Tiny Word Embeddings Using Globally Informed Reconstruction

Sora Ohashi’, Mao Isogawa', Tomoyuki Kajiwara‘, Yuki Arase’

T Graduate School of Information Science and Technology, Osaka University
t Institute for Datability Science, Osaka University
T{ohashi.sora, isogawa.mao, arase}@ist.osaka-u.ac.jp
tkajiwara@ids.osaka-u.ac.jp

Abstract

We reduce the model size of pre-trained word embeddings by a factor of 200 while preserving
its quality. Previous studies in this direction created a smaller word embedding model by recon-
structing pre-trained word representations from those of subwords, which allows to store only
a smaller number of subword embeddings in the memory. However, previous studies that train
the reconstruction models using only target words cannot reduce the model size extremely while
preserving its quality. Inspired by the observation of words with similar meanings having simi-
lar embeddings, our reconstruction training learns the global relationships among words, which
can be employed in various models for word embedding reconstruction. Experimental results on
word similarity benchmarks show that the proposed method improves the performance of the all
subword-based reconstruction models.

1 Introduction

Word embeddings form the basis for many natural language processing (NLP) applications, e.g., text
classification (Shen et al., 2018) and machine translation (Qi et al., 2018). However, widely used pre-
trained word embeddings such as fastText (Bojanowski et al., 2017) are considerably large, thereby
making it difficult to develop NLP applications in limited memory environments such as mobile devices.
For example, fastText! (crawl-300d-2M-subword) requires approximately 2 GB of memory.

In previous studies, the model size has been reduced by reconstructing word embeddings from charac-
ters (Pinter et al., 2017; Kim et al., 2018) and character N-grams (Zhao et al., 2018; Sasaki et al., 2019).
As the number of characters or character N-grams, is significantly smaller than that of words, reconstruct-
ing word embeddings with accuracy from these subwords can reduce the model size while preserving
the performance of applications.” As shown in Figure 1, existing methods reconstruct word embeddings
from subword embeddings and mimic the corresponding pre-trained word embeddings. These methods
rely only on local information of subwords and pre-trained word embeddings.

To improve the performance of word embedding reconstruction, we propose a global loss function that
uses words other than the target word as clues. Inspired by the observation of words with similar mean-
ings having similar embeddings in pre-trained word embeddings, our reconstruction training learns the
similarity among word embeddings. Our method can be easily applied to any method for reconstructing
a word embedding from subwords, regardless of the unit of the subword or the network structure.

Experimental results on word similarity tasks (Faruqui and Dyer, 2014) show that our global loss
function improves the performance of word embedding reconstruction in all previous methods. When
the proposed method was applied to the method based on a self-attention mechanism for reconstructing
word embeddings from character N-grams (Sasaki et al., 2019), the model size was reduced to 74 MB
(1/30) while preserving 97% of the quality of the original word embeddings. Furthermore, even if the
model size was reduced to 12 MB (1/200), 86% of the quality was preserved.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

Uhttps://fasttext.cc/docs/en/english-vectors.html
2In this study, we refer to characters and character N-grams as subwords.

1199

Proceedings of the 28th International Conference on Computational Linguistics, pages 1199-1203
Barcelona, Spain (Online), December 8-13, 2020

Pre-trained
Word Embedding

Reconstructed . " . "
Word Embedding Pre-trained Embedding Pre-trained Embedding

for Other Words for Target Word

cos P [I
Lgiobal | Liocal
s 0000

Reconstructed Embedding
for Target Word

Reconstruction
Network

Subword
Embeddings

Figure 1: Overview of word embedding reconstruction Figure 2: Overview of our global similarity loss

2 Word Embeddings Reconstruction Based on Global Similarity Loss

We denote the pre-trained embeddings of word w € W and the randomly initialized embeddings of
subword s € S as e, and vg, respectively. As in previous studies (Pinter et al., 2017; Kim et al., 2018;
Zhao et al., 2018; Sasaki et al., 2019), we reconstruct a word embedding e,, of word w as é,,, from a set
of subwords ¢(w) by minimizing the following loss function.

1
Ligcal = @Hf(gs(w)) - €w||%, (1

where f(-) is the function for reconstructing a word embedding, i.e., a reconstruction network shown
in Figure 1, and d,, is the dimension of pre-trained word embeddings. As reconstruction networks, a
recurrent neural network (RNN) (Pinter et al., 2017), convolutional neural network (CNN) (Kim et al.,
2018), and self-attention mechanism (Sasaki et al., 2019) were used in the previous studies.

