
Proceedings of the 28th International Conference on Computational Linguistics, pages 1204–1213
Barcelona, Spain (Online), December 8-13, 2020

1204

Improving Word Embeddings through Iterative
Refinement of Word- and Character-level Models

Phong Ha1 Shanshan Zhang1 Nemanja Djuric2 Slobodan Vucetic1

1Department of Computer and Information Sciences, Temple University
2Uber ATG

{phongtheha, zhang.shanshan, nemanja, vucetic}@temple.edu

Abstract

Embedding of rare and out-of-vocabulary (OOV) words is an important open NLP problem. A
popular solution is to train a character-level neural network to reproduce the embeddings from a
standard word embedding model. The trained network is then used to assign vectors to any input
string, including OOV and rare words. We enhance this approach and introduce an algorithm
that iteratively refines and improves both word- and character-level models. We demonstrate that
our method outperforms the existing algorithms on 5 word similarity data sets, and that it can be
successfully applied to job title normalization, an important problem in the e-recruitment domain
that suffers from the OOV problem.

1 Introduction

Inability to represent rare and unseen words, which is referred to as the out-of-vocabulary (OOV) problem,
limits usefulness of the standard embedding approaches to real-world applications. For example, in the
e-recruitment domain there is an extremely large number of ways one can write a job title for the same
job type. LinkedIn users who are software engineers may describe themselves as software developer,
python guru, sw engi., sw developper or sw and web application developer, which are caused by different
variants, abbreviations, misspellings, or compoundings. In this case, standard embedding for a finite set of
job titles is not helpful when recommending jobs to users with rare or unseen job titles.

An embedding model that can effectively handle the OOV problem should preserve both semantic and
syntactic characteristics of words and phrases. Recently proposed mimicking approach is a promising
solution to this problem, with two representative algorithms being Mimick (Pinter et al., 2017) and GWR
(Kim et al., 2018). Their main idea is to train a character-level embedding neural network (NN) that can
reconstruct, or mimic, an embedding from word-level embedding model. The trained character-level model
is then used to generate both semantically and syntactically relevant embeddings for arbitrary character
sequences. While Mimick and GWR used BiLSTM and CNN character-level models, respectively, similar
approaches were recently proposed with several other architectures (Zhao et al., 2018; Schick and Schütze,
2019).

In order to provide high-quality embeddings useful for downstream applications, it is crucial for the
model to preserve semantic characteristics of words and phrases, while also being robust to syntactic and
word-form changes. However, this may not always be the case for the vanilla mimicking method. To see
why, let us first denote the word embedding model as W and the character embedding model as G in the
mimicking mechanism. Let us take a peek at model W produced by training on career profile corpus,
described in detail in Section 5. The top 5 neighbors for word java developer in the vector space induced
by W are software developer, software engineer, web developer, sr java developer, and programmer.
After fitting G to mimic embeddings from W , the top 5 neighbors of java developer in the vector space
induced by G become java developeur, javadeveloper, javva developer, javapython developer, javas
developpper, many of which are rare phrases that were not placed in the neighborhood by W . This is
helpful when dealing with the OOV and rare words such as javas developpper, but might negatively affect

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.

1205

Vector Representation 𝐯"𝑮

C

Squared Euclidean Loss

Vector Representation 𝐯"$

Char-level Neural Network (G)

O D E R

Word-level Embeddings (W)

CODER

Figure 1: General Mimicking Framework

Fully-Connected Layer (d-dim)

C O D E R

BiLSTM

Fully-Connected Layer (d-dim)

C O D E R

CNN

Highway Layer

(a) Mimick (b) GWR

Figure 2: Different architectures for character-level models G

the quality of the embedding produced by G as the word-form similarities become too influential in the
training of the model, resulting in G failing to preserve semantic similarities of words with the same
meaning but different spelling. In the above example, software engineer and web developer no longer
have similar embeddings with java developer, even though they refer to similar occupations. Ideally,
model G should retain ability to map semantically related words into the same neighborhood, something
that W does well. In addition, G should also be able to differentiate between words with similar spelling
that are disparate semantically (e.g., java cafe expert should not be in the same neighborhood with java
developer or java expert).

