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Abstract

Coping with ambiguous questions has been a perennial problem in real-world dialogue systems.
Although clarification by asking questions is a common form of human interaction, it is hard to
define appropriate questions to elicit more specific intents from a user. In this work, we propose a
reinforcement model to clarify ambiguous questions by suggesting refinements of the original
query. We first formulate a collection partitioning problem to select a set of labels enabling us to
distinguish potential unambiguous intents. We list the chosen labels as intent phrases to the user for
further confirmation. The selected label along with the original user query then serves as a refined
query, for which a suitable response can more easily be identified. The model is trained using
reinforcement learning with a deep policy network. We evaluate our model based on real-world
user clicks and demonstrate significant improvements across several different experiments.

1 Introduction
In real-world dialogue systems, a substantial portion of all user queries are ambiguous ones for which the
system is unable to precisely identify the underlying intent. We observed that many such queries in our
question answering (QA) system exhibited one of the following two characteristics.

1. Lack of semantic elements such as subject, object, or predicate, e.g. “How to apply”, “Credit card”.
2. Ambiguous entities, e.g. “My health insurance” (because health insurance consists of numerous

sub-categories).

Figure 1: Interactive question clarification example. a) The user provides an incomplete or ambiguous
question. b) The agent suggests pertinent labels. c) The user confirms by selecting one such label. d) The
agent considers the label in conjunction with the original query as a refined query and responds to it.
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Given such limited information, it is difficult for a system to accurately respond to a user’s ambiguous
queries, often resulting in that the user’s needs cannot be addressed. For example, the specific intent
underlying an utterance such as “How to apply?” remains obscure, because there are too many products
related to the action of “applying”. In practice, one often needs to fall back to human agents to assist with
such requests, increasing the workload and cost. The main purpose of deployed automated systems is to
reduce the human workload in scenarios such as customer service hotlines. The lack of an ability to deal
with ambiguous questions may directly lead to these sessions being transferred to human agents. In our
real-world customer service system, this affects up to 30% of sessions. Hence, it is valuable to find an
effective solution to clarify such ambiguous questions automatically, greatly reducing the number of cases
requiring human assistance.

Automated question clarification involves confirming a user’s intent through interaction. Previous work
has explored asking questions (Radlinski and Craswell, 2017; Quarteroni and Manandhar, 2009; Rao
and Daumé, 2018; Rao and Daumé, 2019). Unfortunately, clarification by asking questions requires
substantial customization for the specific dialogue setting. It is challenging to define appropriate questions
to guide users towards providing more accurate information. Coarse questions may leave users confused,
while overly specific ones may fail to account for the specific information a user wishes to convey.

In our work, we thus instead investigate interactive clarification by providing the user with specific
choices as options, such as intent options (Tang et al., 2011). Unlike previous work, we propose an
end-to-end model that suggests labels to clarify ambiguous questions. An example of this sort of approach
is given in Figure 1. Here, we consider a closed-domain QA system, where a typical method is to build
an intent inventory to address high-frequency requests. In this setting, the set of unambiguous candidate
labels for an ambiguous user utterance corresponds to a set of frequently asked questions covered by the
intent inventory. In a closed domain, we consider the candidate set to be finite. For example, in Figure 1,
there are three specific intents corresponding to the ambiguous question “How to apply”.

Our approach induces phrase tags as labels for each intent. Thus, we have a catalog of intents with
corresponding labels that can be presented to the user. The challenge lies in selecting a suitable list of
labels that can effectively clarify the ambiguous question. In our approach, the problem of finding the
label sequence is formulated as a collection partitioning problem, where the objective is to cover as many
elements as possible while distinguishing elements as clearly as possible. The task of question clarification
thus amounts to obtaining a suitable set of labels.
The main contributions of our work are:

1. We formulate interactive clarification as a collection partitioning problem.
2. We propose a novel reward function to evaluate the clarification ability of phrase collections and an

end-to-end sequential phrase recommendation model trained with reinforcement learning.
3. Both offline and online experiments confirm that our method outperforms pertinent baselines signifi-

cantly.

