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Abstract

We present a novel retrofitting model that can leverage relational knowledge available in a
knowledge resource to improve word embeddings. The knowledge is captured in terms of relation
inequality constraints that compare similarity of related and unrelated entities in the context of
an anchor entity. These constraints are used as training data to learn a non-linear transformation
function that maps original word vectors to a vector space respecting these constraints. The
transformation function is learned in a similarity metric learning setting using Triplet network
architecture. We applied our model to synonymy, antonymy and hypernymy relations in WordNet
and observed large gains in performance over original distributional models as well as other
retrofitting approaches on word similarity task and significant overall improvement on lexical
entailment detection task.

1 Introduction

Word embedding models (Pennington et al., 2014; Mikolov et al., 2013) are primarily inspired from the
distributional hypothesis (Harris, 1954) viz. words that appear in similar context tend to have similar
meaning. However, these models have one major drawback: they mix semantic similarity with other
types of semantic relatedness (Hill et al., 2015). Consider for example, cheap and expensive. Though
completely opposite in meaning, these words tend to occur in nearly identical contexts and end up having
similar distributional vectors. This is problematic for many end applications such as sentiment analysis,
text simplification, and so on. To address this issue, researchers have proposed various models to combine
information from external knowledge sources such as WordNet, Freebase, etc. into unsupervised learning
of word embeddings. These models mainly focus on the constraints extracted from various types of
relations such as synonymy, antonymy, hypernymy, etc. At a high level, these models are categorized
into: Joint specialization models (Yu and Dredze, 2014; Liu et al., 2015; Xu et al., 2014); and Retrofitting
models (Faruqui et al., 2015; Wieting et al., 2015; Glavaš and Vulić, 2018; Kamath et al., 2019). Joint
specialization models typically modify the optimization objective of distributional models by integrating
the constraints into the objective function. Whereas, retrofitting models update the word vectors of
distributional models in a post-processing training step using data generated from the constraints. Current
retrofitting models have one limitation. They use constraints that tend to push cosine similarity to extremes
(+1 or -1). While this works well for relations such as synonymy and anotonymy, it does not work so well
for relations such as hypernymy, holonymy, etc. We need an approach that works for all relations while
striking the right balance with distributional semantics.

In this work, we present a new method to obtain constraints from all types of relations present in
a knowledge resource. The constraints are in the form of relation inequalities. The central idea is: if
an entity enta is related to entity entb with relation type rel and is not related to entity entc by the
same relation, then enta is semantically closer to entb than entc in the context of the relation rel. The
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corresponding inequality can then be stated as: simrel(enta, entb) > simrel(enta, entc). Using such
relation inequality constraints has the following advantages: 1) They are not just limited to synonymy and
antonymy relations but can also be generated from other lexical relations such as hypernymy, holonymy,
and so on. 2) They can also be generated from any relation type including relations from non-lexical
knowledge graphs such as FreeBase.

We use the generated inequality constraints as training data to learn a non-linear transformation function
that maps original word vectors to a vector space respecting these constraints. The transformation
function is learned in a similarity metric learning setting using Triplet network architecture (Wang et al.,
2014; Schroff et al., 2015). We applied our model to synonymy, antonymy and hypernymy relations in
WordNet and observed large gains in performance over retrofitting benchmarks on word similarity task
and significant overall improvement on lexical entailment (LE) detection task. The main contributions of
this work are: (1) A new method to obtain constraints from all relation types in a retrofitting setting with
its demonstration on WordNet relations; (2) Using Triplet network based similarity metric learning for a
softer, more balanced integration of constraints; (3) A detailed experiment on word similarity as well as
LE detection tasks to show the effectiveness of the proposed approach.