In order to better capture the syntactic and semantic similarities between words, we developed an
iterative mimicking framework that strikes a good balance between word-level and character-level repre-
sentations of words. In the proposed 2-mode framework, W training is re-initialized by G embeddings,
then G is fine-tuned by mimicking W embeddings, and the process is repeated several times. As we
demonstrate by experiments, the resulting procedure produces improved character-level embeddings on
both common and rare and OOV words. We refer to the resulting approach as Iterative Mimicking (IM).
Our contributions are summarized below:

• We propose a framework that iteratively refines W and G models. The final char-level model G is
used to assign vectors to any input sequence (such as OOV words);

• We show that the IM approach is superior to the state-of-the-art baselines through intrinsic and
extrinsic evaluations on five word similarity tasks;

• We illustrate effectiveness of the IM approach on a task of job title normalization, which is an
important problem in the e-recruiting domain.

1206

2 Related Work

In this section, we discuss existing approaches capable of generating representations for OOV words.
Aggregation of n-grams or morphemes. FastText (Bojanowski et al., 2016) algorithm directly learns

embeddings of n-grams with a Word2Vec objective (CBOW or SkipGram). Then, embedding for an OOV
word is simply aggregated as the average of the word’s n-gram embeddings. In Charagram (Wieting et al.,
2016), a nonlinear aggregation function is used instead of averaging n-gram embeddings. Aggregation
over morphemes is discussed in (Qiu et al., 2014).

Character-aware modules in deep NNs. Stacking deep NNs on top of character-level modules is a
popular recent trend. For example, character BiLSTMs or CNNs are co-trained with a language model in
ELMo (Peters et al., 2018) and charCNN (Kim et al., 2016). Similar to mimicking, the character-aware
modules in those methods are able to assign vectors to OOV words. However, they are computationally
expensive due to a need to train a heavyweight language model on a large corpus to be effective. There
are also approaches that co-train the character-aware modules with auxiliary supervised tasks, such as
part-of-speech tagging (Santos and Zadrozny, 2014), text classification (Zhang et al., 2015) and machine
translation (Luong and Manning, 2016), but the resulting embeddings are not necessarily reusable for
other downstream tasks.

Mimicking. This approach allows learning lightweight character embedding models in a two-step
manner (Pinter et al., 2017; Kim et al., 2018; Schick and Schütze, 2019; Zhao et al., 2018). It was
shown that it yields superior performance to other baselines on multiple intrinsic and extrinsic tasks. Our
proposed method is generalizing this line of research, as discussed in the following section.

3 Methodology

We first introduce the original mimicking mechanism used in Mimick (Pinter et al., 2017) and GWR
(Kim et al., 2018). We then describe our proposed iterative mimicking (IM) mechanism, which is a
generalization of the original approaches.

3.1 Mimick and GWR

Mimick and GWR methods share the same idea, where a character-level embedding model G is learned
to mimic a pretrained word-level embedding model W .

Word embedding model (W). Given a corpus D and a vocabulary V , word embedding models
such as SkipGram and CBOW output a vector for each word in V , resulting in an embedding set
{(wi, vWi)|i, ...,M}, where wi ∈ V is a word and vWi ∈ Rd is its vector representation. Word embedding
models are good at preserving semantic similarities, where semantically similar words are assigned similar
word embeddings.

Character embedding model (G). Mimick and GWR expands the fixed-vocabulary semantic space by
training a character neural network G to mimic the embeddings from W . Generator G provides mapping
from a character sequence to a vector in the same space as W , while preserving syntactic similarities
(Pinter et al., 2017).

Figure 1 illustrates the general mimicking framework, where G is a black-box character-level neural
network whose architecture can be customized differently depending on the task. (Pinter et al., 2017)
defines G to be a Bidirectional LSTM (as shown in Figure 2a), while (Kim et al., 2018) takes G to be
a Convolutional Neural Network (CNN) followed by a Highway layer (see Figure 2b), similar to the
architecture in (Kim et al., 2016). G takes word w, which is a sequence of characters and generates a
d-dimensional vector vG

w as output. Note that d matches the dimensionality of the embedding vectors
produced by W . To train G, we minimize the squared Euclidean distance between vG

i and vW
i for wi ∈ V ,

L =
1

|V |

|V |∑
i=1

‖vG
i − vW

i ‖22. (1)

After the training phase completes, we can use the learned model G to generate vectors for any input
character sequence.