2 Related Work
Query Refinement. Several works explore the use of clarification questions for query refinement (Kotov
and Zhai, 2010; Sajjad et al., 2012; Zheng et al., 2011; Ma et al., 2010; Sadikov et al., 2010). For instance,
Kotov and Zhai (2010) and Sajjad et al. (2012) use question templates to generate a list of clarification
questions. Elgohary et al. (2019) rewrite questions using the dialogue context. Zhang et al. (2019) invoke
graph edit distance for query refinement. Other studies rely on reinforcement learning to refine user
queries (Nogueira and Cho, 2017; Buck et al., 2018; Liu et al., 2019), but consider queries that are
unambiguous (though possibly ill-formed or non-standard). Accordingly, they seek to increase the recall,
while in our setting, we consider ambiguous user queries, and our model primarily seeks to address the
task of question clarification.
Dialogue. Boni and Manandhar (2003) developed an algorithm to recognize clarification dialogue, rather
than for asking clarification questions. Varges et al. (2010) found that the use of clarification has a positive
effect on concept precision in task-oriented dialogue. Li et al. (2017) focus on clarification in the specific
circumstance of a bot not understanding a teacher because of spelling mistakes, which is a sub-problem of



80

our setting. Zhang et al. (2018) generate clarification questions using language patterns with predicted
aspect. They do not use reinforcement learning to optimize the order of the questions. Wang et al. (2018)
devised soft and hard-typed decoders to generate good questions by capturing different roles of different
word types. Aliannejadi et al. (2019) designed a two-stage retrieval and ranking model to rank clarification
question candidates generated by human annotators, different from our end-to-end reinforcement learning
approach. Korpusik and Glass (2019) construct clarification questions from a food attribute list (brand, fat,
etc.). They rely on a hybrid reinforcement learning approach to select the order of clarification questions
to ask, while we present an end-to-end reinforcement learning method.

Question Answering. Some studies focus on clarification questions in a community question answering
setting (Braslavski et al., 2017; Rao and Daumé, 2018; Rao and Daumé, 2019). These share in common
that they seek to rank or generate clarification questions, while our approach uses reinforcement learning
to perform sequential label recommendation for question clarification. The key differences between our
work and Tang et al. (2011) are three-fold. First, they rely on an ontology, which limits the applicability
of their approach in real-world deployments and prevents us from being able to compare against their
approach in our experiments, since each domain requires a custom ontology. Second, they cluster the
keywords through the ontology, based on templates to achieve a refinement of questions, without using
machine learning. Third, they rely on clustering to increase the keyword diversity, while we design a
reward with an information gain term that automatically encourages diversity.

3 Preliminaries
System overview. In order to provide a more concrete picture of our approach, we first briefly describe
our QA system, illustrated in Figure 2, as an example of how this approach can be instantiated.

Figure 2: Pipeline of our QA system. mn is the
rate of transferal to human agents (THA).

When the conversation exceeds a certain number of
rounds or the user explicitly requests human service,
the conversation is transferred to a human customer
service agent. In this setting, our clarification method
chiefly serves to reduce the workload of those human
agents. In our real system, there are two stages: label
clarification and intent retrieval as illustrated in Fig-
ure 1. The label clarification stage provides 6 labels
for the user to confirm. Upon selecting one of the sug-
gested labels, the user question is concatenated with
the selected label phrase as a new query input. The
intent retrieval stage seeks to provide 3 relevant intents
for the user to select according to the concatenated query. These additional labels can help clarify and
improve the relevance.

Intent and Label Inventory. Our system relies on a closed-domain intent and label inventory. The
intents along with their corresponding answers are compiled by human experts. The set of labels is a
collection of words or phrases that are manually constructed from intents by marking up keywords such
as suitable predicates, subjects, or objects. As shown in Figure 3, there is a many-to-many relationship
between intents and labels. Note that there is substantial synonymy among the set of labels, which may
result in numerous repetitive recommendation results. Thus, ensuring the diversity of the results ought to
be a factor in the design of the policy model.

Recall Valid

Can’t transfer money using Alpha No
How to apply for a Credit Card Yes
How to apply for a Loan Yes
... ...

Table 1: Example of related intent annotation for user
question “How to apply”.

