Best Practices for Data-Efficient Modeling in NLG:
How to Train Production-Ready Neural Models with Less Data

AnKit Arun; Soumya Batra, Vikas Bhardwaj, Ashwini Challa,
Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain,
Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White'

Facebook

{ankitarun, sbatra, vikasb, ashwinichalla,
pinared, peymanheidari, inan, shajain,
anujk, smei, mkarthik, mwhitel4850}@fb.com

Abstract

Natural language generation (NLG) is a critical component in conversational systems, owing
to its role of formulating a correct and natural text response. Traditionally, NLG components
have been deployed using template-based solutions. Although neural network solutions recently
developed in the research community have been shown to provide several benefits, deployment of
such model-based solutions has been challenging due to high latency, correctness issues, and high
data needs. In this paper, we present approaches that have helped us deploy data-efficient neural
solutions for NLG in conversational systems to production. We describe a family of sampling and
modeling techniques to attain production quality with light-weight neural network models using
only a fraction of the data that would be necessary otherwise, and show a thorough comparison
between each. Our results show that domain complexity dictates the appropriate approach to
achieve high data efficiency. Finally, we distill the lessons from our experimental findings into a
list of best practices for production-level NLG model development, and present them in a brief
runbook. Importantly, the end products of all of the techniques are small sequence-to-sequence
models (~2Mb) that we can reliably deploy in production.

1 Introduction

Task-oriented dialog systems are commonplace in automated systems that interact with end users, in-
cluding digital assistants, technical support agents, and various website navigation helpers. An essential
part in any task-oriented dialog system is natural language generation (NLG), which consumes data,
typically fed in the form of a dialog act, and converts it into natural language output to be served to the
end user. The natural language response of the NLG component should 1) contain all essential informa-
tion, 2) be contextualized around the user request, and 3) be natural sounding. Such a system requires
consideration for content planning, correctness, grammaticality, and naturalness.

NLG systems employed in commercial settings are typically based on template-based text generation
techniques (Reiter and Dale, 2000; Gatt and Krahmer, 2018; Dale, 2020). In these, humans author a min-
imal set of responses templates with placeholder slot values. These slots are later filled at runtime, with
the dialog input. Although template-based NLG modules are appealing due to their deterministic nature,
inherent correctness, and low latency, they have major drawbacks: First, separate templates need to be
authored for different response variations; this behavior is unfavorable for scaling. Second, templates
authored for a particular domain are commonly not reusable. Lastly, no matter the complexity of the
language instilled into templates, they form a strictly discrete set of responses, and therefore are bound
to be limited in their response naturalness.

More recently, advances in neural-network-based (conditional) language generation prompted a new
direction in NLG research (Novikova et al., 2017; Budzianowski et al., 2018; Chen et al., 2020; Bal-

* Author list alphabetical by last name.
TWork done while on leave from Ohio State University.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

64

Proceedings of the 28th International Conference on Computational Linguistics: Industry Track, pages 64-77
Barcelona, Spain (Online), December 12, 2020

akrishnan et al., 2019; Peng et al., 2020). The process is typically split into two steps: (1) serialization
of input data into a flattened meaning representation (MR), and (2) using the neural generation model
to generate a natural language response conditioned on the MR. The models are trained on data that in-
cludes (MR, response) pairs, and therefore they are able to not only generate desired responses for MRs
in their training data, but they are also expected to form coherent responses for novel MRs, owing to the
generalization ability of their machine learning (ML) backbone.

However, deploying neural NLG systems in an industry setting is quite challenging. First, it is not
trivial to train a model that reliably presents its input data with the high fidelity required from a user-
serving dialog system. Second, the models require much high-quality human-annotated data, which is
resource intensive. Consequently, data annotation is a major limiting factor for scaling model-based
NLG across domains and languages.