1207

3.2 Iterative Mimicking

When G is fit on W , we observed that the syntactic similarities dominate relationships between the words,
while semantic similarities weaken as compared to the embeddings produced by W . For example, for our
e-recruiting data set discussed in more detail in Section 5, the neighbors of java developer are mostly
spelling variants of job titles such as javadeveloper or javapython developer. Similarly, when the model is
trained on a Twitter data set, neighbors of the word food are foods, fooooood, and frood. This result is
clearly suboptimal, and is consistent with earlier findings (Pinter et al., 2017).

Word
Embedding
Model W

Character
Embedding
Model G

Update G by
mimicking
word vectors

Re-initialize W
using G. Update W

Figure 3: Illustration of Iterative Mimicking (IM)

To address this issue, we propose an Iterative Mimicking (IM) mechanism, illustrated in Figure 3. In
IM, the word embedding model W and character embedding model G alternately influence each other
in multiple iterations, a procedure we refer to as retrofitting. After fitting G on W once, IM continues
with training W by re-initializing vector vW

i with the current vG
i for each wi ∈ V . Thanks to different

initialization, the training of W results in a different local minimum that should better represent the
morphological information captured by G. The retrofitting will not only correct the vectors that G
wrongly placed in the semantic space, but also enhance the learning of W by exploiting knowledge about
syntactically similar words learned by G. Upon retraining W , IM proceeds by updating G based on the
updated W , and the entire iterative process is repeated several times. The algorithm terminates after N
iterations, after the gap between word-embedding space W and character-embedding space produced
by G is sufficiently small, or after the embedding by G stabilizes. During inference, we may use G to
generate vectors for any input string and discard W . Mimick (Pinter et al., 2017) and GWR (Zhao et al.,
2018) are special cases of our algorithm, where the number of iterations N = 1.

In the following sections we evaluate the proposed framework on several different challenges. First, we
compare IM to baselines on tasks of word similarity. Then, we consider job title normalization, a critical
task in e-recruiting domain. We evaluate the method on a real-world, large-scale data set obtained from a
major professional network.

4 Word Similarity

We first perform intrinsic evaluation of embedding models on word similarity tasks. Given word pairs and
the word similarity judgements by human labelers, the quality of embedding models is measured as the
correlation between the human judgment and the cosine similarity of word embeddings.

4.1 Experimental Setup

Following the related work (Faruqui et al., 2016), we used five standard word similarity data sets for
English language: RG-65, Simlex (SL), WordSim-353 (WS), Stanford’s RareWords (RW) and MEN-3000.

We compared the following embedding models: (1) FastText. Embedding of a word is averaged
embedding of the word’s n-grams. (2) Mimick. We implemented the original Mimick algorithm by using
the same char-BiLSTM architecture as in the original paper (Pinter et al., 2017), except that we set the
hidden dimension in the char-BiLSTM to 300. (3) Mimick+IM. We used the same char-BiLSTM as
in Mimick, but updated it with the proposed IM mechanism. (4) GWR. We implemented the original
GWR algorithm and used the same architecture for char-CNN as in the original paper (Kim et al., 2018).
(5) GWR+IM. We used the same char-CNN as in GWR, but updated it with the proposed IM mechanism.

1208

Note that an alternative to the (Iterative) Mimicking models is to simply train a character-level neural
network directly on the corpus in a Skip-Gram Word2Vec fashion (skipping W altogether). However, in
our experiments on both NLP and the career data sets, we find that the character-level neural network
when trained this way is very unstable. Without the help of the word-level information the character-level
model is barely able to learn any word semantics on its own, it mostly picks up the word-form similarities.
Furthermore, it is prone to being collapsed into a single point, where it would produce very similar vectors
for any arbitrary input. For that reason we excluded this baseline from the analysis.

To train FastText and the word embedding model W in the four mimicking models we used two different
data sets: (1) Text81, which contains the first 100 billion bytes of Wikipedia; (2) Twitter set (Wang et
al., 2015), which contains 4 million tweets about different topics. Twitter corpus is used to evaluate the
effect of training on informal and noisy sentences. Once a model is trained we generate embeddings for
both words in a word-pair, and then calculate cosine similarity between the two embeddings. Finally, we
calculated the Pearson correlation between cosine similarities and similarity scores provided by human
annotators. We repeated each experiment 3 times. The averaged correlation score is reported.

