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Abstract

Lexical substitution, i.e. generation of plausible words that can replace a particular target word in
a given context, is an extremely powerful technology that can be used as a backbone of various
NLP applications, including word sense induction and disambiguation, lexical relation extraction,
data augmentation, etc. In this paper, we present a large-scale comparative study of lexical
substitution methods employing both rather old and most recent language and masked language
models (LMs and MLMs), such as context2vec, ELMo, BERT, RoBERTa, XLNet. We show that
already competitive results achieved by SOTA LMs/MLMs can be further substantially improved
if information about the target word is injected properly. Several existing and new target word
injection methods are compared for each LM/MLM using both intrinsic evaluation on lexical
substitution datasets and extrinsic evaluation on word sense induction (WSI) datasets. On two
WSI datasets we obtain new SOTA results. Besides, we analyze the types of semantic relations
between target words and their substitutes generated by different models or given by annotators.

1 Introduction

Lexical substitution is the task of generating words that can replace a given word in a given textual context.
For instance, in the sentence “My daughter purchased a new car” the word car can be substituted by its
synonym automobile, but also with co-hyponym bike, or even hypernym motor vehicle while keeping the
original sentence grammatical. Lexical substitution has been proven effective in various applications, such
as word sense induction (Amrami and Goldberg, 2018), lexical relation extraction (Schick and Schütze,
2020), paraphrase generation, text simplification, textual data augmentation, etc. Note that the preferable
type (e.g., synonym, hypernym, co-hyponym, etc.) of generated substitutes depends on the task at hand.

The new generation of language and masked language models (LMs/MLMs) based on deep neural
networks enabled a profound breakthrough in almost all NLP tasks. These models are commonly used
to perform pre-training of deep neural networks, which are then fine-tuned to some final task different
from language modeling. However, in this paper we study how the progress in unsupervised pre-training
over the last five years affected the quality of lexical substitution. We adapt context2vec (Melamud et
al., 2016), ELMo (Peters et al., 2018), BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and
XLNet (Yang et al., 2019) to solve lexical substitution task without any fine-tuning, but using additional
techniques to ensure similarity of substitutes to the target word, which we call target word injection
techniques. We provide the first large-scale comparison of various neural LMs/MLMs with several target
word injection methods on lexical substitution and WSI tasks. Our research questions are the following (i)
which pre-trained models are the best for substitution in context, (ii) additionally to pre-training larger
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models on more data, what are the other ways to improve lexical substitution, and (iii) what are the
generated substitutes semantically. More specifically, the main contributions of the paper are as follows1:

• A comparative study of five neural LMs/MLMs applied for lexical substitution based on both intrinsic
and extrinsic evaluation.

• A study of methods of target word injection for further lexical substitution quality improvement.

• An analysis of types of semantic relations (synonyms, hypernyms, co-hyponyms, etc.) produced by
neural substitution models as well as human annotators.

2 Related Work

Solving the lexical substitution task requires finding words that are both appropriate in the given context
and related to the target word in some sense (which may vary depending on the application of generated
substitutes). To achieve this, unsupervised substitution models heavily rely on distributional similarity
models of words (DSMs) and language models (LMs). Probably, the most commonly used DSM is
word2vec model (Mikolov et al., 2013). It learns word embeddings and context embeddings to be similar
when they tend to occur together, resulting in similar embeddings for distributionally similar words.
Contexts are either nearby words or syntactically related words (Levy and Goldberg, 2014). In (Melamud
et al., 2015b) several metrics for lexical substitution were proposed based on embedding similarity of
substitutes both to the target word and to the words in the given context. Later (Roller and Erk, 2016)
improved this approach by switching to dot-product instead of cosine similarity and applying an additional
trainable transformation to context word embeddings.

A more sophisticated context2vec model producing embeddings for a word in a particular context
(contextualized word embeddings) was proposed in (Melamud et al., 2016) and was shown to outperform
previous models in a ranking scenario when candidate substitutes are given. The training objective is
similar to word2vec, but context representation is produced by two LSTMs (a forward and a backward for
the left and the right context), in which final outputs are combined by feed-forward layers. For lexical
substitution, candidate word embeddings are ranked by their similarity to the given context representation.
A similar architecture consisting of a forward and a backward LSTM is employed in ELMo (Peters et
al., 2018). However, in ELMo each LSTM was trained with the LM objective instead. To rank candidate
substitutes using ELMo (Soler et al., 2019) proposed calculating cosine similarity between contextualized
ELMo embeddings of the target word and all candidate substitutes. This requires feeding the original
example with the target word replaced by one of the candidate substitutes at a time. The average of outputs
at the target timestep from all ELMo layers performed best. However, they found context2vec performing
even better and explained this by the negative sampling training objective, which is more related to the
task.

