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Abstract

We explore end-to-end trained differentiable models that integrate natural logic with neural net-
works, aiming to keep the backbone of natural language reasoning based on the natural logic
formalism while introducing subsymbolic vector representations and neural components. The
proposed model adapts module networks to model natural logic operations, which is enhanced
with a memory component to model contextual information. Experiments show that the proposed
framework can effectively model monotonicity-based reasoning, compared to the baseline neural
network models without built-in inductive bias for monotonicity-based reasoning. Our proposed
model shows to be robust when transferred from upward to downward inference. We perform fur-
ther analyses on the performance of the proposed model on aggregation, showing the effectiveness
of the proposed subcomponents on helping achieve better intermediate aggregation performance.

1 Introduction

A recent research trend has attempted to further advance the long-standing problem of bringing together
the complementary strengths of neural networks and symbolic models, e.g., the research performed in
(Garcez et al., 2015; Yang et al., 2017; Rocktäschel and Riedel, 2017; Evans and Grefenstette, 2018;
Weber et al., 2019; De Raedt et al., 2019; Mao et al., 2019), among others. It is known that neural models
can approximate complex functions and are robust to noise and ambiguity, while symbolic models often
render superior explainability and interpretability but are brittle and prone to fail in the presence of noise
and uncertainty.

The majority of research efforts are based on some abstract logical forms such as the first-order
logic (FOL) or its fragments. For natural language, obtaining such a representation is known to face
many thorny challenges. Natural logic instead aims to sidestep some of the challenges by performing
inferences over surface forms of text based on monotonicity or projectivity (Van Benthem, 1986; Valencia,
1991; MacCartney and Manning, 2009; Icard and Moss, 2014), and has been applied to tasks such as
natural language inference (MacCartney and Manning, 2009; Angeli and Manning, 2014) and question
answering (Angeli et al., 2016).

In this work we explore differentiable natural logic models that integrate natural logic with neural
networks, with the aim to keep the backbone of inference based on the natural logic formalism, while
introducing subsymbolic vector representations and neural components into the framework. Combining the
advantages of neural networks with natural logic needs to take several basic problems into consideration.
Two problems flow directly from this objective: 1) How (and where) to leverage the strength of neural
networks in the natural logic formalism, and; 2) How to alleviate the issue of a lack of intermediate
supervision for training sub-components, which may lead to the spurious problem (Guu et al., 2017; Min
et al., 2019) in the end-to-end training.

We explore a framework in which module networks (Andreas et al., 2016; Gupta et al., 2020) are
leveraged to model the natural logic operations, which is enhanced with a memory module component to
∗Equal contribution.
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Relation Relation Name Example Set Theoretic Definition
x ≡ y equivalence mom ≡ mother x = y
x @ y forward entailment cat @ animal x ⊂ y
x A y reverse entailment animal A cat x ⊃ y
x ∧ y negation human ∧ nonhuman x ∩ y = ∅ ∧ x ∪ y = U
x | y alternation cat | dog x ∩ y = ∅ ∧ x ∪ y 6= U
x ` y cover animal ` nonhuman x ∩ y 6= ∅ ∧ x ∪ y = U
x # y independence happy # student all other cases

Table 1: Seven natural logic relations proposed by MacCartney and Manning (2009).

Input Relation rQuantifier Projection ≡ @ A ∧ | ` #

all ρarg1(r) ≡ A @ | # | #
ρarg2(r) ≡ @ A | | # #

some ρarg1(r) ≡ @ A ` # ` #
ρarg2(r) ≡ @ A ` # ` #

no ρarg1(r) ≡ A @ | # | #
ρarg2(r) ≡ A @ | # | #

Table 2: The projection function ρ can project an
input relation r into a different relation depending
on the context. Here we show the projection func-
tion for each argument position for quantifier all,
some and no.

1 ≡ @ A ∧ | ` #

≡ ≡ @ A ∧ | ` #
@ @ @ # | | # #
A A # A ` # ` #
∧ ∧ ` | ≡ A @ #
| | # | @ # @ #
` ` ` # A A # #
# # # # # # # #

Table 3: Relation aggregation table (Icard, 2012).
Relations listed in the first column are aggregated
with those listed in the first row, yielding the rela-
tions in the corresponding entries in the table.

capture contextual information. At the lexical and local relation learning layers, we constrain the network
to predict the seven natural logic relations. The entire model is differentiable and end-to-end trained.