Hyperparameters: All models were trained from scratch. We set the dimensionality of embeddings
to 100 for all five models. For FastText, we choose n-grams with n ranging from 2 to 5 so that we can
assign vectors to any input. We instantiated the word-level model W as SkipGram in models (2)-(5). For
both FastText and SkipGram we set the context window to 5. We only trained on words occurring more
than 5 times. We ran FastText for 10 epochs. In Mimick and GWR, we trained SkipGram for 10 epochs,
followed by 100 training epochs of character-level model G. For IM models we ran N = 5 iterations,
during each we trained G for 20 epochs and W for 2 epochs. Thus, all models were trained for an equal
number of epochs to ensure fair comparison.

4.2 Results

Table 1: Pearson correlation on 5 word similarity tasks

Corpus Model RG65 SL WS RW MEN

Text8

FastText 0.551 0.273 0.621 0.422 0.613
Mimick 0.418 0.142 0.439 0.206 0.390

Text8 Mimick+IM 0.463 0.238 0.512 0.282 0.474
GWR 0.572 0.270 0.627 0.276 0.624

GWR+IM 0.643 0.294 0.673 0.317 0.664

Twitter

FastText 0.662 0.196 0.415 0.277 0.628
Mimick 0.312 0.061 0.204 0.102 0.316

Mimick+IM 0.355 0.092 0.242 0.118 0.385
GWR 0.560 0.202 0.403 0.161 0.578

GWR+IM 0.683 0.221 0.467 0.189 0.612

Table 1 shows the Pearson correlation for the 5 models on the two data sets. Most models performed
better when trained on the Text8 corpus, due to its more diverse and formal vocabulary. We can observe
that GWR outperformed Mimick on all data sets, showing that character-level CNN is superior to LSTM
both in performance and training time. Both Mimick and GWR saw significant improvements through the
proposed iterative process on most data sets, confirming our hypothesis that iteratively retrofitting the
word- and the character-level models does improve the embedding quality.

We also performed qualitative analysis, where we compared the neighbors of various word embeddings
trained on the Twitter corpus, including both common and OOV words. As seen in Table 2, vanilla Mimick
relies mainly on similar spelling to produce embeddings, with limited semantic capabilities. While this
may be helpful in rare examples such as cheeseball, where the neighbors in word2vec are mostly noisy,
examples such as seven and manhattan show that G may often disturb good relative positions between
words. When trained in an IM fashion, the model was able to bring more semantically similar words with
different spellings into the neighborhood, such as midtown and dumbo for word manhattan. In addition, it
also restored the semantic neighbors of seven. Results of the Mimick+IM approach show that the model
can infer high-quality embeddings for OOV words. For example, for prelecture the only relevant neighbor

1http://mattmahoney.net/dc/textdata.html, last accessed June 2020.

1209

Table 2: Nearest Neighbors of different embedding models for the Twitter data set

Word Word2Vec Mimick Mimick+IM

manhattan nyc, queens, midtown,
dumbo, williamsburgbridge

manhattans, manhatan, cmanhattan,
nyc, manhatten

manhattans, midtown, aftersandy,
nyc, dumbo, cmanhattan

seven four, eight, three,
five, six

server, severe, sevens,
deven, tern

eight, four, sevens,
seventy, three

cheeseball eatbar, taboon, india,
hahahaha, wildflowers

cheeseballs, cheeseboy, cheesehead,
cheeses, cheese

cheeseballs, cheeseboy, cheesehead,
tomato, cheeseburger

prelecture (OOV) - lecturing, innocence, liban,
humanist, preparados

lecturer, lecturing, advising,
philosophy, discussion

fishering (OOV) - fishermen, craftbeer, slobbering,
gathering, farms

fisherman, fishers, fishery,
fishes, water, nord

for Mimick is lecturing, while Mimick+IM mapped more semantically similar words such as lecturer,
advising, and discussion.

