known relations can be discovered. Our results speak to the
amenability of offset vectors from non-contextual neural embeddings to find semantically coher-
ent clusters. This simple approach has implications for the exploration of emergent regularities
and their examples, such as emerging trends on social media and their related posts.

1 Introduction

Word vector models such as Word2Vec (Mikolov et al., 2013a), derived empirically from large cor-
pora of natural language, provide the opportunity to explore what constitutes a linguistic regularity.
Conventionally, lexical relations in word vector space have been defined by collections of relatively
consistent relationships, or vector offsets, between word-pairs. The presence of these relationships has
been established through confirmatory analysis (Levy and Goldberg, 2014), in which a pair of relation
examples constructed from prior knowledge is validated to exist in the space by way of analogy (e.g.
geese− goose+mouse ≈ mice) (Finley et al., 2017). The meaning of these collections, or the nature
of the relationship between their respective pairs, can be characterized by relation type descriptions such
as syntactic (e.g., “plurality”) and semantic (e.g., “capital-country”) relations.

In this paper, we explore how well lexical relation examples can be clustered using word vectors
extracted from state-of-the-art contextual and non-contextual neural word embedding methods. Further-
more, we demonstrate a method for approximating the number of true lexical relations in a noisy offset
space. Contextual embeddings such as BERT (Devlin et al., 2018) are the new gold standard on a va-
riety of NLP tasks and have also been shown to possess relational and factual knowledge (Petroni et
al., 2019). We perform the unsupervised task of clustering relation examples by using contextual word
vectors from BERT; non-contextual word vectors from FastText (Bojanowski et al., 2017) Word2Vec
skip-gram (Mikolov et al., 2013a); and explicitly modeled relation vectors (Camacho Collados et al.,
2019). Our results show that Word2Vec offsets outperform relation vectors from other embeddings on
this task.

We further explore the amenability of the Word2vec offset space to be clustered by evaluating it on
the task of discovering new word-pair examples of known lexical relations. The precision of finding new
examples using the offset space varied greatly depending on the lexical relation, indicating promise yet
demonstrating the need for more nuanced noise rejection in future work.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Related Work

Relations, in the context of a neural word embedding (Mikolov et al., 2013a), have been described as
vector offsets (or differences) between pairs of word vectors that exemplify a relationship. The types of
relations and their exemplar pairs have conventionally been established a priori (Mikolov et al., 2013c).
Sets of relations and their respective pairs have served as external validations, tested by way of analogy,
of the degree to which a vector space encodes a sampling of prior knowledge on the semantics and
syntax of the language. In terms of the accuracy of analogy completion (i.e. recall@1), widely-cited
neural embeddings have been found to encode upwards of 61% (Mikolov et al., 2013b), and even 75%
(Pennington et al., 2014), of related word relationship pairs. At this level of accuracy, it is reasonable to
begin to ponder what can be learned from an embedding in a completely unsupervised way, as opposed
to only confirming what predefined expert knowledge is encoded.

Several approaches have taken the first steps in an unsupervised direction by exploring if the mem-
bership of a word-pair to a relation could be recovered through classification or clustering. Vylomova et
al. (2016) use supervised classification to learn an association between vector offsets produced by word-
pairs and relation labels (or classes). While their method considers only context-free word vectors such
as Word2Vec and GloVe (Pennington et al., 2014), our method also evaluates performance on contextual
and explicit relation embeddings.

Levy and Goldberg (2014) surfaced semantics about relations by characterizing what they refer to as
a shared aspect between words by inspecting the context words, or features. Evidence of distributed
concepts, also learned from skip-gram models, has been observed in neural embeddings produced from
random walks of graphs (Ribeiro et al., 2017) and from sequences of course enrollments (Pardos and
Nam, 2020).

Recently, a number of methods have been developed that capture relations between two words in the
form of a vector using unsupervised approaches. Espinosa-Anke and Schockaert (2018) learn relation
vectors of word-pairs based on averaging their context word vectors and then perform dimensionality
reduction using an autoencoder. Jameel et al. (2018) model relationships between words as weighted bag-
of-words representations using generalizations of pointwise mutual information. Camacho Collados et al.
(2019) develop a latent variable model that aims to explicitly determine what words from given sentences
best characterize the relationship between two target words. Wu and He (2019) and Papanikolaou et
al. (2019) use contextual models to learn relation embeddings requiring fine-tuning of the base model.
Though these methods learn the explicit relation embedding in an unsupervised fashion, they evaluate
them on supervised tasks, unlike our approach which evaluates neural embeddings on unsupervised tasks.