We evaluate and analyze the proposed model on the monotonicity subset of Semantic Frag-
ments (Richardson et al., 2020), HELP (Yanaka et al., 2019b) and MED (Yanaka et al., 2019a). We also
extend MED to generate a dataset to help evaluate 2-hop inference. The model can effectively learn
natural logic operations in the end-to-end training paradigm.1

2 Related Work

2.1 Neural Symbolic Models

A growing number of research efforts have recently revisited the long-standing problem of bringing
together the complementary advantages of neural networks and symbolic methods. There are at least
two approaches that have received intensive attention. One uses symbolic constraints as regularizers to
equip neural models with the corresponding inductive bias (Demeester et al., 2016; Diligenti et al., 2017;
Donadello et al., 2017; Xu et al., 2018; Li and Srikumar, 2019). Another approach develops differentiable
end-to-end trained frameworks based on symbolic models. For example, the work in (Rocktäschel and
Riedel, 2017; Weber et al., 2019; Minervini et al., 2020) proposes a differentiable backward-chaining
algorithm, and Dong et al. (2019) adopt probabilistic tensor representations for logic predicates and
mimic the forward-chaining proof. Evans and Grefenstette (2018) treat inductive logic programming as a
satisfiability problem and Manhaeve et al. (2018) combine high-level symbolic oriented reasoning with
low-level neural perception models. The second approach is more interesting to us for exploring powerful
reasoning models with built-in explainability. Unlike the existing work based on abstract logical forms,
this paper explores the integration of neural networks with natural logic.

1Our code is available at https://github.com/feng-yufei/Neural-Natural-Logic

https://github.com/feng-yufei/Neural-Natural-Logic
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2.2 Natural Logic
Natural logic (Lakoff, 1970; van Benthem, 1988; Valencia, 1991; Van Benthem, 1995; Nairn et al., 2006;
MacCartney, 2009; Icard, 2012; Angeli et al., 2016) has a long history that is traceable to the syllogisms
of Aristotle. It aims to model a subset of logical inferences by operating directly on the surface form
and structure of language, based on monotonicity or projectivity (Van Benthem, 1986; Valencia, 1991;
MacCartney and Manning, 2009; Icard and Moss, 2014), rather than deduction on the abstract forms
such as the first-order logic (FOL) or its fragments—it is well known that deriving logic forms for natural
language is a very challenging task.

In natural language processing, the framework proposed in (MacCartney and Manning, 2008; MacCart-
ney and Manning, 2009) extends monotonicity-based models (van Benthem, 1988; Valencia, 1991) to
incorporate semantic exclusion and unifies them to consider implicatives (Nairn et al., 2006), which is a
state-of-the-art natural logic formalism that has been used for multiple NLP tasks (MacCartney, 2009;
Angeli and Manning, 2014). In this work we explore neural natural logic based on this formalism. We
will briefly review the background in Section 3.

2.3 Natural Language Inference
Previous work often studies natural logic in natural language inference (NLI). NLI (Dagan et al., 2005;
Iftene and Balahur-Dobrescu, 2007; MacCartney and Manning, 2008; MacCartney and Manning, 2009;
MacCartney, 2009; Angeli and Manning, 2014; Bowman et al., 2015), also known as recognizing
textual entailment (RTE), aims to model the logical relationships between two sentences, e.g., as a binary
(entailment vs. non-entailment) or three-way classification (entailment, contradiction, and neutral).
Recently deep learning algorithms have been proposed (Bowman et al., 2015; Chen et al., 2017a; Chen et
al., 2017b; Chen et al., 2017c; Chen et al., 2018; Peters et al., 2018; Yoon et al., 2018; Kiela et al., 2018;
Talman et al., 2018; Yang et al., 2019; Devlin et al., 2019). In this paper we will describe and evaluate our
neural natural logic models on NLI. The proposed model may also be further extended to other tasks in
which natural logic has been applied, e.g., question answering (Angeli et al., 2016).

3 Background

This section briefly reviews the natural logic formalism (MacCartney and Manning, 2009) that our work
is based on. For more details, we refer readers to (MacCartney and Manning, 2008; MacCartney and
Manning, 2009; MacCartney, 2009; Angeli et al., 2016).