5 Job Title Normalization

We dedicate the rest of the paper to the task of job title normalization, an important problem in online
recruiting industry worth astounding $400B (Cohan, 2018). The unstructured nature of job titles and
occupations makes job search on these online platforms difficult, as potential matches can be missed
due to large variability. For example, although sw eng. and programmer refer to the same occupation,
NLP models may fail to automatically match these two very different strings. This problem is further
exacerbated for rare titles, which are even more difficult to model due to their low counts. As seen in
Figure 4, titles observed less than 10 times in our data set cover as much as 70% of the total corpus,
making handling of rare titles a problem of very significant importance in the e-recruiting domain. To the
best of our knowledge, this is the first work to utilize mimicking-based approaches to address the problem
of job title normalization.

We formally describe the problem of job title normalization as follows. We are given a data set
D = {(ti, di)|i = 1, ..., N}, where ti is job title and di is job description. Both are free-form text entered
by a user of a professional network such as LinkedIn or Indeed. Let us denote the vocabulary of job titles
as T , and the vocabulary of words in job descriptions as V . Both T and V are infinite sets. Let us also
suppose there is a job title taxonomy O = {o1, . . . , om}, which is a finite set denoting m distinct job
categories. An example of such a taxonomy is the Standard Occupational Classification (SOC), whose
O*NET-SOC 2010 release contains 1,100 job titles (Elias et al., 2010). Then, the task is to match (or
normalize) job title t ∈ T to one job category o ∈ O from the taxonomy. We note that this definition of job
normalization corresponds to entity linking (Yamada et al., 2016; Moreno et al., 2017). In our experiments
we will evaluate results according to this definition. We also note that an alternative information retrieval
definition of job normalization is to find job titles that are most similar to the query job title. We do not
show experiments according to this definition.

To classify a job title into a category, we first learn how to embed an input string representing a job
title into a vector space using the character-level model G. Using the same model we can map all job
categories into the same vector space by assigning each category a vector.2 Then, given a particular job
title, we match it to the closest job category in the vector space. Due to the large variety of ways one
can write a job title, models that are able to generate high-quality embeddings for rare or OOV titles are
preferable. We note that this approach does not require manually labeled training data, unlike the method
proposed in (Neculoiu et al., 2016). All that is required is a corpus of (job titles, job description) pairs to
train the embedding models.

5.1 Experimental Setup
We obtained a list of 1.1 million (job title, job description) pairs from a large professional social network.
An example of such pairs is listed in Table 3. The job titles in the data set encompass a broad range of

2The BLS releases a Direct Match Titles file as a part of the SOC taxonomy package, which can be found on
https://www.bls.gov/soc/2010/classification. Each category in the taxonomy contains a few Direct Match example titles.
In order to strengthen the quality of the category vectors, we assign each Direct Match title a vector using the character-level
model and average them to get the final vector for each category in the taxonomy.

1210

Table 3: Example of job title and description

title: software engineer
description: I’m a python developer building
a Web application for job recruiters to search
multiple job boards at once like Kayak.com.
For recruiters, it’s a highly concurrent applica-
tion using MongoDB for the backend.

0 1 2 3 4 5 6 7 8 9 10+
Frequency (log2 scale)

103

104

105

Nu
m

be
r o

f j
ob

 ti
tle

s

Figure 4: Distribution of job title frequencies (x-axis is rounded
logarithm of job title frequencies, while y-axis is number of
unique job titles with the corresponding frequency in log-scale

industries and occupations. We process the job titles by replacing the white spaces with underscores and
add a # character at the beginning of a job title to distinguish a job title from a word in job descriptions.
We remove punctuation and lowercase all job titles and words in the data set. The number of unique job
titles is 630,000 and the number of unique words in job descriptions is 920,000. We plot the distribution
of job title frequencies in rounded logarithm scale in Figure 4. As we can see, most of the job titles appear
only once in D (around 300,000), accounting for nearly 50% of the data set.

Word embedding model W: We preprocess our data set D in order to learn word embedding model
W for tokens in both T and V . We insert each job title ti into the job description di at n random positions
where n =

⌈
length(di)

10

⌉
. Thus, we form a new data set S = {d′i|i = 1, ..., N}, where d′i is obtained by

adding ti to di. We then feed the sequences S to SkipGram Word2Vec algorithm. As a result, job titles and
words in job descriptions are in the same vector space. We note that this job title insertion process results
in fundamentally the same embedding as if we applied a joint embedding algorithm such as StarSpace
(Wu et al., 2018) on the original (job title, job description) pairs.