3 Datasets

We use a common validation set1 from the analogical reasoning task introduced in (Mikolov et al.,
2013a), which we call the Google validation dataset, as a source of known lexical relations and their
corresponding collections of word-pairs. It contains 550 unique word-pairs belonging to 13 unique
relations2. We also use another popular lexical relation validation set named DiffVec3 (Vylomova et
al., 2016), which consists of 36 relations and 12,458 word-pairs. The Google dataset is more balanced
than the DiffVec dataset in terms of the number of word-pairs per relation4. We train all models used in
our model comparison experiments on the Wikipedia corpus. We then use the pre-trained Google-News
corpus Word2Vec vectors (Mikolov et al., 2013b) for the subsequent task of finding new examples of
known relations.

1http://download.tensorflow.org/data/questions-words.txt
2It originally contained 14 relations, but because of the redundancy of “capital-common-countries” with “capital-world,”

the former relation has been discarded.
3https://github.com/ivri/DiffVec
4While using the DiffVec dataset it is common to leave out relations with less than 10 examples (Jameel et al., 2018).



1301

4 Motivation

Using the Word2Vec model, a lexical relation between a pair of words (word1, word2) can be represented
using a vector offset by subtracting the embedding of word2 from the embedding of word1. Past success
in the analogy completion task suggests that offsets generated by word-pairs in the same lexical relation
are empirically close to parallel (e.g. geese−goose ‖ mice−mouse) (Finley et al., 2017). This naturally
presents an opportunity for the clustering of offsets and the exploration of the distributed representation
of lexical relations.

A novel visualization of the offsets of the Google dataset can be seen in Figure 1. The figure was
produced using t-SNE (Van Der Maaten, 2014) to project the 300-dim offset vectors onto a 2-D space. It
depicts offsets naturally grouping by relation and demonstrates the plausibility of a clustering approach
capturing relation examples in the offset space. Visualization of offsets had previously been applied
only to one relation at a time (Mikolov et al., 2013b). With multiple relation examples represented in a
single plot, we can observe relative proximities between groups of relations. For example, “nationality”
being closest to “currency,” both generated by subtracting a word from a country name. Offsets for
“gender” and “opposite” are closest to one another, as are those for “comparative” and “superlative”
and for “capital-world” and “city-in-state.” “Plural” (nouns) and “plural-verbs” are not only close to one
another but also somewhat overlapping.

Figure 1: Visualization (via t-SNE) of the Google dataset vector offsets, colored by lexical relation.

Word vector models when used for relation mining are of sociological interest because they are incen-
tivised to capture norms and the exploration of those norms may be potentially revealing. Unsupervised
relation mining is also important for many downstream NLP tasks such as automatically building of
knowledge graphs. Knowledge bases like WordNet 5 are manually annotated and are used in variety of
tasks such as question answering (Hao et al., 2017) and entity and event extraction (Yang and Mitchell,
2019). Recently, Chiang et al. (2020) demonstrated a robustness to the semantic structure of Word2Vec
embeddings, showing that relations could be learned even without examples of them having been ob-
served in the training corpus.

5 Relation Embeddings

In this section, we introduce the relation embeddings that will be used for comparison in the unsupervised
task of relation clustering.

5https://wordnet.princeton.edu
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• Contextual Word Vectors: Contextualized word representations have recently shown significant
improvements on various NLP tasks. We use BERT-Large (Devlin et al., 2018) pre-trained6 on
the Wikipedia corpus. It produces contextualized embeddings of size 1,024 for each input token.
The vocabulary size is 30,522 words. To represent the relation between a pair of words using
contextualized BERT embeddings, we use the following formulation:

For a given pair of words, (w1, w2), we first collect all the sentences from the Wikipedia corpus
containing occurrences of both words. Let S be the set of all such sentences. Let v1 and v2 be the
word embeddings generated by BERT of words w1 and w2 with respect to a sentence s ∈ S. To
generate word embedding of each token we first take an average of the embeddings for the top four
layers of the BERT model and then again average over multiple occurrences of the words in the
sentence s. Let v1 and v2 be the final embeddings of each of the two words. Then, relation vector
r12 of the two words is given by:

BERT-D (difference) : r12 =
∑
S

v1 − v2
|S|

(1)

This is similar to offsets in Word2Vec. The other form of a BERT relation vector that we use is:

BERT-C (concatenation) : r12 =
∑
S

[v1; v2]

|S|
(2)

where “[;]” denotes concatenation and “|.|” denotes cardinality of the set.