Recently, Transformer-based models pre-trained on huge corpora with LM or similar objectives have
shown SOTA results in various NLP tasks. BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019)
were trained to restore a word replaced with a special [MASK] token given its full left and right contexts
(masked LM objective), while XLNet (Yang et al., 2019) predicted a word at a specified position given
only some randomly selected words from its context (permutation LM objective). In (Zhou et al., 2019),
BERT was reported to perform poorly for lexical substitution (which is contrary to our experiments),
and two improvements were proposed to achieve SOTA results using it. Firstly, dropout is applied to the
target word embedding before showing it to the model. Secondly, the similarity between the original
contextualized representations of the context words and their representations after replacing the target
by one of the possible substitutes are integrated into the ranking metric to ensure minimal changes in
the sentence meaning. This approach is very computationally expensive, requiring calculation of several
forward passes of BERT for each input example, depending on the number of possible substitutes. We
are not aware of any work applying XLNet for lexical substitution, but our experiments show that it
outperforms BERT by a large margin.

1The repository for this paper: https://github.com/bsheludko/lexical-substitution

https://github.com/bsheludko/lexical-substitution
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Supervised approaches to lexical substitution include (Szarvas et al., 2013a; Szarvas et al., 2013b;
Hintz and Biemann, 2016). These approaches rely on manually curated lexical resources like WordNet,
so they are not easily transferable to different languages, unlike those described above. Also, the latest
unsupervised methods were shown to perform better (Zhou et al., 2019).

3 Neural Language Models for Lexical Substitution with Target Word Injection

To generate substitutes, we introduce several substitute probability estimators, which are models taking
a text fragment and a target word position in it as input and producing a list of substitutes with their
probabilities. To build our substitute probability estimators we employ the following LMs/MLMs:
context2vec (Melamud et al., 2016), ELMo (Peters et al., 2018), BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) and XLNet (Yang et al., 2019). These models were selected to represent the progress in
unsupervised pre-training with language modeling and similar tasks over the last five years. Given a target
word occurrence, the basic approach for models like context2vec and ELMo is to encode its context and
predict the probability distribution over possible center words in this particular context. This way, the
model does not see the target word. For MLMs, the same result can be achieved by masking the target
word. This basic approach employs the core ability of LMs/MLMs of predicting words that fit a particular
context. However, these words are often not related to the target. The information about the target word
can improve generated substitutes, but what is the best method of injecting this information is an open
question.

3.1 Target Word Injection Methods
We experiment with several methods to introduce information about the original target word into neural
lexical substitution models and show that their performance differs significantly. Suppose we have an
example LTR, where T is the target word, and C = (L,R) is its context (left and right correspondingly).
For instance, the occurrence of the target word fly in the sentence “Let me fly away!” will be represented
as T =“fly”, L =“Let me”, R =“away!”.

+embs This method combines a distribution provided by a context-based substitute probability estimator
P (s|C) with a distribution based on the proximity of possible substitutes to the target P (s|T ). The
proximity is computed as the inner product between the respective embeddings, and the softmax function
is applied to get a probability distribution. However, if we simply multiply these distributions, the second
will have almost no effect because the first is very peaky. To align the orders of distributions, we use
temperature softmax with carefully selected temperature hyperparameter: P (s|T ) ∝ exp( 〈embs,embT 〉

T ).

The final distribution is obtained by the formula P (s|C, T ) ∝ P (s|C)P (s|T )
P (s)β

. For β = 1, this formula can
be derived by applying the Bayes rule and assuming conditional independence of C and T given s. Other
values of β can be used to penalize frequent words, more or less. Our current methods are limited to
generating only substitutes from the vocabulary of the underlying LM/MLM. Thus, we take word or
subword embeddings of the same model we apply the injection to. Other word embeddings like word2vec
may perform better, but we leave these experiments for future work.

Word probabilities P (s) are retrieved from wordfreq library2 for all models except ELMo. Follow-
ing (Arefyev et al., 2019), for ELMo, we calculate word probabilities from word ranks in the ELMo
vocabulary (which is ordered by word frequencies) based on Zipf-Mandelbrot distribution and found it
performing better presumably due to better correspondence to the corpus ELMo was pre-trained on.

Dynamic patterns Following the approach proposed in (Amrami and Goldberg, 2018), we replace the
target word T by “T and ” (e.g. “Let me fly and away!”). Then some LM/MLM is employed to
predict possible words at timestep “ ”. Thus, dynamic patterns provide information about the target word
to the model via Hearst-like patterns.