In this work, we detail our approach to production-level neural NLG, with a focus on scalability and
data efficiency. Adopting the tree-structured MR framework introduced in Balakrishnan et al. (2019),
which allows better control over generated responses, we train sequence-to-sequence RNN models
(Sutskever et al., 2014; Bahdanau et al., 2014; Cho et al., 2014) that can produce high-fidelity responses.
We then employ a multitude of techniques for reducing the amount of required data, primarily powered
by eliminating the “hidden” redundancy by grouping data points with similar semantics into buckets. We
train models either on the reduced data, or after increasing the size of the dataset using a novel synthetic
augmentation technique. We also employ large, pre-trained attention-based language models (Lewis et
al., 2019), fine-tuning them on the same datasets, and then using novel methods to distill their knowl-
edge into smaller sequence-to-sequence models. Further, we train models on data from multiple domains,
showing gains over models trained on individual domains when the domains are semantically close to-
gether. We conclude with a compiled list of best practices for production-level NLG model development
based on our analyses, and we present it as a runbook.

2 Related Work

NLG from structured data has been an active research area for decades, facilitated of late by datasets like
the E2E Challenge (Novikova et al., 2017), MultiWoz (Budzianowski et al., 2018) and Conversational
Weather (Balakrishnan et al., 2019). Recently, Seq2Seq models (Wen et al., 2015; Dusek and Jurcicek,
2016; Balakrishnan et al., 2019; Rao et al., 2019), have become popular for their superior naturalness and
simplicity. These models have achieved high performance on benchmarks like E2E challenge (Novikova
et al., 2017) and WebNLG challenge (Gardent et al., 2017). However, they require a lot of data making
them resource-intensive to stand up and manage at scale.

Our work introduces an approach for bootstrapping data-efficient NLG models by auto-annotating
unlabelled examples using a large pretrained sequence de-noiser model known as BART (Lewis et al.,
2019) fine-tuned on a small annotated dataset. Additionally, to increase data collection efficiency, we
present several bucketing strategies, which enable a more uniform data collection process over the pos-
sible semantic space. We improve upon the BART auto-annotation technique by combining it with an
innovative method of dynamic data-augmentation (DDA) and fine-tuning BART auto-annotation on a
small subset of data sampled using a medium grained bucketing approach. We also carried out experi-
ments to examine the effects of bucketing granularity combined with domain complexity.

In similar studies, pretrained GPT models (Radford et al., 2019) were used by Chen et al. (2020) and
Peng et al. (2020), who fine-tune them on a small set of in-domain data, but they did not distill these
models into ones suitable for production.

Interestingly, Wen et al. (2016) demonstrated that the structure of arguments in existing dialogues can
be used to guide data collection for low-resource domain adaptation, which is similar to the bucketing
strategies explored here. Additionally, Shah et al. (2018) introduce a dialogue self-play method where
templates are instantiated with database values to create synthetic utterances, similar to our dynamic
data-augmentation method; however, their instantiated templates are then rewritten by crowd-workers,
whereas in our DDA method, crowd-sourced utterances are delexicalized and then re-instantiated with
random values. Kedzie & McKeown (2019) also make use of a similar technique in their work on

65

Domain #of Training | #of CB | #of MB | #of FBQ | # of FB | # of Validation | # of Test
Weather 25390 2240 6406 20343 15456 3078 3121
Reminder 9716 68 562 1907 739 2794 1397
Time 5530 18 288 863 330 1529 790
Alarm 7163 26 126 286 188 2024 1024

Table 1: Number of examples in training, validation, and test sets for all domains in addition to number
of different buckets in the training set. CB, MB, FBQ, and FB stand for coarse-grained, medium-grained,
fine-grained combined with query, and fine-grained buckets, respectively.

self-training for neural NLG; by comparison, we experiment with DDA in a wider variety of training
scenarios.

3 Experimental Approach
3.1 Data

The experiments were conducted using 4 task-oriented datasets: a Conversational Weather dataset in-
troduced in Balakrishnan et al. (2019) and three additional datasets for the Reminder, Time, and Alarm
domains. These four datasets were selected due to their varying level of complexity, which will be
explained further in the results section.! In addition, these domains provide a good representation of var-
ious arguments such as tense, date_time, and date_t ime_range as well as range queries that are
typically seen across conversational systems. Descriptive statistics of the datasets are shown in Table 1.