• Non-Contextual Word Vectors: We use FastText and the skip-gram model from Word2Vec to
obtain non-contextual word vectors. Each of these models has a vocabulary size of 2,145,353 words
and generates word embeddings of size 300. We train Word2Vec on the Wikipedia corpus provided
by Camacho Collados et al. (2019) using the skip-gram algorithm. To train the model we use a
window size of 5, negative sampling, and ignore the words with a frequency lower than 5. We use
the FastText model provided in Camacho Collados et al. (2019). Given a word-pair (w1, w2), let
(v1, v2) and (u1, u2) be word vectors generated by Word2Vec and FastText models respectively, then
the offset that corresponds to the relation vector r12 between the words for the Word2Vec model is
given by,

Word2Vec : r12 = v1 − v2 (3)

The offset using the FastText model is given by,

FastText : r12 = u1 − u2 (4)

We normalize Word2Vec and FastText offsets to unit vectors. We also experimented with normal-
izing BERT relation vectors but found it did not lead to improvements.

• Explicit Relation Embeddings: One of the methods that we use for comparison, RelPair (Cama-
cho Collados et al., 2019), is a state-of-the-art method that explicitly calculates relation vectors using
a latent variable model. Like many other relation embedding models (Joshi et al., 2018; Washio and
Kato, 2018; Espinosa-Anke and Schockaert, 2018), their hypothesis is that the relationship between
two words can be characterized by the distribution of words between them in sentences they both
appear in. Though this is an unsupervised method to learn relation vectors, they report their perfor-
mance on supervised tasks. Let the relation vector for two words w1 and w2 denoted by r12. We
generate the embedding r12 by passing the ordered pair of (w1, w2) through a pre-trained RelPair
model (denoted by ”RelPair-model”)7. This model has a vocabulary size of 1,138,119 pairs and

6Pre-trained model used from https://github.com/Google-research/bert
7Pretrained model used from https://github.com/pedrada88/relative
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is trained on the Wikipedia corpus. It generates relation embeddings of size 300 given an input
word-pair.

RelPair : r12 = RelPair-model(w1, w2) (5)

6 Experiments

We explore the amenability of various neural word embedding spaces to be clustered using classical
methods. We evaluate the homogeneity of clusters in the word-pair (i.e., vector offset) space with respect
to a common lexical relation and evaluate the validity of new word-pairs found in the clusters of known
relations.

In section 6.1 we will compare the results of unsupervised clustering of the different relation embed-
dings discussed above. Then in section 6.2 we will evaluate the best performing method from section 6.1
on the task of discovering new examples of known relations.

6.1 Unsupervised Clustering of Relations
Relation clusters mined in an unsupervised way can give insights into prominent lexical relations in a
corpus and the typicality of concepts in a language, of potential cognitive and sociological interest. In this
section, we perform experiments to evaluate Word2Vec, FastText, BERT, and RelPair relation vectors on
this task. We will also study their more practical suitability by analysing their clustering performance in
an extended offset validation space producing noisy, dense word-pairs. In section , we further extend the
space past the validation dataset vocabulary.

We use three types of clustering algorithms: K-Means clustering (Kanungo et al., 2002), spectral clus-
tering (Zelnik-Manor and Perona, 2005) and hierarchical agglomerative clustering (HAC). The K-Means
algorithm is simple and easily scalable. For initializing clusters we use the K-Means++ algorithm given
in Arthur and Vassilvitskii (2006) and minimize the euclidean distance between centroids and the rela-
tion embeddings. In spectral clustering, we construct the affinity matrix by computing a graph of nearest
neighbors and generate a low-dimension embedding using eigenvalue decomposition8. For hierarchi-
cal clustering, we use the agglomerative (bottom-up) approach with complete linkage that maximizes
euclidean distances between all relation embeddings of any two clusters. We have also repeated the
experiments for HAC with cosine distance and complete linkage, whose details and results are given in
Appendix B.

For measuring clustering performance we use three metrics: Homogeneity (H score), Completeness
(C score), V-measure (V score), and Silhouette (S score) score. High homogeneity score indicates that
each cluster contains only word-pairs from a single relation. High completeness score indicates that all
word-pairs from a single relation are assigned to the same cluster. V-measure is the harmonic mean of
homogeneity and completeness scores. While ground truth labels are required to calculate homogeneity,
completeness, and V-measure, silhouette scores are calculated without relation labels for the word-pairs.
Let d2 be the mean distance between a word-pair and all other word-pairs in the same cluster and let
d1 be the mean distance between a word-pair and all other word-pairs in the next nearest cluster. The
silhouette score s for a single sample is then given as:

s =
d1 − d2

max(d1, d2)
(6)

6.1.1 Results
Since each of the relation embeddings has a different vocabulary size, we first filter the vocabulary to be
only the words common among all of the trained models as well as present in the validation datasets.

Table 1 summarizes clustering scores of the relation vectors generated by Word2Vec, FastText, BERT,
and RelPair relation vectors on the Google and DiffVec datasets. It shows that Word2Vec offsets outper-
form the other embeddings with respect to the ground truth labels in the K-Means and HAC algorithms.