Monotonicity is a pervasive feature of natural language and an essential concept in natural
logic (Van Benthem, 1986; Valencia, 1991; MacCartney and Manning, 2009; Icard and Moss, 2014).
Similar to the monotone functions in calculus, in natural language upward monotone keeps the entailment
relation when the argument “increases” (e.g., some cats are playing @ some animals are playing, where
cats is replaced by its hypernym animals). Downward monotone keeps the entailment relation when the
argument “decreases” (e.g., all animals are playing @ all cats are playing, where animals is replaced by
its hyponym cats).

To extend the monotonicity to consider exclusion, MacCartney and Manning (2009) investigate all
sixteen equivalence classes of set relations and remove nine degenerate, semantically vacuous relations,
thereby defining a seven-relation set B = {≡,@,A,∧, | ,`,# } for natural logic, as shown in Table 1.

From a high-level perspective, the natural logic proof system proposed by MacCartney and Manning
(2009) consists of the following steps. First, the alignment between two text spans (often two sentences)
is obtained and then lexical relation recognition is performed for aligned pairs of words. Consider a
simplified example: a premise All animals outside are eating and a corresponding hypothesis All cats
outside are playing, as shown in Figure 1. Each pair of aligned words is assigned one of the relations in
Table 1, e.g., animals A cats and eating | playing.

Projection ρ : B→ B is then performed according to the projectivity in specific context. The projection
operation has been implemented in the Stanford natlog parser2. For a given sentence, natlog can output
the projections at each word position. For example, Table 2 summarizes the projections in the context of

2https://stanfordnlp.github.io/CoreNLP/natlog.html
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Figure 1: A high-level view of the proposed neural natural logic model.

the quantifier all, some, and no. Specifically, consider the example we discussed in the last paragraph:
as animals and cats take place in the first argument of the quantifier all, according to the projectivity in
Table 2, the reverse entailment relation (animals A cats) will be projected to forward entailment (animals
@ cats) in this specific context. As another example, since eating and playing take place in the second
argument of all, the alternation relation (eating | playing) is projected to alternation (eating | playing).

Built on this, relation aggregation is performed to aggregate multiple projected local relations, according
to Table 3, to determine the global relation between the sentence pair. In our example, two projected
relations, forward entailment (@) and alternation ( | ), are aggregated to yield alternation ( | ); i.e., we
obtain All animals outside are eating | All cats outside are playing. The seven natural logic relationships
at the sentence level can be used to determine NLI relations. For example, if NLI is defined as a three-way
classification problem (entailment, contradiction, and neutral). The ‘≡ ’ or ‘@ ’ relation will be mapped
to entailment, the ‘∧ ’ or ‘ | ’ relation will be mapped to contradiction, and ‘A ’, ‘` ’, or ‘ # ’ to neutral.

4 Neural Natural Logic Model

We present a differentiable framework in which natural logic is integrated with neural networks. The
overall architecture of the model is shown in Figure 1. At the core of the framework are natural logic
operations modeled with memory-enhanced module networks, which are trained end-to-end to optimize
the following objective:

p(y|X) =
∑
z∈Z

p(y|z)p(z|X) (1)

where y is the output, which in natural language inference is the label of the relation between a premise
and hypothesis sentence (e.g., entailment, contradiction, and neutral), and which can be different labels in
other tasks. The input X = 〈Xp,Xh〉 comprises a premise sentence Xp and a hypothesis sentence Xh.
We use z = {z1, z2, ..., zn} to denote a sequence of latent variables corresponding to the output of natural
logic aggregation at each time step, where n is the number of hidden variables. The term Z denotes the
space of all possible trajectories and z ∈ Z . Specifically, for the example in Figure 1, if we perform the
aggregation from left to right, z1 = ‘≡ ’, z2 = z3 = z4 = ‘@ ’, and z5 = ‘ | ’ is a z trajectory that proves
the contradiction label. Note that zi ∈ B where B is the set of seven relations listed in Table 1.