Dataset Setup. In order to solve the cold start
problem and evaluate the effectiveness of each
model offline, we constructed a benchmark cor-
pus. This annotated corpus consists of 40k am-
biguous questions and their potential intents. For
this, ten experts were divided into five teams. The
two experts in each team annotate the same cor-
pus. Data on which there are disagreements are
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Figure 3: Example of relationship between labels and intents. A and B are different label groups to divide
potential intents.

annotated anew, and only agreed-upon data is
selected. To construct corpora at a relatively low
cost, the annotation task is simplified so as to merely elicit a “yes” or “no” response. The whole annotation
process is divided to two stages. At the first stage, we collect ambiguous questions by annotating online
query logs. If a query lacks a predicate or the object of the predicate, it is annotated as ambiguous. At
the second stage, we annotate potential intents for each ambiguous question. As Table 1 shows, for each
ambiguous question (“How to apply”), the top 50 most relevant intent candidates are collected using
the BERT (Devlin et al., 2019) semantic similarity model applied to the intent inventory. The human
annotators are asked to decide whether an intent can possibly address a user’s question.

4 Reinforcement Learning for Label Recommendation

Figure 4: Label recommendation policy model architecture.

Label Recommendation as an RL problem. In order to train a model able to recommend labels one by
one, we have two options: 1) Deduce a path reversely for supervised learning. 2) Create an environment
for the model to explore. We believe that creating an environment for the model to explore different label
sequences may lead to better generalization ability, which is confirmed in our comparative experiments.
We can cast our label recommendation in the reinforcement learning paradigm as in Figure 4. Our model
can be viewed as an agent that interacts with an environment, which consists of the user question and
recommended labels. The action space consists of more than 1,000 candidate labels, out of which a
suitable next label needs to be selected as a next action. In order to increase the diversity and reduce the
number of synonymous labels, our model takes historical recommended labels into account. Upon having
recommended N labels, the final reward (introduced later) is assigned and the parameters are updated.
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Policy Model. As N labels to be recommended could be considered as a sequence, we use a seq2seq
architecture to model the problem. As shown in Figure 4, in the encoder stage, the query is encoded by
BERT and a vector representation is generated. In the decoder stage, the input at time step t is the action
at step t− 1 (step 0 is [st]). For each step, one-way multi-head attention (Vaswani et al., 2017) is applied
on previously recommended labels and the vector representation of the input query. Finally, the action
probability at each step is estimated.
Rewards. Intuitively, the chosen labels ought to maximize the recall of the intents with regard to the
human-annotated potential intents. However, a trajectory with high recall may not be sufficient for
clarification, as high recall can easily be achieved by suggesting labels such as in group A in Figure 3.
Rather, a good label set should efficiently discriminate between potential intents as in group B in Figure 3.
We recast this as a collection partition problem. Subsequently, inspired by the ID3 algorithm (Quinlan,
1986), we use Information Gain as a term to evaluate the final reward.

Formally, given a user query q, and the human-annotated potential intents Q(q), our policy model
selects a list of labels τN = {x1, x2, . . . , xN}. We map all the chosen labels τ to the retrieved potential
intent set S(τ) with a many-to-many relationship between labels and intents:

S(τ) =
⋃
x∈τ

[
M(x) ∩Q(q)

]
(1)

M(x) denotes the intent set mapped from label x. K denotes the universe set of intents. An indicator
vector I(q) = (I1, I2, . . . , I|K|) indicates for each intent si in K whether it exists in the human-annotated
intent set Q(q), as defined below.

Ii =
{

1 si ∈ Q(q)
0 si /∈ Q(q)

(2)

The probability that an intent is the answer to an ambiguous question is computed as

P (si | q) =
Ii
|Q(q)| . (3)

We define potential intents recalled at time step t as S(τt), the conditional entropy of S(τN ) is H(τN ),
defined as follows.