8https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
SpectralClustering.html
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Google Dataset DiffVec Dataset
K-Means Clustering

H score C score V score S score H score C score V score S score
RelPair 0.68056 0.59900 0.63718 0.11286 0.29362 0.18716 0.22860 0.058252
BERT-C 0.65224 0.51755 0.57714 0.048046 0.19939 0.13661 0.16213 1.33e-06
BERT-D 0.71872 0.57700 0.64011 0.10746 0.18066 0.11543 0.14086 0.024457

Word2Vec 0.88053 0.77466 0.82421 0.21603 0.48385 0.31737 0.38332 0.031839
FastText 0.88917 0.70764 0.78809 0.11635 0.45015 0.28728 0.35073 0.030446

Spectral Clustering
RelPair 0.6480 0.50430 0.56722 0.042155 0.2749 0.18991 0.2246 0.045548
BERT-C 0.6802 0.53339 0.59793 0.0475 0.18287 0.14062 0.15899 0.029026
BERT-D 0.70166 0.56886 0.62832 0.10423 0.1510 0.11188 0.12853 0.016731

Word2Vec 0.84318 0.66605 0.74422 0.097274 0.41746 0.3102 0.3559 0.019403
FastText 0.87754 0.69579 0.77616 0.06648 0.47731 0.32279 0.38513 0.02221

Hierarchical Clustering
RelPair 0.48506 0.61964 0.54415 0.12495 0.13809 0.14119 0.13962 0.01977
BERT-C 0.56393 0.47812 0.51749 0.079464 0.092918 0.1218 0.10541 0.0093276
BERT-D 0.56310 0.526493 0.54418 0.15805 0.16256 0.10543 0.12790 0.0050169

Word2Vec 0.93608 0.90012 0.91775 0.22690 0.39829 0.25418 0.3103 0.01018
FastText 0.89452 0.8067 0.84835 0.17006 0.36396 0.22984 0.28175 0.010275

Table 1: Comparison between Word2Vec, FastText, BERT, and RelPair relation vectors. Left: Using
Google dataset where the number of clusters is 13 and word-pairs is 207. Right: Using the DiffVec
dataset where number of clusters is 34 and word-pairs is 1,512.

When considering the average of all four scores, Word2Vec’s average for HAC is 9.5% higher than that
for K-Means while clustering the Google dataset. On the other hand, Word2Vec’s average score for HAC
is 20% lower than that for K-Means on the DiffVec dataset. This suggests that HAC marginally improves
the clustering score over K-Means when clustering pairs from the Google dataset but K-Means signifi-
cantly improves these scores over HAC when clustering pairs from the DiffVec dataset. Thus, K-Means
has an advantage over HAC when using the Word2Vec embeddings for clustering relations. For this
reason, we proceed using K-Means while analyzing relation clustering in a dense embedding space.

Another advantage of using K-Means clustering for dense space word-pairs is scalability. The standard
K-Means clustering algorithm has complexity O(n2) and that of standard spectral and hierarchical clus-
tering is O(n3). This shows that it is easier to scale the K-Means algorithm to large datasets. For the next
set of experiments where we cluster hundreds of thousands of word-pairs we use K-Means clustering.

We notice that the RelPair model has the smallest vocabulary overlap with both the DiffVec and Google
datasets. This limits the size of the vocabulary used in the above experiment. Hence, we also compare
Word2Vec and FastText with BERT and with RelPair separately. Details of these experiments are given
in Appendix A in the supplementary material, respectively. We find that Word2Vec consistently outper-
forms both BERT and RelPair for all three clustering algorithms and for both evaluation datasets, with
an exception of RelPair having a higher silhouette score on the DiffVec dataset.

Thus far, we have analyzed the performance of various relation embeddings on the word-pairs that are
known to be part of a relation as per the two validation datasets. However, in practice, while performing
clustering, many noisy word-pair offsets may appear which may not be part of any relation. We will now
evaluate the clustering performance of the relation embeddings in the presence of such noisy pairs.

A simple method to determine if a word-pair is unrelated is if the two words do not co-appear in any
sentence. Methods such as (Espinosa-Anke and Schockaert, 2018) use pointwise mutual information
to determine the relatedness of word-pairs. However, this can hurt low-frequency word-pairs, so we
proceed by filtering out the word-pairs that do not occur together in any sentence in the training corpus.
This also ensures that the BERT relation embedding exists for the remaining pairs. We do not include
RelPair vectors in the following analysis since the model has very limited vocabulary size and does not
allow for word-pairs that aren’t in its vocabulary. The BERT model allows for word-pairs as long as the
two words appear in the same sentence, while the Word2Vec and FastText models allow us to calculate
offsets between any two words as long as each word is in the model vocabulary.