Duplicate input This method duplicates the original example while hiding the target word (e.g., “Let
me fly away! Let me away!”). Then possible words at timestep “ ” are predicted. It is based on our

2https://pypi.org/project/wordfreq

https://pypi.org/project/wordfreq
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observation that Transformer-based MLMs are very good at predicting words from the context when they
fit the specified timestep (copying) while still giving a high probability to their distributionally similar
alternatives.

Original input For MLMs such as BERT and RoBERTa, instead of masking the target word, we can
leave it intact. Thus, the model predicts possible words at the target position while receiving the original
target at its input. We noticed that unlike duplicate input, in this case, the MLM often puts the whole
probability mass to the original target and gives very small probabilities to other words making their
ranking less reliable. For XLNet, we can use such attention masks that the context words can see the
target word in the content stream. Thus, the content stream becomes a full self-attention layer and sees all
words in the original example. We do not apply the original input technique with context2vec and ELMo
since, for these models, there is no reasonable representation that can be used to predict possible words
at some timestep while depending on the input at that timestep, at least without fine-tuning. For other
models, this option significantly outperforms target word masking and does not require many additional
efforts. Hence, if not specified otherwise, we use it in our experiments with pure BERT, RoBERTa, XLNet
estimators, and in +embs method when estimating P (s|C) with BERT and XLNet.

3.2 Neural Language Models for Lexical Substitution

Different LMs/MLMs are employed as described below to obtain context-based substitute probability
distribution P (s|C). For each of them, we experiment with different target injection methods.

C2V Context2vec encodes left, and right context separately using its forward and backward LSTM
layers correspondingly and then combines their outputs with two feed-forward layers producing the
final full context representation. Possible substitutes are ranked by the dot product similarity of their
embeddings and the context representation. We use the original implementation3 and the weights4

pre-trained on ukWac dataset.

ELMo To encode left and right context with ELMo, we use its forward and backward stacked LSTMs,
which were pre-trained with LM objective. However, there are no pre-trained layers to combine their
outputs. Thus, we obtain two independent distributions over possible substitutes: one given the left context
P (s|L), another given the right context P (s|R). To combine these distributions we use BComb-LMs
method proposed in (Arefyev et al., 2019), which can be derived similarly to +embs method describe
above: P (s|L,R) = P (s|L)P (s|R)

P γ(s) . The original version of ELMo described in (Peters et al., 2018) is used,
which is the largest version pre-trained on 1B Word Corpus.

BERT/RoBERTa By default, we give our full example without any masking as input and calculate
the distribution over the model’s vocabulary at the position of the first subword of the target word. We
employ BERT-large-cased and RoBERTa-large models as the best-performing ones. Unlike BERT and
XLNet, we found that RoBERTa with +embs injection method performs better if cosine similarity instead
of dot-product similarity is used when estimating P (s|T ) and the target word is masked when estimating
P (s|C). Thus, in the following experiments, we use these choices by default for RoBERTa+embs model.

XLNet By default, we use the XLNet-large-cased model with the original input, obtaining substitute
probability distribution similarly to BERT. We found that for short contexts, XLNet performance degrades.
To mitigate this problem, we prepend the initial context with some text ending with the end-of-document
special token.

4 Baseline Lexical Substitution Models

Lexical substitution models described above are compared to the best previously published results, as
well as our re-implementations of the following baseline models proposed in (Roller and Erk, 2016).

3https://github.com/orenmel/context2vec
4https://u.cs.biu.ac.il/˜nlp/resources/downloads/context2vec/

https://github.com/orenmel/context2vec
https://u.cs.biu.ac.il/~nlp/resources/downloads/context2vec/
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OOC Out of Context model ranks possible substitutes by their cosine similarity to the target word
and completely ignores given context. Following (Roller and Erk, 2016) we use dependency-based
embeddings5 released by (Melamud et al., 2015b).

nPIC Non-parameterized Probability In Context model returns the product of two distributions measur-
ing the fitness of a substitute to the context and to the target: nPIC(s|T,C) = P (s|T )×Pn(s|C), where
P (s|T ) ∝ exp(〈embss, embsT 〉) and Pn(s|C) ∝ exp(

∑
c∈C
〈embss, embs′c〉). Here embs and embs′ are

dependency-based word and context embeddings, and C are those words that are directly connected to the
target in the dependency tree.

5 Intrinsic Evaluation

We perform an intrinsic evaluation of the proposed models on two lexical substitution datasets.