D(xt) =M(xt) ∩Q(q) \ S(τt−1)

P̃ (s | q, τt) =
P (s | q)∑

s′∈D(xt)

P (s′ | q)

H(xt) = −
∑

s∈D(xt)

P̃ (s | q, τt) log P̃ (s | q, τt)

(4)

Here, M(xt) denotes the set of intents mapped from label xt. D(xt) is the marginal recall over the
potential intent set Q(q) for label xt. P̃ (s | q, τt) is the normalized probability of P (s | q) for intents in
D(xt). The entropy at time step 0 isH0, defined as

H0 = −
∑

s∈Q(q)

P (s | q) logP (s | q). (5)

The Information Gain is defined as

∆(τN ) =

N∑
t=1

|D(xi)|
|S(τN )|H(xt)−H0, (6)

and the final reward is then defined as
R(τN ) =

∑
s∈S(τN )

P(s | q) + β∆(τN ). (7)

In our experiments, β by default is set to 1.
Considering there are more than 1000 candidate labels, the size of the search space in MCTS may

explode. To reduce its size, we only sample labels in {x|M(x)
⋂
Q(q) 6= ∅} because only such labels

have a relationship with candidate intents worth exploring. Thus, the size of the search space is drastically
reduced.
Training. The policy model to suggest labels is trained from samples generated via a Monte-Carlo
tree search (MCTS) (Coulom, 2006; Kocsis and Szepesvári, 2006; Browne et al., 2012). The MCTS
starts from an empty label set and stops when the trajectory includes N labels, as in Figure 5.
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Figure 5: MCTS. At time step t, the sampling process
keeps searching until it reaches depth N − t.

Each simulation starts from the root state and iter-
atively selects a move with maximal V (·), which
is computed according to the upper confidence
bound for tree search (Kocsis and Szepesvári,
2006) as

V (v) =
Q(v)

N(v)
+ βT

√
2 lnN(pv)

N(v)
, (8)

where pv denotes the parent of v and βT by de-
fault is set to 1. After a path has been sampled,
the Q value of each node in the path is updated
according to

Q(v) =

∑
τ∈T (v)

R(τ)

N(v)
(9)

where N(v) denotes the visiting time of v and T (v) denotes the set of all trajectories containing v.
Once the search is complete after M samples, probabilities π for the next action are estimated following
Equation 10, whereN(·) is the visit count of each move from the root state and T is a parameter controlling
the temperature.

π(· | v) =
N(·)1/T∑

v′∈Cv

N(v′)1/T
(10)

Here, Cv denotes the children of node v. Additional exploration is achieved by adding Dirichlet noise
Dir(·) to the prior probabilities as in AlphaZero (Silver et al., 2017):

P (·|v) ∼ 3

4
π(· | v) +

1

4
Dir(0.03) (11)

xt is selected in a weighted round robin manner in accordance with P (· | v). The neural network zθ(q, τt)
is adjusted to minimize the KL divergence DKL of the neural network estimated probabilities to the search
probabilities π as:

L(τN ) =

N∑
t=1

DKL

[
zθ(·|q, τt) ||π(· | v)

]
. (12)

5 Experiments
Following standard practices in industry, we first conduct offline experiments to select reasonable models
for which we subsequently perform an online evaluation. Only the best-performing model in the online
tests is kept running online. We also perform an ablation study on the pipeline without label clarification.
In order to verify whether the Information Gain can help to reduce the overlap between intents and the
user question, we also perform experiments to evaluate the diversity and complementarity of the label
recommendation method.

5.1 Experimental Settings
We first conduct offline experiments by using the 40k annotated ambiguous questions and their potential
intents as explained in Section 3. The corpora are divided into training and test sets at a 9 : 1 ratio. The
parameters of our policy model are as follows. The sample count in MCTS is M = 1, 000. We output
N = 6 intents for each ambiguous question. The total number of training epochs is E = 5. We use a
12-layer pretrained BERT base model as the encoder for queries and the hyperparameters of the decoder
are the same as for the encoder.

5.2 Evaluation Metrics

Evaluation metrics for offline experiments. The goal of our offline experiments is to evaluate the label
recommendation methods, and select the most promising ones to perform online experiments. We evaluate
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them in terms of Recall@N, which reflects how many intents among all potential intents of q are retrieved
among the N intents emitted by the model.

The key desideratum for label recommendation models is to cover as many potential questions as
possible. It is relatively fair to compare the recall of potential intents recommended by different methods
on the annotated data set. For label trajectory τN , the recall can be computed as

recall(q, τN ) =

∑
x∈τN

|M(x)
⋂
Q(q)|

|Q(q)| (13)

whereQ(q) is the set of potential intents for ambiguous query q, andM(x) is the set of all intents mapped
to intent x in the intent inventory. The upper bound is calculated inversely from the results of annotated
corpora:

τ∗N (q) = argmax
τN

∑
x∈τN

|M(x) ∩Q(q)| (14)

τ∗N (q) denotes the set of N best labels covering the potential intents. Thus, the upper bound recall of q
would be recall(τ∗N (q)).