We expand our word-pairs to include additional noisy pairs by considering all possible pairwise com-
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binations of the words in each of the Google and DiffVec datasets separately. We call these sets of
word-pairs the “extended datasets”. We then cluster them into 2n+1 clusters, where n is the number
of original ground truth relations (13 for the Google dataset and 36 for the DiffVec dataset). The ad-
ditional one cluster represents all the word-pairs expected to be noise which should not represent any
relation. The additional n represents the ground truth relations in the opposite direction, e.g. the re-
lation ”plural-to-singular” for offset of reversed word-pair becomes ”singular-to-plural”. Out of 104M
sentences from the Wikipedia corpus, we found 18.48M sentences containing at least one pair from the
extended Google dataset and 10.45M sentences from the extended DiffVec dataset. In these experiments,
we use mini-batch K-Means (Sculley, 2010) which converges faster than standard K-Means but has only
slightly worse performance. We use initialization similar to K-Means++ and a batch size of 10,000.

Table 2 shows the performance of the four methods on the Google and the DiffVec datasets. These
results show that Word2Vec is the highest performer among all embeddings and across all metrics with
the exception of silhouette score on the DiffVec extended dataset, where it places a close second. We find
all four scores for all of the methods to be low compared to the scores from the previous experiments on
the non-extended datasets. This is likely due to treating the noisy, unrelated word-pairs as a single label
and expecting them to cluster as such. Though this seems like an impossible problem, we can easily
imagine coming across this task in a real-life application.

To estimate the true number of clusters in these extended datasets without supervision, we perform
mini-batch K-Means over a range of numbers of clusters and calculate the silhouette score as shown
in Figure 2 and Figure 3. This approach assumes that silhouette score will correlate with ground truth
metrics, as it did to a moderate degree in the previous result tables. We find the number of clusters with
maximum silhouette score is 1,000 and 5,000 for Google and DiffVec datasets, respectively. In Figure
2, a spike in silhouette score can be observed when the number of clusters assumed is 20, which is very
close to 27, the value used in the experiments summarized in Table 2. In Figure 3 no similar spikes can
be observed. We also report V-measure in this experiment, assuming 2n+1 labels as explained above.
This is an estimation and may not be the set of true ground truth labels. Details of these experiments are
given in Appendix C in the supplementary material.

Google Dataset DiffVec Dataset
Mini-Batch K-Means Clustering

H score C score V score S score H score C score V score S score
BERT-C 0.2119 0.00141 0.00281 -0.0242 0.08191 0.000351 0.000699 -0.08834
BERT-D 0.1730 0.00115 0.00229 -0.00693 0.03457 0.000137 0.000273 -0.01514

Word2Vec 0.2372 0.00159 0.00316 0.0320 0.1053 0.000413 0.000824 0.00995
FastText 0.1982 0.00132 0.00262 0.00065 0.0868 0.000341 0.000679 0.01086

Table 2: Left: Using extended Google dataset where number of clusters is 27 and word-pairs is 369,688.
Right: Using extended DiffVec dataset where number of clusters is 73 and word-pairs is 9,112,224.

Figure 2: Mini-Batch K-Means clustering on
the extended Google dataset.

Figure 3: Mini-Batch K-Means clustering on
the extended DiffVec dataset.
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6.2 Discovering New Examples of Known Relations
In this section, we study if new examples of known lexical relations can be discovered in a further
expanded Word2Vec offsets space. This task is ideally performed on the full set of relation vector off-
sets corresponding to the complete enumeration of all possible ordered word-pairs, which grows ex-
ponentially with the size of the vocabulary. For tractability reasons, we use pre-trained Google-News
Word2Vec vectors with the Google dataset and limit the size of the vocabulary to the union of the top
10,000 most frequent terms in the Google-News corpus and the 905 unique words which appear in the
Google dataset, yielding a set of N = 10, 354 unique words. This vocabulary generates 107,194,962, or
2×

(
N
2

)
, vector offsets: a dense collection which we call an open-world set.

To tractably expand the offset space, we define 13 hypercones (Figure 4) in the space based around
the centroids of ground truth vector offsets representing each of the 13 Google dataset relations. These
centroids were used instead of arbitrary points in the space in order to retain a degree of ground truth
examples in the open-world that can be used to guide the discovery of new examples. For tractabil-
ity, we restrict the size of each hypercone by considering only the 2,000 vector offsets closest (using
cosine-similarity) to each of the 13 centroids (totalling 26,000 vectors). For each of the 13 hypercones,
we perform unsupervised k-search (Zelnik-Manor and Perona, 2005) to yield a clustering of the 2,000
vector offsets. For inspection, we narrow our analysis in the open-world to one cluster in each of the 13
hypercones–the cluster with the highest number of labeled word-pairs.

Figure 4: A simplistic illustration
of a hypercone in the open-world.