To improve word embedding reconstruction, we employ a loss function based on global information
in addition to the loss function of Equation (1), which depends only on the local information of the target
word, w. As shown in Figure 2, we consider the relationship between the reconstructed and pre-trained
embeddings for the target word and the relationship between the reconstructed embedding of the target
word and the pre-trained embedding of other words. We define the global loss function using cosine
similarity®> among word embeddings as follows:

1 A 2
Lgiobal = - g;v (cos(éy, eq) — cos(ey, eq))”. ()
In this study, we sample n words from W in each training batch. To balance the similarity distribution
among the selected n words, we first select the top-n/2 words that have a high cosine similarity to the
target word, and then randomly select the rest from the training batch. Finally, we minimize the loss
function that combines Equations (1) and (2), as given below:

L= Llocal + Lglobal' 3)
3 Experiment

We evaluate the effectiveness of the globally informed reconstruction of word embeddings using word
similarity tasks* (Faruqui and Dyer, 2014). Our experiment employs the following five datasets:
Rubenstein-Goodenough dataset (RG, 65 word-pairs) (Rubenstein and Goodenough, 1965), Miller-
Charles dataset (MC, 30 word-pairs) (Miller and Chales, 1991), WordSim-353 (WS, 353 word-
pairs) (Finkelstein et al., 2002), MEN test collection (MEN, 3, 000 word-pairs) (Bruni et al., 2012), and
Stanford Rare Word Similarity dataset (RW, 2,034 word-pairs) (Luong et al., 2013). The performance
of each method is evaluated using micro averaged Spearman’s rank correlation coefficient between the
cosine similarities of the word embeddings and gold-standard similarities.

3We also tried the mean squared error, but the loss function based on the cosine similarity achieved higher performance.
*https://github.com/mfaruqui/eval-word-vectors/

1200

Character Small Medium Large

p Size p Size p Size p Size
Character RNN 0.534 14 Bag of N-gram 0.191 12 0.597 74 0.697 993
_+GlobalLoss 0.540 _~ ~ +GlobalLoss 0.210 | 0.605_ [0.698
Character CNN 0.594 95 N-gram SAM 0.494 12 0.684 74 0.692 993
+ Global Loss 0.602 + Global Loss 0.618 0.699 0.708

Table 1: Model size (MB) and micro averaged Spearman’s p. Original fastText: p = 0.719 (2, 230 MB)

3.1 Implementation Details

We employed the 300-dimensional pre-trained fastText> (Bojanowski et al., 2017) as the original word
embeddings. Each reconstruction network was trained using 100k words based on the descending or-
der of frequency. Words containing hyphens and numbers were excluded, and we only targeted words
consisting of 26 lowercase Latin alphabets.

We sampled n = 10 words for the global loss calculation. To minimize the loss, we adopted
Adam (Kingma and Ba, 2015) (o = 0.001, 31 = 0.9, B2 = 0.999, € = 10~%) with a batch size of
50. The training was stopped after 5 epochs without improvement in the training loss.

3.2 Baseline Methods

We applied the global loss function to the following four methods that reconstruct pre-trained word
embeddings from subwords.

Character RNN (Pinter et al., 2017): This method uses characters as subwords. It employs a bidirec-
tional long short-term memory of 512 hidden dimensions based on a 32-dimensional embedding layer.

Character CNN (Kim et al., 2018): This method uses characters as subwords. It employs a CNN
with a filter width r of [1, 2, ..., 7], stride width of 3, and number of max(200, 50r) filters.

Bag of N-gram (Zhao et al., 2018): This method uses character N-grams as subwords. It outputs the
element-wise average of a 300-dimensional embedding of each subword.

N-gram SAM (Sasaki et al., 2019): This method uses character N-grams as subwords. It employs a
self-attention mechanism that computes weighted averages of subword embeddings.

For the methods based on character N-grams, we experimented with the following three settings de-
pending on the length of the N-gram.’

e Small: Only N =3
e Medium: Both N =3and N =4
e Large: From N =3to N =5

3.3 Experimental Results

According to Table 1, the proposed method improves the performance of word similarity estimation for
all the settings. Especially, in the case of “Small” setting in the N-gram SAM model, the proposed
method improves the performance by 25%. These experimental results indicate the effectiveness of the
proposed method that considers global relationships among words. For the “Medium” setting of the N-
gram SAM model, the model size can be reduced to 74MB, which is approximately 1/30 (3.3%), while
preserving 97% of the performance of the original fastText. Further, for the “Small” setting, the model
size can be reduced by a factor of 200 to 12MB, which is approximately 0.5% of that of the original
model. Nonetheless, the model preserves 86% of the performance of the original model.

SFollowing Zhao et al. (2018) and Sasaki et al. (2019), the length of the character N-gram is measured with special characters
added to the beginning and end of the word.