Test job titles: We selected 1,000 testing job titles ranging widely in frequencies. Specifically, we
sampled 125 job titles randomly from a frequency range [2r, 2r+1), where r is selected from the set
{4, 5, 6, 7, 8, 9}, resulting in 750 job titles. Another 125 job titles were randomly sampled from range
[1, 24) and 125 random job titles from range [210,∞). Let us denote the testing job titles from the 8
different ranges as T1, T2, ..., T8, where T1 contains the rarest job titles and T8 contains the most frequent
job titles.

Baselines: We compare the performance of FastText, Mimick, Mimick+IM, and GWR+IM, in addition
to AutoCoder, which is a commercial software3. It implements a keyword search algorithm, capable of
mapping any job title to the O*Net-SOC taxonomy. The software was originally developed for the U.S.
Department of Labor. We note that due to the expensive and manual nature of our evaluation process,
we decided to only include the original Mimick as a representative of the vanilla mimicking. Difference
between Mimick and Mimick+IM should indicate the impact of IM, while comparison of Mimick+IM
and GWR+IM should indicate the difference between Mimick and GWR.

Hyperparameters: We set the embedding dimension as 100 for all embedding models. We selected
job titles and words with frequency larger than 23 to train FastText and SkipGram models. This resulted
in a corpus comprising around 80,000 unique job titles and 71,000 unique regular words, used to train the
embedding models. Hyperparameters for SkipGram, Mimick, and the IM models were set as in Section 4.

5.2 Evaluation Metrics

Evaluating job title normalization: We asked 6 human evaluators to judge the job title normalization
quality of the 5 competing models. All human judgers are computer science graduate students who have
broad knowledge about occupation titles and the job market. We designed our evaluation scheme similarly
to (Liu et al., 2015). For each query job title, we listed randomly shuffled best matches from O*NET-SOC

3https://www.onetsocautocoder.com/plus/onetmatch, last accessed June 2020.

1211

taxonomy produced by each model. Then, human evaluators were asked to choose the best match. If
a model produced the winning category it received 1 point, otherwise it received 0 points. If multiple
models produced the winning category all of them received 1 point. The normalization quality of a model
is the sum of the points divided by 1000, which is a size of the test set. The evaluation process is manual
and very labor intensive, and it took more than 5 days to complete.

We note that there are cases when it is difficult for human evaluators to pick the most related category
from the list, especially for rare titles, when all models produce different but similarly good results. For
example, job titles can be blended such as engineer and statistician. Some models may normalize the
job title to engineers and others to statisticians. Rare job titles may also be ambiguous, such as energy
healing and body work for women. For such titles, human evaluators were allowed to search on Google to
understand their meaning. We also observed that the categories in the O*NET-SOC taxonomy can be
very similar. For instance, acrobat software engineer was normalized to software developers-application,
software developers-systems software, computer systems engineers/architects by different models, all of
which are equally acceptable. In such cases, human evaluators were also allowed to choose more than one
category as co-winners.

5.3 Results

Table 4: Avg. testing scores of models by different human judgers

Judger #1 #2 #3 #4 #5 #6 Avg.
AutoCoder 0.636 0.679 0.546 0.628 0.540 0.698 0.621

FastText 0.552 0.581 0.476 0.518 0.511 0.503 0.524
Mimick 0.501 0.527 0.485 0.571 0.437 0.554 0.513

Mimick+IM 0.673 0.672 0.583 0.631 0.646 0.646 0.642
GWR+IM 0.758 0.767 0.647 0.719 0.587 0.685 0.694

Table 5: Avg. testing scores of models in different frequency ranges

Frequency T1 T2 T3 T4 T5 T6 T7 T8

AutoCoder 0.466 0.501 0.537 0.614 0.625 0.721 0.777 0.732
FastText 0.408 0.419 0.481 0.519 0.581 0.582 0.635 0.611
Mimick 0.371 0.368 0.536 0.513 0.479 0.649 0.67 0.616

Mimick+IM 0.587 0.665 0.588 0.557 0.653 0.667 0.749 0.723
GWR+IM 0.592 0.623 0.658 0.668 0.746 0.718 0.756 0.792