Relation # Pairs
in Cluster

# Pairs
from Valid. Recall

adj-to-adv 18 2 0.063
capital-world 20 15 0.129
city-in-state 21 11 0.162
comparative 30 10 0.270
currency 11 3 0.100
gender 12 5 0.217
nationality 27 8 0.195
opposite 18 5 0.172
past-tense 77 12 0.300
plural 12 5 0.135
plural-verbs 13 4 0.133
pres.-participle 385 17 0.515
superlative 30 13 0.382

Table 3: A summary of the 13 open-world clusters (one per hyper-
cone subspace). For each cluster, the total number of word-pairs,
the number of pairs which also appear in the validation set, and
the recall (with respect to the validation set) are listed.

6.2.1 Results
Table 3 summarizes the 13 open-world clusters by the number of word-pairs in the cluster, the number
of those pairs which appear in the corresponding validation set grouping, and the percentage of the
validation set pairs contained within the cluster. The “gender” cluster, for example, contains 12 word-
pairs, five of which are “gender” pairs from the validation set. These five constitute 21.7% of the original
23 “gender” pairs which appear in the validation set.

We inspect the unlabeled word-pairs (not in the validation set) in each cluster to investigate if the clus-
tering methodology has led to discovery of legitimate new examples of the relations. We manually label
the unlabeled word-pairs in each cluster as relevant or not relevant to the relation. We report the preci-
sion among unlabeled word-pairs, along with a random sampling of five pairs from each cluster in Table
4. Among others, examples of relevant new pairs are found in the “adj-to-adv” cluster, such as (ade-
quate, adequately); the “capital-world” cluster, such as (Pyongyang, North Korea); and the “nationality”
cluster, such as (Belgium, Belgian).

Of highest precision is the “gender” cluster, containing 100% relevant word-pairs to the relation. This
resonates with “gender” as among the higher performing relations in analogy completion (Finley et al.,
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Relation Precision Unlabeled word-pairs
adj-to-adv 0.125 adequate:properly, fair:promptly, proper:properly, adequate:adequately,

consistent:properly
capital-world 0.200 Pyongyang:NorthKorea, Asmara:Ethiopia, Karachi:Pakistan, Anchorage:Alaska,

Mogadishu:Ethiopia
city-in-state 0.600 Raleigh:NorthCarolina, LasVegas:Nevada, Libreville:Louisiana,

Boulder:Colorado, Calif.:California
comparative 0.200 young:older, tiny:larger, strength:stronger, strong:stronger, tiny:bigger
currency 0.250 Finland:krone, Denmark:krona, Norway:krone, Sweden:krone, Iceland:krona
gender 1.000 spokesman:spokeswoman, actor:actress, Mr.:Ms., boys:girls, Mr:Ms
nationality 0.105 CzechRepublic:Czech, Iceland:Norwegian, Denmark:Norwegian,

Belgium:Belgian, Denmark:Swedish
opposite 0.769 great:unbelievable, able:unable, well:poorly, adequate:insufficient, strong:weak
past-tense 0.277 going:went, coming:went, running:came, eating:ate, running:raced
plural 0.000 pineapple:melons, cake:melons, banana:melons, banana:pineapples, pineapple:melons
plural-verbs 0.889 drive:drives, pick:picks, launch:launches, play:performs, drop:drops
pres.-participle 0.525 take:taking, pull:pulled, pass:getting, deliver:delivering, predict:predicting
superlative 0.412 dry:coldest, tiny:smallest, wealthy:richest, busy:busiest, poor:poorest

Table 4: An inspection of the unlabeled word-pairs in the 13 open-world clusters. Precision is computed
after manually labeling every word-pair in each cluster as relevant or not to the respective relation. Five
randomly selected unlabeled word-pairs are listed, with the pairs labeled as relevant in bold.

2017). “Plural-verbs” and “opposite” are also high in precision with 88.9% and 76.9% new word-pair
relevance, respectively. Additionally, the majority (52.5%) of the 368 unlabeled word-pairs from the
“pres.-participle” cluster are relevant to the relation. The lowest precision is found in the “nationality”
cluster (10.5%) and in the “plural” cluster, of which 0% of the unlabeled word-pairs are relevant. In the
“plural” cluster, three out of five of the examples in the table show melon as word2 of the new pairs.
This is a likely case of “default-behavior errors,” as introduced by (Levy and Goldberg, 2014), which
refers to the incorrect completion of a set of analogies by one specific word, which is described as the
“prototypical” dominant word of the word2s (e.g. melon being the prototypical plural noun).