5.1 Experimental Setup

Lexical substitution task is concerned with finding appropriate substitutes for a target word in a given
context. This task was originally introduced in SemEval 2007 Task 10 (McCarthy and Navigli, 2007) to
evaluate how distributional models handle polysemous words. In the lexical substitution task, annotators
are provided with a target word and its context. Their task is to propose possible substitutes. Since there
are several annotators, we have some weight for each possible substitute in each example, which is equal
to the number of annotators provided this substitute.

We rank substitutes for a target word in a context by acquiring probability distribution over vocabulary
on the target position. Lexical substitution task comes with two variations: candidate ranking and all-
words ranking. In candidate ranking task, models are provided with a list of candidates. Following
previous works, we acquire this list by merging all gold substitutes of the target lemma over the corpus.
We measure performance on this task with Generalized Average Precision (GAP) that was introduced in
(Thater et al., 2010). GAP is similar to Mean Average Precision, and the difference is in the weights of
substitutes: the higher the weight of the word, the higher it should be ranked. Following (Melamud et al.,
2015a), we discard all multi-word expressions from the gold substitutes and omit all instances that are left
without gold substitutes.

In the all-vocab ranking task, models are not provided with candidate substitutes. Therefore, it is much
harder task than the previous one. Models shall give higher probabilities to gold substitutes than to all
other words in their vocabulary usually containing hundreds of thousands of words. Following (Roller
and Erk, 2016), we calculate the precision of the top 1 and 3 predictions (P@1, P@3) as an evaluation
metric for the all-ranking task. Additionally, we look at the recall of top 10 predictions (R@10).

The following lexical substitution datasets are used:
SemEval 2007 Task 10 (McCarthy and Navigli, 2007) consists of 2010 sentences for 201 polysemous

words, 10 sentences for each. Annotators were asked to give up to 3 possible substitutes.
CoInCo or Concepts-In-Context dataset (Kremer et al., 2014) consists of about 2500 sentences that

come from fiction and news. In these sentences, each content word is a separate example, resulting in
about 15K examples. Annotators provided at least 6 substitutes for each example.

5.2 Results and Discussion

Comparison to previously published results Table 1 contains metrics for candidate and all-vocab
ranking tasks. We compare our best model (XLNet+embs) with the best previously published results
presented in (Roller and Erk, 2016), context2vec (c2v) model (Melamud et al., 2016) and BERT for
lexical substitution presented in (Zhou et al., 2019). The proposed model outperforms solid models
such as PIC, c2v, and substitute vector by a large margin on both ranking tasks. Nevertheless, (Zhou
et al., 2019) reported better results than XLNet+embs in both lexical substitution tasks. In (Zhou et al.,
2019), authors add a substitute validation metric that measures the fitness of a substitute to a context. It is

5http://www.cs.biu.ac.il/˜nlp/resources/downloads/lexsub_embeddings
6We could not reproduce the results of (Zhou et al., 2019) and their code was not available.

http://www.cs.biu.ac.il/~nlp/resources/downloads/lexsub_embeddings
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Model SemEval 2007 CoInCo
GAP P@1 P@3 GAP P@1 P@3

Transfer Learning (Hintz and Biemann, 2016) 51.9 - - - - -
PIC (Roller and Erk, 2016) 52.4 19.7 14.8 48.3 18.2 13.8
Supervised Learning (Szarvas et al., 2013b) 55.0 - - - - -
Substitute vector (Melamud et al., 2015a) 55.1 - - 50.2 - -
context2vec (Melamud et al., 2016) 56.0 - - 47.9 - -
BERT for lexical substitution (Zhou et al., 2019) 6 60.5 51.1 - 57.6 56.3 -
XLNet+embs 59.6 49.5 34.9 55.6 51.5 39.9
XLNet+embs (w/o target exclusion) 59.6 0.4 26.0 53.5 2.5 30.0
XLNet+embs (w/o lemmatization) 59.2 38.3 27.5 53.2 34.5 27.1
XLNet+embs (T = 1.0) 52.6 34.8 24.6 49.4 40.5 30.4

Table 1: Intrinsic evaluation of our best model and its variations on lexical substitution datasets.

computed as the weighted sum of cosine similarities of contextualized representations of words in two
sentence versions: original and one where the target word is replaced with the substitute. This technique
substantially improves predictions. However, substitute validation requires additional forward passes,
hence, increasing computational overhead. Our methods need only one forward pass. Our approach is
orthogonal to the substitute validation. Thus, a combination of two methods can improve results further. It
is worth mentioning that BERT and XLNet work on a subword level. Hence, their vocabularies are much
smaller in size ( 30K subwords) than those of ELMo (800K words) or C2V (180K words) and contain
only a fraction of possible substitutes. Thus, these models can be significantly improved by generating
multi-token substitutes.