Evaluation metrics for online experiments. In our subsequent online experiments, our key metrics are
the rate of transferal to human agents (THA) and the click through rate (CTR). In our experiments, every
time a question is classified as an ambiguous question, six labels are provided to the user, who may select
one of them or just ignore the selection. Given t as the number of times we output labels, and c as the
number of times the user selected one of them, we define CTR = c

t . Note that the user may opt to select
none of the above options. In this case, the pipeline equals intent retrieval without clarification. The CTR
reflects how useful the recommended labels are to users.

Evaluation metrics for complementary experiments. We compare the repetition rate at the word piece
level of labels generated by two methods as an experiment to evaluate the diversity. The diversity is
quantified as:

div(τN ) =
|W(τN )|∑

w∈W(τN )

C(w)

, (15)

whereW(τN ) is the set of word pieces tokenized from the labels, and C(w) denotes the number of times
word piece w appears among the labels. We also count the overlap rate:

overlap(τN , q) =

∑
x∈τN

∑
t∈T (x)

⋂
T (q)

C(t)

∑
x∈τN

∑
t∈T (x)

C(t)

(16)

Here, T (xt), T (q) denote the tokens sets of xt and q, respectively. The overlap thus essentially reflects
the number of tokens of labels appearing in a query.

5.3 Baselines
Several methods for label clarification serve as baselines for the offline experiments, while our method is
denoted as RL (ours).

5.3.1 Label Clarification Methods

Supervised. Given a query and a set of potential intents, there are limited labels related to the potential
intents set. Traverse all possible label sequences over the limited labels set and choose the one with the
highest rewards as the ground truth. If there are multiple sequences corresponding to the highest reward,
pick one randomly.

Greedy. Given a user question, we train a classification model on the annotated corpus of ambiguous
questions and the corresponding potential intents by minimizing the loss function

L =
∑
q

DKL[fθ(·|q) ‖ P (·|q)] (17)
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The classification model fθ is used to estimate the probability distribution P (·|q) of the potential intents.
Through this greedy method, our goal is to find a set of intents for which the sum of the probabilities of
intents they cover is as high as possible. The greedy rule is given by Score(xt) =

∑
s∈D(xt)

fθ(s, q), where

D(xt) is the marginal recall of intents described in Section 4. At each time step t, we select the label with
the highest score as xt. Thus, the label set is generated by the rule.

RL (no state transition). As another baseline, we explore the implication of not taking recommended
labels into account. This is a BERT classification model which outputs the intent with the highest
probability at time step t and masks it at the next time step.

5.3.2 Ablation Study

Top-K intents. To contrast the truncated interface with the original, full interface, we retrieve the m
most similar intents in terms of semantic similarity without interacting with users. The detail of intent
retrieval is described below. (Note that for a label-oriented interface, after the user selects one label, the
original query is concatenated with the label phrase as a new query and relevant intents are retrieved by
the same model.)

Intent retrieval. For each query, a list of potential intents can be retrieved and ranked by BM25. We
re-rank the candidates by applying BERT model to estimate the semantic similarity between query and
each candidate. The model is a 12-layer BERT, which takes the concatenation of two sentences as input.
Considering the display limitation of the dialogue bot environment, the top three results are presented to
the user.

5.4 Results

Offline experiments. The experimental results in Table 2 show that our method significantly outperforms
others. The greedy method has limited recall due to its reliance on the accuracy of its classification model.
We observed that it is difficult to achieve a satisfactory recall by estimating potential intent probabilities
through a classification model.

labels=3 labels=6

Greedy 19.47% 32.01%
Supervised 45.72% 51.53%
RL (no state transition) 17.23% 29.83%
RL (ours) 52.45% 57.22%

Upper bound 60.46% 67.34%

Table 2: Offline experimental results.

Our policy model also significantly outperforms the
model without state transitions, confirming the need for
considering the action history. The labels recommended
by simple classification models do not yield sufficient
diversity, resulting in very low recall. By modeling
the problem as a seq2seq one, our model learns to rec-
ommend a next label that differs from previous ones,
thereby improving the recall of potential intents.