Aside from the unlabeled word-pairs marked relevant as a result of matching the relations perfectly,
there are also some unlabeled pairs that contain a synonym or antonym of one of the words which would
appear in the “perfect” pair. For example, the “opposite” cluster contains the near-perfect pair (adequate,
insufficient), which is synonymous with (sufficient, insufficient). Furthermore, the “comparative” cluster
contains (small, larger), where small is the antonym of the ideal word1, large. The vector offsets of these
word-pairs may cluster tightly because synonyms and antonyms tend to have high cosine-similarity in
word embeddings due to their use in similar contexts in language (Adel and Schütze, 2014).

7 Conclusions

We explored the amenability of clustering lexical relations in various neural embeddings. On the task of
unsupervised clustering of known examples, our experiments showed that baseline non-contextual mod-
els (i.e., Word2Vec and FastText) outperformed the relation vectors derived from the contextual model,
BERT. Among the clustering methods of spectral, K-Means, and Hierarchical, K-Means yielded the
highest supervised and unsupervised scores on both DiffVec and Google validation datasets. Word2Vec
with K-Means was best able to cluster the offset vectors into homogeneous clusters with respect to the
labeled relations, a trend that continued when expanding the task to an extended, noisy set of word-pairs.
In both spaces, the unsupervised metric of silhouette score largely correlated with supervised metrics.
This allowed for the possibility of estimating the true number of lexical relations (i.e., clusters), which
we attempted in an experiment with Mini-Batch K-Means. The results showed that the maximum sil-
houette score did not reliably correspond to the estimated true number of clusters; however, the Google
dataset showed promise in providing a cluster number (20) close to the true number (27) based on the
first silhouette score spike.

On the second task of discovering new relation examples in a space of over 100M word-pairs, results
varied greatly by relation. Thirteen subspaces of offsets were created centered around the known lexical
relation examples. After clustering within each of these subspaces, the best performing cluster within
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each subspace was able to capture existing ground truth examples with recall ranging from 0.063 (adj-
to-adv) to 0.515 (pres.-participle). When evaluating new examples collected in these top performing
clusters, precision ranged from 0 (plural) to 1 (gender).

Our results suggest that linear, non-contextual embeddings have an advantage over contextual em-
beddings on these lexical relationship mining tasks when using classical clustering techniques, but that
modeling improvements are necessary to reduce noise to a level of practical utility in noisy real-world
scenarios. These improvements may come from developing work exploring linearities in contextual
model embeddings (Reif et al., 2019; Jawahar et al., 2019) and would have the potential to identify
emergent semantic regularities in large corpora.
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A Additional Results of Clustering Experiments

A.1 Comparing Word2Vec, BERT-C, BERT-D and FastText
Table 5 compares the clustering of relation vectors generated by Word2Vec, FastText and BERT on the
Google and DiffVec datasets. For experiments with the Google dataset, we have 387 word-pairs common
to all model vocabularies consisting of 13 relations and from the DiffVec dataset, we have 7,782 word-
pairs consisting of 36 relations. These word-pairs are common among the models and datasets. It can be
observed that Word2Vec offsets outperform BERT-C and BERT-D offsets in all the experiments.

Google Dataset DiffVec Dataset
K-Means Clustering

H score C score V score S score H score C score V score S score
BERT-C 0.64199 0.6438 0.6429 0.045362 0.16965 0.094723 0.12157 -0.0283
BERT-D 0.65349 0.63626 0.64476 0.10506 0.10774 0.058451 0.075787 0.013537

Word2Vec 0.77054 0.75713 0.7637 0.12684 0.46482 0.25064 0.32567 0.042768
FastText 0.82701 0.84071 0.83380 0.078917 0.47010 0.26855 0.3358 0.0467

Spectral Clustering
BERT-C 0.61109 0.6299 0.62035 0.035247 0.11650 0.10530 0.11062 -0.00111
BERT-D 0.6750 0.66663 0.67083 0.10153 0.067005 0.062730 0.064797 -0.0144

Word2Vec 0.76312 0.7683 0.7657 0.12939 0.33523 0.26321 0.2948 -0.0153
FastText 0.79287 0.7883 0.79059 0.055707 0.34117 0.24842 0.28750 0.02019

Hierarchical Clustering
BERT-C 0.44533 0.61259 0.51574 0.094548 0.051867 0.067373 0.058612 -0.0125
BERT-D 0.52488 0.53252 0.52867 0.095725 0.074991 0.040040 0.052206 -0.00904

Word2Vec 0.75826 0.76435 0.7648 0.1253 0.36074 0.20077 0.28776 0.0101
FastText 0.69180 0.69768 0.69473 0.085226 0.29674 0.15846 0.20660 0.005262

Table 5: Comparison between Word2Vec, FastText and BERT relation vectors. Left: Using the Google
dataset, where number of clusters is 13 and word-pairs is 387. Right: Using DiffVec dataset where
number of clusters is 36 and word-pairs is 7,782.