Table 6: Example of job title normalization results from 5 competing models

Raw title Freq AutoCoder FastText Mimic Mimic+IM GWR+IM
art teacher

cochair sdh art
dept

T1

Art, Drama, And
Music Teachers,

Postsecondary

Kindergarten
Teachers, Except

Special Educations

Education
Teachers,

Postsecondary

Art, Drama, And
Music Teachers,

Postsecondary

Art, Drama, And
Music Teachers,

Postsecondary

econometrics intern T2 Not Classified Economists Social Sicence Research
Assistants

Financial
Quantitative

Analysts
Economists

consultantowner T3
Rehabilitation

Counselors

Industrial-
Organizational
Psychologists

Wine Energy Project
Managers Logistics Managers Chief Executives

founding board
member T4

Electrical And
Electronic Equipment

Assemblers
Fundraisers Fundraisers Chief Executives Chief Executives

social media
intern T7

Public Relations
Specialists

Public Relations
Specialists

Advertising And
Promotions Managers

Public Relations
Specialists

Public Relations
Specialists

Table 4 shows the scores given by 6 human evaluators. Five out of 6 human evaluators rated our
IM models superior when it comes to normalizing job titles, with GWR+IM being the best model.
Experimental results also show that by applying IM to the Mimick LSTM model, the quality of the
normalization significantly improved, nearly 25% on average. We also report the average score by the 6
evaluators for each of the frequency ranges in Table 5. As expected, all models performed well on the

1212

Table 7: Nearest job titles of different embedding models

Job titles Word2Vec Mimick Mimick+IM

cto

chief technology officer
founder ceo

ceo
technical director
founder and cto

tco
ceo

ctocoo
vp ctp

acting cto

ceo
partner
founder

chief technology officer
coo

waitress

waiter
bartender

hostess
server

barman

assistant to the mayor
media relations assistant

assistant to head officer of public relations
catman assistant
welders assistant

barman
waiter

front desk runner
catering assistant

food server

sofftware engineeeeeer
(OOV) -

research member senior software engineer
researchersoftware engineer
researcher software engineer

external rd software engineeer
researcher software engineering unit

c software engineer
sr software engineer
software rd engineer

staff software developer
engineer developer

teaching assistant for
principles of
data science

(OOV)
-

teaching assistant computer science
teaching assistant data analyst

teaching assistant computer science dept
teaching assistant cs

teaching assistant dept of computer science

teaching assistant big data mining
data science instructor

instructor data scientist in residence
teaching assistant dept of computer science

research associate data science lecturer

more frequent job titles. When compared to the commercial AutoCoder software, we can see that our
best model is comparable on the frequent job titles. AutoCoder outperforms our model on T6 and T7
and our model is better on the most frequent group T8. However, for the less frequent job titles covering
groups T1 to T5, our approach is significantly more accurate than AutoCoder. This is an impressive result
considering that our model is trained in less than an hour on an unsupervised document corpus with
minimal manual human efforts aside from evaluations, while AutoCoder is based on multiple years of
painstaking tuning and updates.

Examples of job title normalization can be found in Table 6. We list raw job titles within different
frequency ranges, from rare to frequent job titles. We can see that both Mimick+IM and GWR+IM
improve the normalization results compared to the baselines in a number of cases across the frequency
ranges. For example, for rare titles like econometrics intern, the commercial software AutoCoder fails to
classify it to any category, while the proposed iterative mimicking models are able to assign a finance-
related category for the title. For the title consultantowner, GWR+IM is the only model that recognizes
owner and thus normalizes it to the most relevant category Chief Executives. Another interesting example
is for the title founding board member, which appears in group T4. The IM-based methods assigned
Chief Executives category, which is arguably more related to the raw job title than Electrical And Electric
Equipment Assemblers inferred by AutoCoder or Fundraisers by Mimick and FastText approaches.