2 Constraints from WordNet Relations

This section presents a set of rules to obtain relation inequality constraints from synonymy, antonymy
and hypernymy relations in WordNet (Miller, 1995). Each rule involves a triplet of entities (va, vp, vn) in
which we refer to va, vp and vn as the anchor, positive and negative entities respectively. A constraint is
generated such that the anchor is closer to the positive than the negative entity, with a margin to indicate
minimum separation. It can be set in the range of [0, 2] corresponding to minimum versus maximum
separation on cosine distance.
Similarity Relationship Constraints: We represent the set of unique words appearing in all synsets as
nodes of a graph G. We then add a labeled edge syn between two nodes if the corresponding pair of words
belongs to the same synset. The inequality constraints for r = syn are then obtained using,

∀va, vp, vn; (va, r, vp) ∈ G; (va, r, vn) /∈ G; sim(va, vp) > sim(va, vn) +marginr (1)

i.e. a pair of entities associated by a specific relation r are semantically closer than a pair of entities that
are not in that relation. Specifically for r = syn, we sample negative words vn using antonymy relation.
For instance, consider a triplet (bright, clever, stupid). With respect to anchor word bright, clever is closer
than stupid as the former is a synonym whereas the latter is an antonym of bright. This generates the
following constraint: sim(bright, clever) > sim(bright, stupid) +marginsyn
Type Hierarchy Constraints: In addition to the word nodes, we also create type nodes to represent
synsets in G and add edges between them using hypernymy relation to capture type hierarchy (edge label:
subtype). Moreover, we also add an edge between a word and the type corresponding to its synset (edge
label: type). We then apply the following rule to generate type hierarchy constraints.

∀va, vp, vn; (va, type, t1), (vp, type, t2), (vn, type, t3), (t1, subtype, t2), (t2, subtype, t3) ∈ G;
sim(va, vp) > sim(va, vn) +marginhier

(2)

i.e. a pair of entities closer in type hierarchy are semantically closer compared to a pair farther in
type hierarchy. For instance, consider a triplet (coach, railcar, vehicle). With respect to anchor word
coach, railcar is closer than vehicle as the former is a direct hypernym of coach whereas the latter is
an indirect hypernym through railcar. This generates the following constraint: sim(coach, railcar) >
sim(coach, vehicle) +marginhier.

It should be noted that rules 1 and 2 above can be used to obtain constraints from any knowledge graph.
Rule 1 in its general form encodes any relation r where a triplet (va, vp, vn) is sampled such that va and
vp are in relationship r while va and vn are not. Similarly rule 2 can obtain type hierarchy constraints.
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Figure 1: Retrofitting model for learning a non-linear transformation function

3 Transformation Function

We use the generated inequality constraints as training data (D) to learn a transformation function that
maps pre-trained word embeddings to a vector space that respects these constraints. This function is
learned using a Triplet network architecture in a similarity metric learning setting. The Triplet architecture
(Hoffer and Ailon, 2015; Wang et al., 2014) provides a way to learn transformation from input space to
representation space such that distances in the representation space approximates semantic distances in
the input space.

Figure 1 shows the architecture and an example training instance to learn the transformation func-
tion. Let X ∈ Rn×d represent the pre-trained embeddings for vocabulary of size n. For a training
instance (wa, wp, wn,margin) ∈ D, we first obtain corresponding pre-trained embeddings from X i.e.
(xwa , xwp , xwn). These embeddings are then passed as input to a transformation function T (xi) = xti, a
multi-layer feed forward neural network with weights WT . Our model contains three identical copies of
this network with shared parameters. These copies are then joined using a distance layer that computes
two cosine distances viz. distance of the anchor word wa from the positive word wp and its distance from
the negative word wn i.e.

distap = cosine-distance
(
T (xwa), T (xwp)

)
distan = cosine-distance

(
T (xwa), T (xwn)

)
These distances in the transformed vector space are then fed to a margin based hinge loss function. To
reduce overfitting, we apply L2 regularization on the weights WT of the network. The loss function
Lhinge used by our model is then,

Lhinge =
∑

(wa,wp,wn,margin)∈D

(
max(0,margin+ distap − distan) + λw‖(WT )‖2

)
Similar to (Mrkšić et al., 2016; Glavaš and Vulić, 2018), we also include a regularization term Lvsr that
penalizes vector space transformations that drastically change the topology of input vector space.

Lvsr =
∑

(wa,wp,wn,margin)∈D

(
cosine-distance(xwa , T (xwa)) + cosine-distance(xwp , T (xwp))

+cosine-distance(xwn , T (xwn))
)

The final loss function used by our model is then: L = Lhinge + λvsr ∗ Lvsr where λvsr is a hyper-
parameter that determines how strictly the topology of original vector space is preserved. Once the
network is trained, the learned transformation function T (xi) is applied to all the words in X to map the
pre-trained word embeddings to a new transformed vector space Xt ∈ Rn×d.