All of the datasets use a tree structure to store the meaning representation (MR) that has been discussed
in Balakrishnan et al. (2019). If necessary, they use discourse relations (CONTRAST and JUSTIFY),
which encompass a possible list of dialog acts (REQUEST, INFORM, etc.). The dialog acts contain a list
of slot key-value pairs to be mentioned. The tree structures are used to present semantic information to
the models after flattening. Examples of flattened MRs are shown in Table 2 and Table 3. The synthetic
user queries and scenarios were generated by engineers, the annotated responses were created by human
annotators following guidelines written by computational linguists. The responses were verified to be
grammatical and correct by the linguists to ensure data quality.

Query How is the weather over the next weekend?
Reference Next weekend expect a low of 20 and a high of 45. It will be sunny on Saturday but it’ll rain on Sunday.
INFORM 1[temp_low[20] temp_-high[45] date_time] next weekend]]]
Our MR CONTRAST_1[
(Tree-based INFORM 2 [condition[sun | date_time]| Saturday 1]
Scenario) INFORM 3[condition[rain] date_time]| Sunday |]1]
1
INFORM 1[date_time|[next weekend|] expect a low of temp-low[20]

and a high of temp_high[45] .]
Annotated CONTRAST_1[

Reference INFORM 2[it will be condition[sunny] date_time[on Saturday]]]
but
INFORM 3[it’1l1l condition[rain] date_time[on Sunday|]]

-1
Table 2: A training example with a discourse relation (bold black node). Blue nodes are the dialog acts,
red nodes are the first level arguments under dialog acts and orange nodes are the second level arguments.
Argument values at the leaf nodes and terminal tokens are in black.

3.2 Bucketing

All our datasets present tree-structured input. We found the tree structure helpful in grouping the training
examples in order to reduce biases in the model-generated responses because of imbalanced distribution
and also to improve data efficiency. We investigated several bucketing strategies that assign scenarios
into groups based on their tree structures and argument values at different levels of granularity. During
data collection, we observed that compared to random, bucket-assisted gradual data collection improved
model performance due to more exhaustive MR coverage.

'The datasets can be found at https://github.com/facebookresearch/DataEfficientNLG

66

Query Do I have any reminder to buy milk?

Reference Yes, there are 3 reminders. The first two are, buy milk at 7 PM and tomorrow. There’s 1 other reminder.
INFORM_ 1 [amount [3 1]
Our MR INFORM 2[todo[buy milk] date_time]| 7 pm 111
(Scenario) INFORM 3[todo [buy milk] date_time]| tomorrow |]]
INFORM 4 [amount_remaining[1]]
INFORM[Yes, there are amount[3] reminders .]
Annotated INFORM[The first two are, todo[buy milk Jat date_time] 7 pm 11
Reference and INFORM[date_time [tomorrow |].]
INFORM[There’s amount_remaining[1] other reminder.]
Delexicalized Do I have any reminder to todo__a ?
Query

INFORM_1 [amount]
Coarse_grained INFORM 2 [todo date_time]
Bucket Hash INFORM 3[todo date_time]
INFORM 4 [amount_remaining]
INFORM_ 1 [amount]
Medium _grained INFORM 2[todo date_time]| 11
Bucket Hash INFORM 3[todo date_time]| tomorrow |]]
INFORM 4 [amount_remaining]
INFORM 1 [amount [amount__grl]]
Fine_grained INFORM 2 [todo[todo_.a] date_time| time_a 111
Bucket Hash INFORM 3[todo[todo_.a] date_time| tomorrow |]]
INFORM 4 [amount_remaining[amount_remaining.eql]]

Table 3: A training example from the reminder domain with its corresponding coarse_grained,
medium_grained and fine_grained buckets. There are no discourse relations.