Finally, we performed a qualitative analysis of the job title embeddings to better understand differences
between vanilla Mimick and Iterative Mimick. We list the top 5 nearest neighbors of example job titles
based on the embeddings obtained from 3 models, shown in Table 7. As can be seen, although Mimick is
able to mimic the nearest neighbors of Word2Vec to some extent, it relies too much on the surface form
of words in job titles. By retrofitting Word2Vec and Char-BiLSTM, our proposed Iterative Mimicking
was able to generate nearest neighbors with better overall quality than the competing approaches. For
example, neighbors of waitress inferred by Mimick+IM closely resemble those produced by Word2Vec,
and significantly outperform those produced by Mimick. When it comes to OOV titles that Word2Vec
cannot handle, for sofftware engineeeeeer the proposed method provided much better neighbors than
Mimick. When it comes to teaching assistant for principles of data science, we can see that neighbors
produced by Mimick are reasonable, yet those in Mimick+IM are more fine-grained as they are all
instructional positions in the field of data science.

6 Conclusion

In this paper we introduced a lightweight framework that enhances the existing mimicking models by
iteratively retrofitting a word-level and a character-level embedding neural networks. We showed that the
proposed algorithm can be successfully applied to the NLP task of word similarity, as well as the task of
job title normalization, a challenging and very important problem in the e-recruitment domain.

1213

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vectors with

subword information. arXiv preprint arXiv:1607.04606.

Peter Cohan. 2018. Hired challenges linkedin in $400b market for talent recruiting.

Peter Elias, Margaret Birch, et al. 2010. Soc2010: revision of the standard occupational classification. Economic
& Labour Market Review, 4(7):48–55.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, and Chris Dyer. 2016. Problems with evaluation of word
embeddings using word similarity tasks. arXiv preprint arXiv:1605.02276.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. 2016. Character-aware neural language models.
In AAAI, pages 2741–2749.

Yeachan Kim, Kang-Min Kim, Ji-Min Lee, and SangKeun Lee. 2018. Learning to generate word representations
using subword information. In Proceedings of the 27th International Conference on Computational Linguistics,
pages 2551–2561, Santa Fe, New Mexico, USA, August. Association for Computational Linguistics.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang. 2015. Representation learning
using multi-task deep neural networks for semantic classification and information retrieval.

Minh-Thang Luong and Christopher D Manning. 2016. Achieving open vocabulary neural machine translation
with hybrid word-character models. arXiv preprint arXiv:1604.00788.

J. Moreno, R. Besançon, R. Beaumont, E. D’hondt, A. L. Ligozat, S. Rosset, X. Tannier, and B. Grau. 2017. Com-
bining word and entity embeddings for entity linking. extended semantic web conference. Portoroz, Slovenia,
Jan. Extended Semantic Web Conference, Springer.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. 2016. Learning text similarity with siamese recurrent
networks. In Proceedings of the 1st Workshop on Representation Learning for NLP, pages 148–157.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Yuval Pinter, Robert Guthrie, and Jacob Eisenstein. 2017. Mimicking word embeddings using subword rnns. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 102–112.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014. Co-learning of word representations and mor-
pheme representations. In Proceedings of COLING 2014, the 25th International Conference on Computational
Linguistics: Technical Papers, pages 141–150.

Cicero D Santos and Bianca Zadrozny. 2014. Learning character-level representations for part-of-speech tagging.
In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 1818–1826.

Timo Schick and Hinrich Schütze. 2019. Attentive mimicking: Better word embeddings by attending to informa-
tive contexts. arXiv preprint arXiv:1904.01617.

Haoyu Wang, Eduard Hovy, and Mark Dredze. 2015. The hurricane sandy twitter corpus. In Workshops at the
twenty-ninth AAAI conference on artificial intelligence.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Charagram: Embedding words and sen-
tences via character n-grams. arXiv preprint arXiv:1607.02789.

Ledell Yu Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason Weston. 2018. Starspace:
Embed all the things! In Thirty-Second AAAI Conference on Artificial Intelligence.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and Yoshiyasu Takefuji. 2016. Joint learning of the embedding
of words and entities for named entity disambiguation. In Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning, pages 250–259, Berlin, Germany, August. Association for Compu-
tational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification.
In Advances in neural information processing systems, pages 649–657.

Jinman Zhao, Sidharth Mudgal, and Yingyu Liang. 2018. Generalizing word embeddings using bag of subwords.
arXiv preprint arXiv:1809.04259.

	Introduction
	Related Work
	Methodology
	Mimick and GWR
	Iterative Mimicking

	Word Similarity
	Experimental Setup
	Results

	Job Title Normalization
	Experimental Setup
	Evaluation Metrics
	Results

	Conclusion