Additionally, table 1 includes ablation analysis of our best model. Using ordinary softmax (which
is equivalent to setting T = 1.0) results in all metrics decreasing by a large margin. Also, post-
processing of substitutes has a significant impact on all-words ranking metrics. Since LMs/MLMs generate
grammatically plausible word forms and often generate the target word itself among top substitutes,
additional lemmatization and target exclusion is required to match gold substitutes. In (Roller and Erk,
2016), the authors used the NLTK English stemmer to exclude all forms of the target word. In (Melamud
et al., 2016) NLTK WordNet lemmatizer is used to lemmatize only candidates. For a fair comparison, the
same post-processing is used for all models in the following experiments.

Model SemEval 2007 CoInCo
GAP P@1 P@3 R@10 GAP P@1 P@3 R@10

OOC 44.65 16.82 12.83 18.36 46.31 19.58 15.03 12.99
nPIC 52.46 23.22 17.61 27.4 48.57 25.75 19.12 17.33
C2V 55.81 7.79 5.92 11.03 48.32 8.01 6.63 7.54
C2V+embs 53.40 28.01 21.72 33.02 50.73 29.64 24.0 21.37
ELMo 53.63 11.73 8.59 13.93 49.47 13.66 10.87 11.34
ELMo+embs 54.15 31.95 22.20 31.82 52.22 35.92 26.6 23.80
BERT 54.40 38.34 27.71 39.72 50.50 42.56 32.64 28.63
BERT+embs 53.88 41.64 30.57 43.48 50.85 46.05 35.63 31.37
RoBERTa 56.73 32.00 24.35 36.89 50.63 34.77 27.15 25.12
RoBERTa+embs 58.83 44.13 31.67 44.70 54.68 46.54 36.33 32.03
XLNet 59.10 31.70 22.80 34.90 53.39 38.16 28.58 26.46
XLNet+embs 59.62 49.48 34.88 47.18 55.63 51.48 39.91 34.91

Table 2: Comparison of our models and re-implemented baselines with the same post-processing.

Re-implementation of the baselines In Table 2, we compare our models based on different LMs/MLMs
with and without +embs injection technique. Remember that BERT, RoBERTa, and XLNet see the target
even if +embs is not applied, thus, providing already strong baseline results. All compared models,
including re-implemented OOC and nPIC, employ the same post-processing consisting of substitute
lemmatization followed by target exclusion. First, we notice that our best substitution models substantially
outperform word2vec based PIC and OOC methods. For example, the XLNet+embs gives 2x better P@1
and P@3 than the baselines. This indicates that proposed models are better at capturing the meaning of a
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word in a context as such, providing more accurate substitutes. On the candidate ranking task bare C2V
model outperforms ELMo and BERT based models, but it shows the lowest Precision@1. We note that
+embs technique substantially improves the performance of all models in all-vocab ranking task, and also
increases GAP for the majority of models.

Injection of information about target word Next, we compare target injection methods described in
Section 3. Figure 1 presents the Recall@10 metric for all of our neural substitution models with each
applicable target injection method.
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Figure 1: Comparison of various target information injection methods (SemEval 2007 and CoInCo
datasets).

Application of dynamic patterns leads to lower performance even compared to the models that do not
see the target word. Although we show the target word to the substitute generator, the pattern can spoil
predictions, e.g., using “T and ” pattern with a verb can produce words denoting subsequent actions
related to the verb, but not its synonyms. When we use the original input without any masking, the
models produce substitutes more related to the target, resulting in good baseline performance. Applying
the +embs method leads to a significant increase of Recall@10 for all models, almost always being the
best performing injection method. For C2V and ELMo, it gives 2-3 times better recall than all other
injection methods. Duplicating input performs surprisingly good for Transformer-based models but
does not help for LSTM-based C2V and ELMo. This is likely related to the previous observations that
Transformers are very good at copying words from the surrounding context, thus, predicting the original
target word, but also words with similar embeddings. The highest impact is for the XLNet model as it
can not straightforwardly use information from the target position due to its autoregressive nature but can
easily find the target in the sentence copy. Overall, our experiments show that proper injection of the
information about the target word results in much more plausible substitutes generated.