4.1 Encoding and Alignment

Recent research has shown the effectiveness of distributed representations for encoding lexicons and
their semantic relations. We use word embedding and neural networks to learn lexical representations
to capture natural logic related semantics. Let Xp = {xp

1,x
p
2, ...,x

p
m } be a premise sentence and
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Xh = {xh
1 ,x

h
2 , ...,x

h
n } the corresponding hypothesis sentence, where m and n are the number of word

tokens in the premise and hypothesis, repspectively. Each sentence is fed into a multi-layer BiLSTM, for
which ai = BiLSTM(Xp, i) denotes the i th hidden vector at the top layer of the BiLSTM, encoding the
i th token and its context in the premise. Similarly, we use bj = BiLSTM(Xh, j) to denote the hidden
vector at the j th position at the top layer of the BiLSTM that encodes the hypothesis. In this paper, we
focus on understanding neural natural logic itself, without being further confounded by different ways of
exploring knowledge external to the training data, e.g., via pretraining.

Many models can be used to capture cross-sentence attention. Focusing on the training data, the
approach proposed in (Chen et al., 2017b) has been widely used in the NLI literature as a baseline.
We follow the work to compute cross-sentence attention weight eij = aT

i bj for each pair 〈ai, bj〉.
Specifically, for each bj in the hypothesis, the corresponding content in a premise is weighted summed
as b̃j =

∑m
i=1

exp(eij)∑m
k=1 exp(ekj)

ai, which will be used together with bj to learn local lexical-level inference
relations (refer to (Chen et al., 2017b) for more details).

In addition, we compute a hard alignment indicator φj , and φj = 1 if and only if xp
i∗ = xh

j , where
i∗ = arg maxi∈{1,...,m} e

′
ij .

3 That is, for each word token xh
j in the hypothesis, we record the token xp

i∗

in the premise that has the maximum attention value e′ij . If the word token xp
i∗ and xh

j are the same word
type, we let φj = 1, which will be used to help reduce the search space in aggregation.

4.2 Learning Local Natural Logic Relation

Given a sequence of alignment { 〈b̃1, b1〉, ..., 〈b̃j , bj〉, ..., 〈b̃n, bn〉 }, we use a bi-linear model to compute
each pair’s probabilistic distribution pj over the natural logic relations B:

pj = softmax(fs(b̃j , bj)) = softmax(b̃
T
jMTbj) (2)

In the scoring function fs, each type of relation k ∈ B has its own weight matrixMk ∈ Rd×d, which
is a slice of the tensorM ∈ Rd×d×|B|, where d is the dimensionality of bj or b̃j . We use softmax to
normalize the values to be a distribution over B. Among several alternatives we used, the bi-linear model
achieves the best performance on the development dataset, and we use it in our final framework.

4.2.1 Local Relation Constraints
Same as in many other weakly supervised setups, we do not have direct supervision signals here to learn
logic relationships at the lexical level; instead, the supervision signals are backpropagated from the overall
sentence-level NLI errors. To reduce the search space and alleviate the spurious problem (Guu et al.,
2017) in which incorrect local inference relationships and aggregation produce correct sentence-level NLI
labels,4 we adopt several strategies as follows.

Symmetric Inference Parameter Sharing: We make the forward entailment (@) and reverse entail-
ment (A) relations share the same parameters. Specifically, to compute pAj , we reverse the order of 〈b̃j , bj〉
to reuseMT

@ in the following scoring function, whereMT
@ is a matrix inMT that corresponds to the

forward entailment (@) relation.

fAs (b̃j , bj) = f@s (bj , b̃j) = bTjMT
@b̃j (3)

Equivalence Constraint: A token pair will be assigned the equivalence relation (≡), if φj learned
above in the alignment stage takes the value of 1:

if φj = 1, we let p≡j = 1 (4)
3Here e′ij is the cross-attention weight obtained from the ESIM model (Chen et al., 2017b) trained on SNLI.
4In an extreme case, if a model predicts the first aligned word pair between a premise and hypothesis to be a relation that is

consistent with the ground-truth NLI label at the sentence level, the model can choose to ignore all other pairs that follow, and
make the correct sentence-level prediction by using the first pair prediction only, even if the aggregation sequence z is incorrect.
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Figure 2: A memory-enhanced module network for natural logic aggregation.

Collapse Constraints: We suppress the relations negation (∧) and cover (`):

p∧j = 0, p`j = 0 (5)

Inspired by Angeli and Manning (2014), we suppress the negation relation (∧) because its behavior
is almost same as that of alternation ( | ) in natural logic aggregation, as shown in Table 3, avoiding the
co-linearity problem when training on datasets without double negation samples. We also suppress the
cover relation (`) because it is extremely rare in current natural language inference datasets.