A.2 Comparing Word2Vec, RelPair, and FastText
Tables 6 compares the clustering of relation vectors generated by Word2Vec, FastText, and RelPair on
the Google and DiffVec datasets. For experiments with the Google dataset, we have 272 word-pairs
common to all model vocabularies consisting of 11 relations. Similarly for the DiffVec dataset, we have
1,889 word-pairs consisting of 34 relations.

Google Dataset DiffVec Dataset
K-Means Clustering

H score C score V score S score H score C score V score S score
Relpair 0.7718 0.6373 0.6981 0.09062 0.2789 0.1750 0.2151 0.04085

Word2Vec 0.8989 0.6534 0.7568 0.1222 0.4901 0.3047 0.37583 0.02583
FastText 0.8957 0.6441 0.7493 0.09928 0.4673 0.2927 0.3599 0.02629

Spectral Clustering
Relpair 0.680 0.4836 0.5655 0.03209 0.2577 0.1806 0.2124 0.02332

Word2Vec 0.8792 0.6365 0.7384 0.1214 0.4354 0.3215 0.3699 0.0162
FastText 0.8494 0.6350 0.7267 0.0466 0.4277 0.3062 0.3569 0.01749

Hierarchical Clustering
Relpair 0.6385 0.6981 0.6670 0.1019 0.1426 0.1436 0.1431 0.01463

Word2Vec 0.9467 0.9007 0.9231 0.2009 0.4241 0.2672 0.3278 0.01409
FastText 0.9475 0.7975 0.8661 0.1031 0.3584 0.2235 0.2753 0.00650

Table 6: Comparison between Word2Vec, FastText and RelPair. Left: Using Google dataset where
number of clusters is 11 and word-pairs is 272. Right: Using DiffVec dataset where number of clusters
is 34 and word-pairs is 1,889.

B Hierarchical Clustering Experiments

We have repeated the experiments for HAC with cosine distance and complete linkage. Results of these
experiments are given in Table 7. We can see that Word2Vec offsets outperform BERT-C, BERT-D and
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RelPair in all the three experiments.

Experiment 1
H score C score V score S score H score C score V score S score

Word2vec 0.758267 0.764359 0.761301 0.125302 0.360746 0.200775 0.257973 0.0102531
FastText 0.691806 0.697683 0.694732 0.0852269 0.296747 0.158467 0.206605 -0.00318162
BERT-C 0.445339 0.612599 0.515747 0.0945483 0.0332689 0.0532383 0.0409487 0.0225003
BERT-D 0.524882 0.532527 0.528677 0.0957254 0.0749914 0.0400409 0.0522066 -0.0128421

Experiment 2
Word2vec 0.946708 0.900798 0.923183 0.200932 0.424111 0.267235 0.327874 0.0129567
FastText 0.947553 0.797549 0.866104 0.103135 0.358428 0.223505 0.275325 0.00535484
RelPair 0.63855 0.698174 0.667033 0.101908 0.142603 0.143651 0.143125 0.0146898

Experiment 3
Word2vec 0.936082 0.900127 0.917753 0.226901 0.398299 0.254189 0.31033 0.0118096
FastText 0.894529 0.80671 0.848353 0.170067 0.363967 0.229845 0.281759 0.00965932
BERT-C 0.563931 0.478125 0.517496 0.0794643 0.0929183 0.1218 0.105417 0.00832806
BERT-D 0.563107 0.526493 0.544185 0.158053 0.162561 0.105435 0.127909 0.00318062
RelPair 0.485066 0.619641 0.544157 0.124935 0.138093 0.141195 0.139626 0.0165833

Table 7: Results on hierarchical clustering with cosine distance and complete linkage. Left: Using
Google dataset. Right: Using DiffVec dataset

Details of these experiments are:

• Experiment 1: Comparison between Word2Vec, FastText and BERT offsets. Using the Google
dataset where the number of clusters is 13 and word-pairs is 387. Using the DiffVec dataset where
the number of clusters is 36 and word-pairs is 7782.

• Experiment 2: Comparison between Word2Vec, FastText, and RelPair. Using the Google dataset
where the number of clusters is 11 and word-pairs is 272. Using DiffVec dataset where the number
of clusters is 34 and word-pairs is 1,889.

• Experiment 3:Comparison between Word2Vec, FastText, BERT, and RelPair. Using the Google
dataset where the number of clusters is 13 and word-pairs is 207. Using DiffVec dataset where the
number of clusters is 34 and word-pairs is 1,512.

C Unsupervised Experiments with Noisy Data

We perform grid search on the number of clusters to find the one with the maximum silhouette score. The
grid ranges are [10, 20, 27,30, 40, 50, 100, 250, 500, 1000, 2000] for extended Google dataset and [10,
20,30, 40, 50, 73,100, 250, 500, 1000, 2000,3000,4000,5000,8000] for the extended DiffVec dataset.