1201

n=20 10 20 50 Baseline + Global Loss

Character RNN 0.534 0.540 0.562 0.553 Character RNN 0.619 0.679
Character CNN 0.594 0.602 0.613 0.615 Character CNN 0.806 0.817
Bag of N-gram 0.191 0.210 0.212 0.213 Bag of N-gram 0.701 0.709
N-gram SAM 0.494 0.618 0.619 0.618 N-gram SAM 0.740 0.847
Table 2: Spearman’s p for each sample size n Table 3: Precision@5 of the nearest neighbors
fastText glasgow edinburgh birmingham nyc uk
N-gram SAM (n =0) lon lond canton meron anton
N-gram SAM (n = 10) glasgow chicago edinburgh atlanta brooklyn
fastText ~ influenza pneumonia bronchitis illness ~ measles ..
N-gram SAM (n = 0) litis lam tis sine flue

N-gram SAM (n = 10) influenza pneumonia pneumonias smallpox diphtheria

Table 4: Nearest Neighbors of the word “london” (upper section) and “flu” (lower section)

3.4 Effect of Sample Size

In Table 1, we sampled n = 10 words for the global loss calculation. In this section, we investigate the
effect of the number of word samples on the performance of word similarity estimation. Table 2 shows
the performance when the sample size was changed to n = 10, 20, and 50. Notably, n = 0 is a baseline
model that does not perform global loss calculation.

According to Table 2, a large sample size for global loss calculation is not always effective. Overall,
the n = 20 model performs better than the n = 10 model, but there is no large improvement beyond
n = 20. Nevertheless, the proposed method consistently performs better than the n = 0 baseline model
regardless of the sample size.

3.5 Analysis of Nearest Neighbors

To analyze the reconstructed embeddings, we investigated words having similar meaning using 100k
high-frequency words in fastText. Table 3 shows the precision@5 for similar word searches. As the
correct similar words, we collected the top 5 words with cosine similarity in the original fastText. In this
analysis, the sample size of the global loss calculation is n = 10, and the methods based on character
N-grams use the “Small” settings.

Table 3 shows that the proposed method always improves the performance of searching for similar
words. Table 4 lists similar-word searches for the word “london” and “flu.” According to the upper sec-
tion of the table, the original fastText lined up the big cities of the United Kingdom like “london” such as
“glasgow” and “birmingham.” However, in the N-gram SAM (n = 0) in the “Small” setting, words such
as “lon” and “lond” that are similar on the surface but are significantly different in meaning are collected
at the top. In the N-gram SAM (n = 10), by considering the relationship among words, semantically
similar words such as “glasgow” and “edinburgh” succeeded in acquiring embeddings similar to “lon-
don.” The lower section of the table is an example of “flu.” The baseline model failed in reconstruction
and lists irrelevant words. However, the proposed method successfully finds words that are semantically
similar to “flu,” such as “influenza” and “pneumonia.”

4 Conclusion

We proposed a loss function that considers global relationships among words for the reconstruction
of pre-trained word embeddings from subword embeddings. Experimental results on word similarity
benchmarks show that the proposed method improves the performance of all the reconstruction networks.
By applying the proposed method, we can compress 2GB of fastText to 12MB while preserving the
quality of the original word embeddings. This method will help develop NLP applications in limited
memory environments, e.g., mobile devices.

1202

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Association for Computational Linguistics, 5:135-146.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. 2012. Distributional Semantics in Technicolor.
In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 136—145.

Manaal Faruqui and Chris Dyer. 2014. Community Evaluation and Exchange of Word Vectors at wordvectors.org.
In Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstra-
tions, pages 19-24.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan Rup-
pin. 2002. Placing Search in Context: The Concept Revisited. ACM Transactions on Information Systems,
20(1):116-131.

Yeachan Kim, Kang-Min Kim, Ji-Min Lee, and SangKeun Lee. 2018. Learning to Generate Word Representations
using Subword Information. In Proceedings of the 27th International Conference on Computational Linguistics,
pages 2551-2561.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International
Conference on Learning Representations.

Thang Luong, Richard Socher, and Christopher Manning. 2013. Better Word Representations with Recursive
Neural Networks for Morphology. In Proceedings of the Seventeenth Conference on Computational Natural
Language Learning, pages 104—113.

George A. Miller and Walter G. Chales. 1991. Contextual Correlates of Semantic Similarity. Language and
Cognitive Processes, 6(1):1-28.

Yuval Pinter, Robert Guthrie, and Jacob Eisenstein. 2017. Mimicking Word Embeddings using Subword RNNs.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 102—112.

Ye Qi, Devendra Sachan, Matthieu Felix, Sarguna Padmanabhan, and Graham Neubig. 2018. When and Why
Are Pre-Trained Word Embeddings Useful for Neural Machine Translation? In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 529-535.

Herbert Rubenstein and John B. Goodenough. 1965. Contextual Correlates of Synonymy. Communications of the
ACM, 8(10):627-633.

Shota Sasaki, Jun Suzuki, and Kentaro Inui. 2019. Subword-based Compact Reconstruction of Word Embeddings.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 3498-3508.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqgiang Min, Qinliang Su, Yizhe Zhang, Chunyuan Li,
Ricardo Henao, and Lawrence Carin. 2018. Baseline Needs More Love: On Simple Word-Embedding-Based
Models and Associated Pooling Mechanisms. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, pages 440—450.

Jinman Zhao, Sidharth Mudgal, and Yingyu Liang. 2018. Generalizing Word Embeddings using Bag of Subwords.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 601-606.

1203