Hyperparameters Since there is no development set of reasonable size in SemEval 2007 dataset, we
decided to select hyperparameters for SemEval 2007 on CoInCo and vice versa. However, the selected hy-
perparameters turned out to be the same. Thus, for both datasets we use T =0.1 for BERT+embs,
XLNet+embs and ELMo+embs models, T =0.25 for RoBERTa+embs and T =1.0 for C2V+embs.
For BERT+embs, XLNet+embs, RoBerta+embs, C2V+embs β=0.0. For ELMo and ELMo+embs
γ=0.5, β=1.5.

6 Extrinsic Evaluation

In this section, we perform the extrinsic evaluation of our models applied to the Word Sense Induction
(WSI) task. The data for this task commonly consists of a list of ambiguous target words and a corpus
of sentences containing these words. Models are required to cluster all occurrences of each target word
according to their meaning. Thus, the senses of all target words are discovered in an unsupervised fashion.
For example, suppose that we have the following sentences with the target word bank:

1. He settled down on the river bank and contemplated the beauty of nature,
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2. They unloaded the tackle from the boat to the bank.

3. Grand River bank now offers a profitable mortgage.

Sentences 1 and 2 shall be put in one cluster, while sentence 3 must be assigned to another. This
task was proposed in several SemEval competitions (Agirre and Soroa, 2007; Manandhar et al., 2010;
Jurgens and Klapaftis, 2013). The current state-of-the-art approach (Amrami and Goldberg, 2019) rely on
substitute vectors, i.e., each word usage is represented as a substitute vector based on the most probable
substitutes, then clustering is performed over these substitute vectors.

Model SemEval-2010 (AVG) SemEval-2013 (AVG)
(Amrami and Goldberg, 2018) – 25.43±0.48
(Amrami and Goldberg, 2019) 53.6±1.2 37.0±0.5

C2V 38.9 18.2
C2V+embs 28.5 21.7

ELMo 41.8 27.6
ELMo+embs 45.3 28.2

BERT 52.0 34.5
BERT+embs 53.8 36.8

RoBERTa 49.6 34.0
RoBERTa+embs 51.4 34.5

XLNet 52.2 33.4
XLNet+embs 54.2 37.3

Table 3: Extrinsic evaluation on word sense induction datasets.

We implemented a WSI algorithm using lexical substitutes from our models. The algorithm is a
simplified version of methods described in (Amrami and Goldberg, 2019; Arefyev et al., 2019). In the
first step, we generate substitutes for each example, lemmatize them and take 200 most probable ones.
We treat these 200 substitutes as a document. Then, TF-IDF vectors for these documents are calculated
and clustered using agglomerative clustering with average linkage and cosine distance. The number of
clusters maximizing the silhouette score is selected for each word individually.

In table 3 we compare our lexical substitution models on two WSI datasets. For the previous SOTA
models, which are stochastic algorithms, the mean and the standard deviation are reported. Our WSI
algorithm is deterministic; hence, we report the results of a single run. Our best model achieves higher
metrics than the previous SOTA on both datasets, however, the difference is within one standard deviation.
Similarly to the intrinsic evaluation results, our +embs injection method substantially improves the
performance of all models for WSI, except for the C2V+embs model on SemEval-2010, which probably
used suboptimal hyperparameters.

Hyperparameters The optimal hyperparameters for WSI models were selected on the TWSI
dataset (Biemann, 2012). For both evaluation datasets we used β=2.0 for BERT+embs, XLNet+embs,
RoBERTa+embs and ELMo+embs models, β=0.0 for C2V+embs, T =2.5 for BERT+embs, T =1.0 for
XLNet+embs, T =10.0 for RoBERTa+embs, T =0.385 for ELMo+embs and T =1.0 for C2V+embs.

7 Analysis of Semantic Relation Types

In this section we analyze the types of substitutes produced by different neural substitution models.

7.1 Experimental Setup
For this analysis, the CoInCo lexical substitution dataset (Kremer et al., 2014) described above is used.
We employ WordNet (Miller, 1995) to find the relationship between a target word and each generated
substitute. First, from all possible WordNet synsets two synsets containing the target word and its substitute
with the shortest path between them are selected. Then relation between these synsets is identified as
follows. If there is a direct relation between the synsets, i.e. synonymy, hyponymy, hypernymy, or co-
hyponymy with a common direct hypernym, we return this relation. Otherwise, we search for an indirect
relation, i.e. transitive hyponymy or hypernymy, or co-hyponymy with a common hypernym at a distance
of maximum 3 hops from each synset. We also introduce several auxiliary relations: unknown-word – the
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target or the substitute is not found among WordNet synsets with the required PoS, unknown-relation –
the target and the substitute are in the same WordNet tree, but no relation can be assigned among those
described above, no-path – the target and the substitute are in different trees.
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Figure 2: Proportions of substitutes related to the target by various semantic relations according to
WordNet. We took top 10 substitutes from each model and all substitutes from the gold standard.