Coarse-grained (CB) This bucketing strategy was the coarsest level of granularity. Under this strategy,
the scenarios (MRs) are grouped using high-level argument names, which are at most two levels below
the root node. For example, consider a second level argument such as date_time that may have
multiple nested arguments in different combinations.

In Coarse-grained bucketing, all variations deeper than date_t ime were ignored. An example is
shown in Table 3, where in both the INFORM_1 and INFORM_2 dialog acts, despite different sub-
arguments for the parent argument date_t ime, variations are ignored. This strategy creates the smallest
number of buckets. In spite of the high possible data efficiency using this method, models might exhibit
worse performance due to limited MR coverage in the training data.

Medium-grained (MB) At this level of granularity, all sub-arguments were considered for creation
of the bucket hashes. However, for certain pre-determined arguments/sub-arguments with small and
finite variation, the argument name was replaced with its value. An example is the argument tense,
which has 3 possible values; hence, when creating bucket hashes, we replace the t ense argument with
tense_past, tense_present, or tense_future. This led to an increase in the bucketing space
by the number of possible values for each such argument.

In contrast to coarse-grained bucketing, the INFORM_2 and INFORM_3 dialog acts are grouped un-
der different buckets as part of this strategy, since the date_t ime parent argument has different sub-
arguments. Moreover, for the INFORM_3 dialog act, the value of sub-argument colloquial is re-
tained. This implies that if there was another dialog act with the same shape as INFORM_3 dialog act
but a different value for the colloquial sub-argument, it would have been grouped into a different
bucket than INFORM_3. This strategy increased the number of buckets compared to the CB case, im-
proving coverage of different response variations. An example of medium-grained bucket hash appears
in Table 3.

Fine-grained (FB & FBQ) In this strategy, the goal was to group cases into the largest possible number
of buckets in which the surface form of the sentence was independent of the argument values decided
by linguists (FB). There were three major differences compared with the medium-grained approach: all
argument values are considered, with partial delexicalization; argument values under the same argument
name can be grouped; and uniqueness of argument values was tracked. For example, as shown in Table 3,
all argument values are considered, where the todo values are delexicalized, while colloquial is

67

not. In addition, if the value of amount or amount_remaining is 1, then the surface form of the
response might change, since a plural form should be used for numbers more than 1. Therefore, there
are two groups of these argument values, one for values greater than 1 and one for the value of 1.
Finally, the todo argument values in INFORM_1 and INFORM_2 are the same. Therefore, they are
both delexicalized to todo__a, which is to differentiate between cases where the todos are different,
since the model was allowed to aggregate based on arguments values to limit verbosity and increase
naturalness. (If the values of t odos were different, they would have been delexicalized to t odo__a and
todo__b, resulting in a different bucket hash.)

Our production models receive as input a combination of query and MR, in order to enable the possi-
bility of conditioning the surface form of the response based on the query. Therefore, an additional level
of bucketing can be achieved by delexicalizing the query (FBQ). For example, in Table 3, the user has
asked about a specific reminder, and the response confirms that by saying “Yes” at the beginning. (Say-
ing “Yes” might have been unnecessary under a different query.) Since the queries in the datasets were
generated synthetically, we could reliably delexicalize the query and consider the delexicalized query
during bucket hash creation.

3.3 Metrics

We used various metrics to compare the performance of our proposed sampling and modeling approaches
across experiments. Mainly, we focused on Tree Accuracy, which is a binary metric indicating whether
the tree structure in the response is correct (Balakrishnan et al., 2019). This metric checks whether the
structural tokens in the response are the same as those in the input MR, modulo reordering at the sibling
level (see Balakrishnan et al.’s paper for complete details). Tree accuracy is also used in production to
guard against hallucination: if tree accuracy fails, we fall back on templates to ensure correct response
generation, even if it is less natural. In addition, we report BLEU Score (Papineni et al., 2002) for all of
the experiments.