4.2.2 Projected Distribution

With the predicted seven-dimensional probability vector pj being ready, our model uses a projection
operator ρ to re-organize the distribution according to the projectivity of the corresponding input hy-
pothesis word at position j. Unlike the discrete “hard” projection used in the conventional natural logic,
e.g., projecting the first argument of all from reverse entailment to forward entailment, we apply “soft”
projection over relation probability distribution p̄j . Specifically, based on the projection Table 2, we
convert the original probability distribution pj to the projected distribution p̄j :

p̄k
′

j =
∑
k

pkj1(ρ(k) = k′), (6)

where 1(·) is the indicator function, k is the original relation, and k′ is the projected relation. Consider
the pair of sentences in Figure 1 and suppose the pair eating vs. playing have a probability of 0.8 to be
alternation ( | ) and 0.1 to be negation (∧). According to the projectivity of the second argument of the
quantifier all in Table 2, both relations are projected to alternation ( | ): ρplaying( | ) = ρplaying(∧) = |. So
after projection, p̄|5 = p

|
5 + p∧5 = 0.9, where the subscript 5 is the index of the word token playing in the

hypothesis.

4.3 Aggregation

We propose to leverage the module networks (Andreas et al., 2016; Gupta et al., 2020) to perform neural
natural logic aggregation, which is enhanced by a memory network component to leverage the powerful
ability in modeling context. Figure 2 shows the proposed neural natural logic aggregation network. The
right part of the figure is the aggregation module network and the left is the memory network component.

Specifically, at each time step j, our aggregation algorithm computes a distribution p(zj |X) =
softmax(sj), where sj = {skj } is a set of logits. skj is the one corresponding to p(zj = k|X) for relation
k ∈ B. Our model computes skj with Equation 7.
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skj =
∑
u∈B

∑
v∈B

Gu1v(suj−1, p̄
v
j ,oj)1(u 1 v = k)

=
∑
u∈B

∑
v∈B

[suj−1 · p̄vj · gu1v(oj)]1(u 1 v = k)

=
∑
u∈B

suj−1
∑
v∈B

p̄vj · gu1v(oj)1(u 1 v = k), (7)

At time step 1, s1 is initialized with p̄1. At any other time step t > 1, we invoke modules Gu1v(·) to
derive sj . Specifically, in our network each relation aggregation in Table 3, i.e., u 1 v (u, v ∈ B), has its
own module Gu1v(·). Now, given the previous sj−1 and the current projected local relation distribution
p̄j , sj can be computed by marginalizing the Cartesian product sj−1 · p̄T

j according to aggregation Table 3.
More specifically, we first compute the Cartesian product sj−1 · p̄T

j , which is weighted by the memory
gu1v(oj). Then for all modules with output being the same relation k according to Table 3, the modules’
output are summed up, where 1(·) is the indicator function.

Below we discuss how the memory network response oj is calculated. In this paper, we propose
a memory network component (Weston et al., 2014; Sukhbaatar et al., 2015) to enhance our module
aggregation network, aiming to better model contextual information. The details are shown in the left part
of Figure 2. Specifically, at time step j, we store memory vectors {m1, ...,mj } and the corresponding
output vectors { c1, ..., cj } in the memory. The query vector qj scans the memory and computes the
match between itself and memory vectors by taking the inner product followed by a softmax:

qj = fq([b̃j , bj ]) (8)

mj = fm([b̃j , bj ]) (9)

cj = fc([b̃j , bj ]) (10)

αj,t = softmax(qTj mt), t = 1, ..., j (11)