4 Experimental Setup

To evaluate our retrofitting approach, we experimented with three pre-trained word embeddings that are
learned using different distributional models: (1) GloVe (Pennington et al., 2014): trained on Common
Crawl data; (2) Word2Vec (Mikolov et al., 2013): trained on Wikipedia dump available on polyglot project
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(Al-Rfou’ et al., 2013); (3) FastText (Bojanowski et al., 2017): trained on Wikipedia 2017. As explained
in section 2, we use WordNet to obtain two types of constraints: (1) Similarity relationship constraints: a
total of 425,732 constraints from synonymy and antonymy relations; (2) Type hierarchy constraints: a
total of 100,100 constraints from hypernymy relation. The margin parameter is set to 0.6 and 0.2 for the
similarity relationship constraints and the type hierarchy constraints respectively1.

We compare our model (referred as TripletNet hereafter) with three state of the art retrofitting models:
(1) Counterfit (Mrkšić et al., 2016): It defines the loss function as a weighted sum of terms that brings
synonymous words closer, pushes antonymous words apart. However, it retrofits only those words that are
present in the constraints (2) ExplRetrofit (Glavaš and Vulić, 2018): It retrofits vectors of all words in
the vocabulary by learning a global specialization function using synonym and antonym constraints (3)
AuxGAN (Ponti et al., 2018): It learns the global specialization function using a generative adversarial
network architecture. We also compare our model with the joint specialization approach of Liu et al.
(2015) that updates word2vec optimization objective (referred as SWE).

SimLex-999 SimVerb-3500
GloVe FastText Word2Vec GloVe FastText Word2Vec

L
ex

ic
al

O
ve

rl
ap

PreTrained 0.3738 0.4409 0.3625 0.2264 0.3558 0.2531
Counterfit 0.6038 0.5949 0.5869 0.4468 0.4725 0.4505
ExplRetrofit 0.6252 0.5331 0.5364 0.5362 0.4182 0.5290
AuxGAN 0.6317 0.3618 0.5672 0.4875 0.2980 0.4589
SWE - - 0.5017 - - 0.4001
TripletNet-Sim 0.6014 0.5149 0.5316 0.5055 0.4348 0.4615
TripletNet-Type 0.4288 0.4337 0.3687 0.3257 0.3494 0.2687
TripletNet 0.6139 0.5349 0.5386 0.5525 0.4404 0.4953

L
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t

PreTrained 0.3738 0.4409 0.3625 0.2264 0.3558 0.2531
Counterfit 0.3702 0.4381 0.3631 0.2257 0.3578 0.2561
ExplRetrofit 0.5265 0.526 0.3905 0.3553 0.4042 0.2634
AuxGAN 0.5630 0.3339 0.4704 0.4194 0.2541 0.3540
SWE - - 0.4612 - - 0.3620
TripletNet-Sim 0.5725 0.5124 0.4986 0.5105 0.4199 0.4336
TripletNet-Type 0.4301 0.4319 0.3674 0.3081 0.3402 0.2650
TripletNet 0.5742 0.5314 0.5026 0.5025 0.4311 0.4541

Table 1: Spearman’s correlation (ρ) scores of our model and other benchmarks for three distributional
embeddings on two word similarity datasets: SimLex-999 and SimVerb-3500

4.1 Word Similarity Task

We evaluate our approach on two word similarity datasets: SimLex-999 (Hill et al., 2015) and SimVerb-
3500 (Gerz et al., 2016) using Spearman’s rank correlation (ρ). Similar to Glavaš and Vulić (2018), we
use two evaluation settings i.e. Lexical disjoint: To effectively evaluate the generalization capability of
retrofitting approaches, all words appearing in the evaluation datasets are removed from the training set;
Lexical overlap: In this setting, all words appearing in the evaluation datasets are retained in training set.