It is worth noting that the supervised method outper-
forms all other baselines except ours. We believe that
it does not explore the training data sufficiently. In most cases, there are multiple label sequences that
can get similar rewards, and the supervised method can only consider one of them as the ground truth,
remaining unable to explore equally good or second-best paths, which leads to insufficient exploration of
labels. Thus, the search of the supervised method is not as exhaustive as our method’s. Our results are
close to the theoretical upper bound, which is further corroborates the effectiveness of our method.

THA CTR

Top-K intents 15.40% -
RL (recall) 14.51% 62.61%
RL (ours) 14.20% 66.36%

Table 3: Online experimental re-
sults.

Online experiments. The offline experimental results show that
RL (no state transition) and the Greedy method do not perform
well, leaving only RL (ours) for the online experiments. Here we
mainly compare the performance of two rewards: recall only and
reward + entropy. We compare label recommendation methods
and perform an ablation study using real online user clicks. For
this, we collected data over a period of two weeks in our real
deployment. The experimental results, illustrated in Table 3, show
that the CTR of RL (ours) is significantly higher than for RL (recall). We believe that this gap objectively
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reflects the importance of entropy to improve the quality of the label set. Furthermore, RL (ours) also
outperforms RL (recall) with regard to the rate of transferal to human agents (THA). The Top-k intents
method directly retrieves the most relevant three questions without interacting with users. The THA
gap between Top-K intents and RL based methods reflects the contribution of label clarification. The
experiments show that our method has a positive effect with regard to the system’s ability to clarify
ambiguous questions, reducing the workload of human agents.

5.5 Complementary Evaluation

How to apply
RL (recall) apply, register, credit card
RL (ours) credit card, loan, QR code

How to claim insurance?

RL (recall)
claim, health insurance,
medical insurance

RL (ours)
health insurance, medical insurance,
homeowners insurance

What was the payment just now?

RL (recall)
transaction records, inquire,
transfer money

RL (ours)
billing details, transition records,
inquire records

Table 4: Excerpts of outputs from different methods. For simplicity, only the first three are displayed.

By inspecting specific cases, we find that the main difference between RL (recall) and RL (ours) is the
complementarity with the user’s question. Taking “How to apply” in Table 4 as an example, RL (recall)
selects “apply”, “register”, which exhibit semantic overlap with the question itself. Though these may
lead to improved recall of potential intents, they do not enable any further clarification. The results of
RL (ours) include products that one can apply for, helping to establish the user’s underlying intent. For a
recall-only approach, the labels that yield the highest rewards must be the ones with the highest semantic
overlap. Hence, it is inevitable that repetitive information will be chosen, thereby making a part of the
label set redundant.

Diversity Overlap

Greedy 75.27% 6.39%
RL (recall) 79.92% 9.69%
RL (ours) 80.10% 7.69%

Table 5: Complementarity evaluation: The
lower the overlap, the better the complemen-
tarity.

To verify our conjecture, we compare the diversity
and complementarity using the indicators introduced in
Section 5.2. Although the two indicators are not precise
metrics for diversity and semantic overlap, they help
to assess the gap of the models trained with the two
different reward mechanisms. As we can see from Ta-
ble 5, the reinforcement learning methods significantly
surpass the Greedy method on diversity, but the two RL
methods are comparable to each other. This illustrates
that recall as a reward is a major contribution to diver-
sity. On its own, the overlap indicator is not meaningful,
as it can be reduced to 0 by recommending irrelevant labels. But along with the recall, the difference in
overlapping rate illustrates the effectiveness on reducing semantic repetition. Therefore, the proposed
reward is superior to all other compared methods.

6 Conclusion
We present an end-to-end model to resolve ambiguous questions in dialogue by clarifying them using
label suggestions. We cast the question clarification problem as a collection partition problem. In order to
improve the quality of the interactive labels as well as reduce the semantic overlap of the labels and the
user’s question, we propose a novel reward based on recall of potential intents and information gain. We
establish its effectiveness in a series of experiments, which suggest that this novel notion of clarification
may as well be adopted for other kinds of disambiguation problems.
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