The query, memory, and output vectors are functions of aligned token representation [b̃j , bj ], typically
modeled by two feed-forward layers. The response vector oj is computed by the weighted sum over
stored outputs vectors cj and is used in the module network discussed above:

oj =

j∑
t=1

αj,tct (12)

where oj encodes all historical transitions and their context and is then incorporated into Equation 7.
In addition to the sequential aggregation we discuss above in which we perform aggregation left-to-right

over a premise and hypothesis pair, we also perform the aggregation on the binarized constituency parses,
where aggregation is performed on a tree structure. For node j in the constituency tree, we define a
random variable zj which represents the reasoning states upon seeing the node j and sub-tree, and we use
sj to denote the distribution of zj . We initialize sj with projected relation distribution p̄j if node j is the
leaf node. Iteratively, the distribution sj for each non-leaf node is computed by aggregating its left child
(lc) and right child (rc):

skj =
∑
u∈B

∑
v∈B

Gu1v(sulc, s
v
rc,oj)1(u 1 v = k) (13)

where oj is the memory network response vector which is computed on the information of all nodes that
have already been visited.
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Objective Function The final prediction of sentence relation is computed with the distribution of
hidden state sn at the last time step (or the root node if reasoning is performed over the constituency
tree). We follow the work of Angeli and Manning (2014) and group relation equivalence (≡) and
forward entailment (@) to be entailment; negation (∧) and alternation ( | ) to be contradiction, and;
reverse entailment (A), cover (`) and independent (#) to be neutral. We apply a variant of hard-EM
training method (Min et al., 2019), which selects the most likely relation: pentailment = max(s≡n , s

@
n ),

pcontradiction = max(s∧n , s
|
n), and pneutral = max(sAn , s

`
n , s

#
n ). After applying softmax, we obtain the

prediction probability, which can be used to compute the cross entropy loss.

5 Experiments

5.1 Setup

Data: We use three datasets that are designed for studying monotonicity based reasoning, i.e.,
HELP (Yanaka et al., 2019b), MED (Yanaka et al., 2019a), and the monotonicity subset of Seman-
tic Fragments (Richardson et al., 2020). The HELP dataset has 35,891 inference pairs, which are
automatically generated by conducting lexical substitution or deletion on one sentence to obtain the other,
given natural logic polarity information of each word token and syntactic structure of sentences. The
MED dataset contains 5,382 human-generated inference pairs by either asking crowdworkers to perform
the generation or manually collecting the pairs from linguistics publications. The monotonicity subset of
Semantic Fragments is automatically generated with a controlled set of rules and lexicons, which contains
around 2,000 pairs. Since the pairs with the contradiction relation in the Semantic Fragments dataset are
obtained by changing quantifiers, which are out of the scope of the natural logic formalism that we use,
we do not include this subset in our experiments.

In addition, we create a new 2-hop dataset. The above datasets lack ground-truth labels for evaluating
aggregation at each time step, and most of them are 1-hop aggregation in which a premise and hypothesis
differs only by one span of text. In our 2-hop dataset, the premise and hypothesis differs by two edits of
word/phrase insertion, deletion, or substitution. Our dataset provides ground-truth aggregation output
{ z1, ..., zj , ... zn } to help assess models’ performance on natural logic operations and understand their
decision paths. The development of this 2-hop dataset includes three steps: (a) identify the editing type for
each example in MED and determine the logic relations; (b) add one more hop of relation, and; (c) record
the ground-truth aggregation labels at each time step and the final NLI labels following MacCartney’s
natural logic formalism. We manually checked a subset of the data and found more than 96% of examples
are correct. Details of the data development are included in Appendix A.

Implementation Details: Following Chen et al. (2017b), hidden vectors in our model are 300 dimen-
sional. We use pretrained 300-dimensional 840B GloVe vectors (Pennington et al., 2014) to initialize our
word embeddings. All word embeddings are trainable after being initialized. We apply a dropout rate of
p = 0.5. Adam (Kingma and Ba, 2015) is used as our optimizer, and the first momentum is set to be 0.9
and the second 0.999. The batch size is set to be 32 and the initial learning rate is 0.0004. We train ESIM
and our neural natural logic models for 32 epochs and use the development set to select models for testing.
We use default hyper-parameters specified in (Devlin et al., 2019) and train the BERT-base model for 3
epochs.

5.2 Results

Inference Performance: Table 4 shows the test accuracy of different models on the four datasets that
are designed specifically for evaluating monotonicity-based inference. Following Richardson et al. (2020)
and Yanaka et al. (2019a), we train the models on SNLI (Bowman et al., 2015) and test on these different
test sets. The proposed models, in general, achieve better performances on these four datasets than ESIM
(Chen et al., 2017b) and BERT (Devlin et al., 2019). The difference is more prominent in the 2-hop
dataset, which requires the system to have a better aggregation ability to make the final prediction.