Tree Accuracy is a binary metric and can change from 1 to 0 even if one structural token is missing,
as intended. We noticed that tree accuracy can fluctuate considerably due to the random initialization
of the layer weights and the randomization in mini-batch creation, even if trained on the same dataset
with the same training parameters. (This might be due to the fact that the models are trained to optimize
for token-level likelihood, not correctness.) To track the effectiveness of the proposed approaches in
reducing these fluctuations and increasing Robustness, we report the standard deviation of tree accuracy
values based on 5 training instances for each experiment. The reported tree accuracy values for each
experiment is the maximum one achieved in the same 5 runs.

Human evaluations were used as a qualitative method to raise red-flags in this study. For human
evaluation, the authors rated the responses on Correctness and Grammaticality, defined as:

* Correctness: Evaluates semantic correctness of a response. Authors check for hallucinations, miss-
ing attributes, attribute aggregation and sentence structure.

* Grammaticality: Checks for grammatical correctness of a sentence, which includes subject-verb
agreement, word order, completeness, etc.

We report an Acceptability metric, which is the proportion of correct and grammatical responses sent
for human evaluation. Due to annotator constraints, we devised a method to select the top 150 most
differentiating examples from each domain’s test set, in order to provide an understanding of the per-
formance of each approach on the most challenging MRs. First, we categorized all of the test samples
using the fine-grained (FB) bucketing technique. Then, for each bucket, the sample with the least number
of correct (tree accuracy) responses across all of the experiments was selected if at least one approach
responded correctly. Finally, the top 150 buckets with the least correct response were selected.

In our experience, if a model output fails the tree accuracy check it has always been wrong, but
passing tree accuracy does not guarantee acceptability. Nonetheless, it should be noted that the reported
acceptability numbers are significantly worse than with our production models, as they are focused on

68

the most challenging MRs. The production weather models have had very high acceptability, so we do
not report acceptability for the Weather domain due to some bandwidth constraints.

To compare data-efficiency, we defined Data Reduction Rate as the percentage of the initial training
examples that can be saved (not used for training) using any of the presented approaches.

3.4 Models

The model architectures used in this study are either a sequence-to-sequence one with stacked LSTMs
(Bahdanau et al., 2014) or derivatives of BART (Lewis et al., 2019) with stacked transformers.

In the LSTM-based models, we use trainable 50d GloVe (Pennington et al., 2014) embeddings. Model
weight are updated using an ADAM optimizer (Kingma and Ba, 2015). For each experiment, we start
with a learning rate of 0.01 and reduce it by a factor of 0.1 if validation loss does not decrease for 2
epochs. Our loss function is label smoothed CrossEntropy, where the beta parameter is between [0.01,
1]. Each model was trained for 100 epochs with a batch size of 32 and terminated when the validation
loss stopped decreasing for 5 epochs.

For BART, we use the 6 layer BART-Base model in fp16 mode. This helps avoid the memory issues,
which were faced with using the 12 layer BART model. For each experiment, we use ADAM as our
optimizer with 300 warm-up steps. The starting learning rate of 3e-5 is reduced by a factor of 0.5 if
validation loss does not decrease for 5 epochs. Each model is trained for 100 epochs with a batch size
of 4 and terminated when the validation loss stopped decreasing for 7 epochs. With all models we use a
beam size of 1 to decrease latency.

LSTM-based Sequence-to-Sequence Model (S2S) Our main LSTM-based model has a single-layer
encoder and a single-layer decoder. The dimensions of both encoder and decoder hidden states are set
to 128 with 0.2 dropout. The input to the model is a concatenation of the user query and the meaning
representation produced by the dialog management system.

Joint-training (JT) We experimented with a simple joint-training strategy for domains with similar
responses, MRs, and semantics using the S2S architecture. The datasets were combined and a joint
model was trained on them. Here, Alarm and Reminder are the two domains that are similar to each
other and thus these were the domains we experimented with for joint-training.

Dynamic Data Augmentation (DDA) To increase data efficiency, we carried out experiments using a
limited number (1,3,5) of examples per bucket (coarse, medium, and fine) to determine at what training
size the performance gains would plateau with more data collection. At very high data efficiency levels,
we noticed that the model performance fluctuated significantly based on the argument values, which was
unacceptable for a production system.