7.2 Discussion of Results

For nouns and verbs the proportions of non-auxiliary relations are shown in figure 2, for all words and
relations see Appendix B. Our analysis shows that a substantial fraction of substitutes has no direct relation
to the target word in terms of WordNet, even in case of the gold standard substitutes. Besides, even human
annotators occasionally provide substitutes of incorrect PoS, e.g., for bright as an adjective there is the
verb glitter among gold substitutes. For adjectives and adverbs 18% and 25% of gold substitutes are
unknown words (absent among synsets with the correct PoS), while for verbs and nouns less than 7% are
unknown. For baseline models OOC and nPIC, the overwhelming number of substitutes are unknown
words. One of the reasons for this might be the fact that their vocabularies contain words with typos, but
we also noticed that these models frequently do not preserve the PoS of the target word. The models
based on LMs/MLMs produce much fewer unknown substitutes. Surprisingly, our +embs target injection
method further reduces the number of such substitutes, achieving the proportion comparable to the gold
standard. We can therefore suggest that our injection method helps to better preserve the correct PoS even
for SOTA MLMs.

For both nouns and verbs, +embs target injection method consistently increases the proportions of
synonyms, direct hyponyms and direct hypernyms, while decreasing the proportions of distantly related
co-hyponyms (co-hypo-3) or unrelated substitutes. This is more similar to the proportions in human
substitutes. Thus, the addition of information from embeddings forces the models to produce words that
are more closely related to the target word and more similar to human answers. For C2V and ELMo,
which have no information on the target word, target word injection results in 2x-3x more synonyms
generated.

For several sentences from SemEval 2007 dataset (McCarthy and Navigli, 2007), Figure 3 shows some
examples of substitutes provided by the human annotators (GOLD) and generated by several models, see
Appendix A for more examples and models. The first example shows the case when +embs injection
method improves the result, ranking closely related substitutes, such as telephone, cellphone, higher. The
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Synonym Co Hyponym Co Hyponym 3 Target
Transitive 
Hypernym

Transitive 
Hyponym

Direct 
Hypernym

Direct 
Hyponym

Unknown Word
Unknown 
Relation

GOLD telephone (5)
OOC phone telephone phones cellphone fone videophone handset telephones p990i cell-phone
XLNet electricity internet phone power telephone car water communication radio tv
XLNet+embs phone telephone phones cellphone internet radio electricity iphone car computer

GOLD bin (4) disposal (1) container (1)
OOC can could should would will must might to may ll
XLNet can dump bin truck disposal pit heap pile container stand
XLNet+embs can could will bin cannot dump may truck disposal stand

We were not able to travel in the weather , and there was no phone .

What happened to the big , new garbage can at Church and Chambers Streets ?

Types of semantic relations: synonym co-hyponym co-hyponym 3 target direct hypernym transitive hypernym

direct hyponym transitive hyponym unknown-relation unknown-word

Figure 3: Examples of top substitutes provided by annotators (GOLD), the baseline (OOC), and two
presented models (XLNet and XLNet+embs). The target word in each sentence is in bold, true positives
are in bold also. The weights of gold substitutes are given in brackets. Each substitute is colored according
to its relation to the target word. Substitutes before post-processing are shown.

substitutes provided by the bare XLNet model, such as electricity and internet, could be used in this
context, but all the annotators had preferred the synonym telephone instead. The second case is related
to the failure of the proposed method. Bare XLNet model generated substitutes related to the correct
sense of the ambiguous target word can, and has all three gold substitutes among its top 10 predictions. In
contrast, XLNet+embs produced words that are related to the most frequent sense: will, could, cannot, etc.
We hypothesize that this problem could potentially be alleviated by choosing individual temperature for
each example based on the characteristics of the combined distributions; this is a possible direction for
our further research.