To demonstrate how the models generalize between the upward and downward monotone, we train the
models with HELP’s upward monotone subset and test on the downward monotone subset. A system that



1180

Model Monotonicity HELP (%) MED (%) Natural Logic HELP Dev (%) HELP Test (%)
Fragments (%) 2-Hop (%) Up Mono. Down Mono.

ESIM 66.18 55.27 51.78 45.13 95.25 21.49
BERT-base 50.58 51.40 45.88 49.33 98.63 13.71

Neural Nat. Log. (seq.) 66.03 58.23 52.47 60.14 91.20 63.08
Neural Nat. Log. (tree) 66.47 63.95 47.57 59.97 90.62 70.80

Table 4: Test accuracy of the models.

Model Precision Recall F1

(1) Neural Nat. Log. (seq.) 0.54 0.49 0.51
(2) (1) w/o. Memory / Module 0.49 0.46 0.47
(3) (2) w/o. Local Rel. Constraints 0.12 0.15 0.13

Table 5: Evaluation of models’ aggregation performance on the 2-hop dataset.

can better model monotonicity should achieve more robust performance. Specifically, we split the upward
monotone subset of the HELP dataset into the training set (∼ 6k training examples) and the development
set (∼ 1.5k examples). We train all models on the training split and select models with the highest
development accuracy. We test all models on the HELP downward monotone subset (∼ 21k examples).
The right-most column of Table 4 shows that while ESIM and BERT achieve very high development
accuracy on the upward data, they fail to generalize to the downward monotone test set. The proposed
models generalize well and achieve better test accuracy on the downward monotone datasets.

Aggregation Decisions: The proposed model provides inference explainability by accessing natural
logic’s aggregation and decision paths. Figure 3 shows an example of the 2-hop dataset, together with
the visualization of the intermediate aggregation decisions. From left to right, the first subfigure shows
the cross-sentence attention between the premise (x-axis) and hypothesis (y-axis), where a darker color
corresponds to a larger attention weight. In the second subfigure, for each word in the hypothesis (y-axis),
the predicted distribution of lexical-level logical relations are shown along the x-axis. The third subfigure
shows the aggregation output. For example, on the second row, the aggregation has already been performed
over the first two words b1 = “the” and b2 = “animals” using their lexical relation distributions, which
have been shown in the second subfigure and are, in turn, computed from the first subfigure using 〈b̃1, b1〉
and 〈b̃2, b2〉. Since ‘≡’ 1 ‘@’ = ‘@’, we can see that on the second row, a large probability mass has
been put on @ (i.e., ent f in the figure).

We further perform quantitative analysis on the aggregation performance. We analyze the sequential
aggregation. Specifically, for the 2-hop dataset in which we have access to the aggregation decisions:
ẑ = {ẑ1, ẑ2, ..., ẑn}, where ẑj is the aggregation result at time step j, we evaluate the models by comparing
the estimated ẑ with the ground truth z. We use precision, recall, and F-score as our evaluation metrics.
The details of how to compute them are in Appendix B.

Table 5 shows the results. Since ESIM and BERT do not produce intermediate aggregation results, they
are not included in the table. The ablation analysis shows that both the memory/module component and
the local relation constraints help the model to learn intermediate natural logic aggregation. We can also
see that further work is desirable to improve the performance on aggregation prediction as there is still
a large room to improve modeling performance on this. As part of our efforts, we have also performed
component training to leverage WordNet (Miller, 1998) and ConceptNet (Speer et al., 2017) to help
determine lexical relations. This approach is not particularly effective since the lexical pairs from these
knowledge bases only cover a very small percentage of pairs that need to be modeled.

6 Conclusions

This paper studies end-to-end trained differentiable models that integrate natural logic with neural
networks. The proposed model adapts module networks to model natural logic operations, which is
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Premise:          Two dogs,  the gray poodle high in the air, play on the grass.

Hypothesis:     The animals are lying on the bed.