Table 1 shows the results of our experiments. In both the evaluation settings, our model performs
substantially better than the baseline pre-trained embeddings and the joint specialization model (SWE). In
lexical disjoint setting, the Counterfit model does not improve beyond baseline as all the words present in
the evaluation set are excluded from training. The ExplRetrofit and AuxGAN models perform better than
Counterfit as they retrofit vectors of all words using a global specialization function. Our model performs
even better as it does not put hard constraints on cosine similarity values. Instead, these values are learned

1The margin parameter for the inequality constraints are varied as: {0, 0.6, 1, 1.5, 2} for similarity relationship constraints;
and {0.05, 0.1, 0.2} for type hierarchy constraints. The performance of the GloVe retrofitted embeddings on SimLex-999
evaluation set (refer section 4.1) is used to tune this parameter.
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such that the anchor words are relatively closer to positive words than negative words thereby striking
the right balance between distributional and relational semantics. In lexical overlap setting, retrofitting
models perform significantly better than the baseline. Since the Counterfit model directly updates input
word vectors pushing cosine similarity of synonyms to 1 and antonyms to -1 and many of the words in the
evaluation set are already included in the training set, it seems to be performing better overall.

We also performed ablation test on the type of constraints. The embeddings retrofitted only using the
similarity relationship constraints (TripletNet-Sim) perform significantly better than other benchmarks.
However, the embeddings retrofitted only using the type hierarchy constraints (TripletNet-Type) bring
only marginal improvement over baseline. This is on expected lines as similarity constraints are more
important for the word similarity task. Combining both constraints (TripletNet) brings further improvement
suggesting positive interaction between the embeddings of words across both types of constraints.

4.2 Lexical Entailment (LE) Detection Task
LE detection is a classification task to identify if a given pair of words is in a lexical entailment relation
such as hypernymy, causality, and so on. We evaluate our approach on four datasets: Baroni (Baroni
et al., 2012), WBLESS (Weeds et al., 2014), Kotlerman (Kotlerman et al., 2010) and Turney (Turney
and Mohammad, 2014). The dataset splits provided by Levy et al. (2015) are used for the experiments
on Baroni, Kotlerman and Turney. Whereas for WBLESS, we randomly split the data into train (70%)
and test (30%) set. Given a pair of words (x, y) as input, we first represent them as the concatenation
of their word embeddings (i.e. ~x ⊕ ~y) and then learn a logistic regression classifier. In addition to the
models explained earlier, we also compare our model with LEAR (Vulić and Mrkšić, 2018) that uses
vector norms to define an asymmetric distance metric in order to leverage LE relations during training.

PreTrained Counterfit ExpRetrofit AuxGAN LEAR TripletNet LEAR-M
Baroni 0.7313 0.7282 0.7519 0.7649 0.7687 0.8078 0.903
WBLESS 0.9349 0.9058 0.9346 0.9442 0.9385 0.9269 0.8885
Kotlerman 0.7021 0.7264 0.7262 0.7472 0.7118 0.7407 0.599
Turney 0.6982 0.6888 0.6923 0.714 0.6371 0.7357 0.6765

Table 2: Accuracy scores of our model and other benchmarks on LE detection datasets (GloVe embeddings)

Table 2 reports accuracy for various models on LE detection task. Overall, approaches that learn
specialization function perform better than other approaches. Our model performs even better on Baroni
and Turney, while comparable to AuxGAN on WBLESS and Kotlerman. We also learnt a model (LEAR-
M) based on the asymmetric distance metric to identify LE pairs. This model performed significantly
better on Baroni. However, it did not perform well on other datasets.

5 Conclusions and Future work

We present a novel retrofitting model that first generates inequality constraints from relational knowledge
present in a knowledge resource. These constraints are then used as training data to learn a non-linear
transformation function in a similarity metric learning setting using Triplet network architecture. We
applied our model to synonymy, antonymy, and hypernymy relations in WordNet and observed large gains
in performance over original pretrained embeddings as well as other retrofitting benchmarks on word
similarity task and significant overall improvement on LE detection task.

We are currently evaluating our model on extrinsic tasks such as sentiment analysis, NER, etc. We also
plan to incorporate relational knowledge present in non-lexical knowledge resources such as Freebase to
further improve word embeddings.
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