8 Conclusion

We presented the first comparison of a wide range of LMs/MLMs with different target word injection
methods on the tasks of lexical substitution and word sense induction. Our results are the following:
(i) large pre-trained language models yield better results than previous unsupervised and supervised
methods of lexical substitution; (ii) if properly done, the integration of information about the target word
substantially improves the quality of lexical substitution models. The proposed target injection method
based on a fusion of a context-based distribution P (s|C) with a target similarity distribution P (s|T )
proved to be the best one. When applied to the XLNet model, it yields new SOTA results on two WSI
datasets. Finally, we study the semantics of the produced substitutes. This information can be valuable for
practitioners selecting the most appropriate lexical substitution method for a particular NLP application.
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A Additional Examples of Lexical Substitutes
Synonym Co Hyponym Co Hyponym 3 Target

Transitive 
Hypernym

Transitive 
Hyponym

Direct 
Hypernym

Direct 
Hyponym

Unknown Word
Unknown 
Relation

MWE

GOLD telephone (5)
OOC phone telephone phones cellphone fone videophone handset telephones p990i cell-phone
C2V let-up anti-climax rain wind excuse sunshine fog snow gridlock respite
C2V+embs phone telephone phones cellphone videophone landline voicemail telephone/fax telephones email
ELMo electricity danger snow indication sign reason rain escape word doubt
ELMo+embs phone telephone cellphone phones radio electricity e-mail contact computer vehicle
BERT phone telephone phones radio connection car line cable backup mobile
BERT+embs phone telephone phones radio cell mobile cable car call connection
RoBERTa phone money power tv telephone cellphone internet food job car
RoBERTa+embs phone telephone phones cellphone smartphone internet electricity computer radio iphone
XLNet electricity internet phone power telephone car water communication radio tv
XLNet+embs phone telephone phones cellphone internet radio electricity iphone car computer

GOLD bin (4) disposal (1) container (1)
OOC can could should would will must might to may 'll
C2V bins guzzlers collector collection dispenser emporium bucket eaters bin cans
C2V+embs can could cannot will would should might must *can* can`t
ELMo bins trucks bags cans truck machines dump machine collection box
ELMo+embs can cannot doesn could couldn 'll must don should might
BERT can bin bag lot pile heap cans bucket closet could
BERT+embs can could bin cans bag lot will may don bucket
RoBERTa can cans bin will box cart container could lot truck
RoBERTa+embs can could cans will bins may container bin would should
XLNet can dump bin truck disposal pit heap pile container stand
XLNet+embs can could will bin cannot dump may truck disposal stand

GOLD male bovine (1) male cow (1)
bovine 

animal (1)
cow (1)

OOC bull bulls tup dandie cow heifer goat nandi tusker comyn
C2V dog horse ought wants person needs deserves happens thing animal
C2V+embs bull horse cow fox dog stallion bulls cock lion pig
ELMo person situation creature horse guy dog someone beast thing else
ELMo+embs bull bear horse dog animal bulls cat pet tiger beast
BERT bull cow bitch beef ass devil cock ram wolf man
BERT+embs bull cow ram beef tiger cock buffalo bitch horse elephant
RoBERTa bull bulls dog buffalo animal man cow horse human other
RoBERTa+embs bull cat dog pig horse rabbit puppy wolf bulls donkey
XLNet cat horse human person man wolf lion pig bear cow
XLNet+embs bull horse cow lion pig cat bear tiger wolf goat

GOLD write (3) email (1)
send a 

message (1)
send (1) text (1)

write a 
letter (1)

send a 
letter (1)

OOC drop drops dropping dropped drop-off fall decrease decline slump pullback
C2V give send drop e.mail ask leave post tell call email
C2V+embs drop dropped dropping drops pull throw give send jump break
ELMo tell give send thank ask bring write get throw follow
ELMo+embs drop jump send pull throw bring give slip slide dip
BERT drop give send put cut dropped tip toss leave tell
BERT+embs drop drops dropped dropping give dip toss slip cut send
RoBERTa drop dropping dropped drops pop leave throw write send shoot
RoBERTa+embs drop dropped dropping drops shoot throw give slip send toss
XLNet drop send give shoot write throw dropped leave blow pop
XLNet+embs drop drops dropped dropping throw shoot send slip give fall

We were not able to travel in the weather , and there was no phone .

What happened to the big , new garbage can at Church and Chambers Streets ?

To fight each other is not a natural state for that dog or that bull  to be in .

Anyway , I saw your ad on the net and just wanted to drop  you a line to say hello .

Types of semantic relations: synonym co-hyponym co-hyponym 3 target direct hypernym transitive hypernym

direct hyponym transitive hyponym unknown-relation unknown-word no-path multiword expression

Figure 4: Examples of substitutes produced by various lexical substitution methods based on original
neural language models and their improved versions with +embs target word injection. Sentences are
from SemEval 2007 dataset.
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B Proportions of substitute types

synonym similar-to dir-hyper dir-hypo trans-hyper trans-hypo co-hypo co-hypo-3 unk-word unk-rel no-path
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Figure 5: Proportions of substitutes related to the target by various semantic relations according to
WordNet. We took top 10 substitutes from each model and all substitutes from the gold standard.
Examples are from the CoInCo dataset.
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