Label:              Contradiction

Alignment Lexical Logical Relations Aggregation Output

Figure 3: An example showing how the proposed model perform natural logic aggregation.

enhanced with a memory component to model contextual information. We analyze the proposed model on
the monotonicity subset of Semantic Fragments, HELP, MED, and a subset of MED that are modified
to include 2-hop inference. Our experiments show that the proposed framework can effectively model
monotonicity-based reasoning, compared to the two baseline neural network models without built-in
inductive bias for monotonicity-based reasoning. The proposed model show to be robust when transferred
from upward to downward inference. We perform further analyses on the performance of the proposed
model on aggregation, showing the effectiveness of the proposed subcomponents on helping achieve
better intermediate aggregation performance.
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Pasquale Minervini, Matko Bošnjak, Tim Rocktäschel, Sebastian Riedel, and Edward Grefenstette. 2020. Differ-
entiable reasoning on large knowledge bases and natural language. In Proceedings of the 34th AAAI Conference
on Artificial Intelligence (AAAI), New York, USA.

Rowan Nairn, Cleo Condoravdi, and Lauri Karttunen. 2006. Computing relative polarity for textual inference. In
Proceedings of the 5th international workshop on inference in computational semantics, Buxton, England.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
Doha, Qatar.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-
HLT), pages 2227–2237, New Orleans, USA.

Kyle Richardson, Hai Hu, Lawrence S Moss, and Ashish Sabharwal. 2020. Probing natural language inference
models through semantic fragments. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelli-
gence (AAAI), New York, USA.
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A The 2-hop Dataset

Figure 4 shows an example of the 2-hop dataset. The premise and hypothesis differ by two edits of
word/phrase insertion, deletion, or substitution. The dataset provides the ground truth of aggregation at
each time step (the equivalence relation is the default relation and is hence not included in the “Ground
truth of aggregation” section) and the word locations/indices associated with each edit. The 2-hop dataset
is developed with the following three steps:

Premise: Some delegates finished the survey on time.

Hypothesis:     Some individuals finished the survey.

Label:              Entailment

Edit 1: delegates  → individuals Type:  hypernym Relation:  forward_entailment

Location:   premise:  {1}               hypothesis:  {1}      

Edit 2:       on time → [ ] Type:  delete              Relation:  forward_entailment

Location:   premise:   {5, 6}      hypothesis:  {  } 

Ground truth of aggregation:  

Position {1}: forward entailment

Position {4}: forward entailment

Figure 4: An example of the 2-hop dataset.

Identifying MED Relations: Since most sentence pairs in the MED dataset are only different by one
word/phrase edit; i.e., the premise and the hypothesis differs by one word/phrase, it is easy to determine
location of the insertion, deletion, or replacement. For insertion and deletion, we follow (Angeli and
Manning, 2014) and treat the relation as reverse entailment (A) and forward entailment (@), respectively.
We set aside the replacement samples since we can not determine their relations without human labeling.
To ensure the identified natural logic relations are correct, we compare the labels provided in MED with
labels determined by MacCartney’s natural logic theory and remove samples in which labels do not agree,
yielding roughly 1.1K sentence pairs.

Adding One More Hop of Relations: We ask human annotators to replace a noun either in the premise
or the hypothesis with another word. The relation between the substituted and substituting word are one
of {≡,@,A, |,#}. Annotators have access to WordNet that can help suggest substituting words (e.g.,
hypernyms or hyponyms). Meanwhile, we require that the candidate words to be replaced are not children
or parents of any previously identified differences over the parsing tree. This replacement operation yields
5,858 sentence pairs, and the premise and the hypothesis of each example now differ by two edits.

Determining Labels: We apply projection operation and natural logic aggregation according to (Mac-
Cartney and Manning, 2009) to determine the 3-way natural language inference labels for the generated
2-hop sentence pairs. We also record the ground-truth relations of each hop of aggregation output. We
manually assess the data quality on 300 sentence pairs (100 for each category). We find that on average
3% of the samples have either incorrect labels or wrong intermediate aggregation output (4% in category
Entailment, 4% in category Neutral and 1% in Contradiction). Those mistakes are mainly produced by
incorrect parser-identified polarity.

B Aggregation Evaluation Metrics

We evaluate the intermediate aggregations of the proposed model with the precision, recall, and F1 score.
Precision is the number of correctly performed aggregations, divided by the total number of aggregations
performed by a model. Recall is the number of correctly performed aggregations, divided by the total
number of aggregations presented in the ground-truth annotation. Note that we only consider aggregations
at time step t when ẑt 6= ẑt−1. Since by default the starting state ẑ0 = ‘≡’, so if ẑ1 = ‘≡’, we do not
count this degenerate case.
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