An initial idea was to pre-process the input and feed the delexicalized query and MR to the model.
Although we could reliably delexicalize the user query during model training, it would have been very
unstable to implement such a technique in production. In addition, there were concerns about added
latency and higher complexity of the system. Therefore, we trained the model with the raw user query
and with an MR in which argument values are lexicalized, which originally resulted in low data-efficiency
in our production domains.

gl:l%?;ented Do I have any reminder to go shopping ?
Epoch 1 INFORM_ 1 [amount [8 1]
Augmented | INFORM 2[todo[go shopping] date_time]| 10 aM 111
MR INFORM 3[todo[go shopping] date_time| tomorrow |]]
INFORM 4 [amount_remaining[1]]
Augmented Do I have any reminder to run ?
Query
Epoch 2 INFORM_ 1 [amount [4 1]
Augmented | INFORM 2[todo[run] date_time][6 PM |1]
MR INFORM 3[todo[run] date_time]| tomorrow 1]
INFORM 4 [amount_remaining[1]]

Table 4: Two examples of how a single training example is augmented randomly at each epoch.

69

We devised Dynamic Data Augmentation (DDA) as a new technique to provide robust model response
with respect to changes in argument values using only a fraction of human-annotated responses. The idea
is to randomly replace pre-processed tokens in the leaf nodes such as todo_a, t ime_a, etc.—as shown
in the fine-grained example in Table 3—with a value from a list of possible values, which are not expected
to change the surface form of the sentence during mini-batch creation.

We used DDA to train on small datasets formed by sampling one or fewer examples per fine-grained
bucket. In addition to higher data efficiency, such randomization should theoretically reduce the possibil-
ity of over-fitting. Similarly, DDA enables the 1PerBucket sampling technique in low-resource domains,
resulting in a more uniform distribution of MR types during training. If the delexicalized query and MR
shown in Table 3 are included in the training data, Table 4 demonstrates how DDA would augment the
example differently at each epoch.

BART Data Augmentation (BART+DDA) In BART auto-annotation, a small subset of data is sam-
pled by selecting one example from each medium-grained bucket, followed by fine-tuning the BART
model directly on this dataset. The fine-tuned BART model is then run on unlabelled scenario data, as
part of the sequence-level knowledge distillation step described in the next section (S2S+KD), and the
examples which match in tree structure with the input scenario are selected for training data augmenta-
tion. Sampling the small data using medium-grained bucketing introduces two issues. Firstly, although
most response variations can be captured, the variations where words around argument slots change de-
pending upon the argument value might be missed. Secondly, model performance is not robust to varying
argument values.

DDA solves both the above issues. In the BART+DDA approach, instead of directly fine-tuning the
BART model on a small data, we fine-tune it on the dynamically augmented data.

S2S+KD BART+DDA suffers from high latency and model size. In an effort to create production-
quality models, we run the BART+DDA model on unlabelled scenario inputs, and select examples which
match in tree structure. To auto-annotate unlabelled scenarios, we run a beam search of following beam
sizes [1, 5, 10], and select the first response which passes the tree accuracy check. With larger beam
sizes, even if the lower responses pass the tree accuracy, they often tend to be incorrect.

We then combine the synthetically generated examples labelled by BART with the golden human-
labelled small data, and train a S2S model on it. Using BART as a teacher model to train a smaller, faster
S2S model is similar to Kim and Rush’s (2016) sequence-level knowledge distillation (KD) approach.

S2S+KD+DDA The S2S+KD model can make mistakes because the majority of its training data comes
from synthetic data generated by the BART+DDA model. If the BART+DDA model makes a mistake
on a particular scenario, these mistakes get amplified because it will be repeated when auto-annotating
similar unlabelled scenarios. Even if golden human data has the correct response for these scenarios,
it might not be enough to correct these mistakes. With S2S+KD+DDA, we solve this problem by fine-
tuning the S2S+KD model using the DDA approach only on the gold human-labelled small data, as in
recent self-training work for MT (He et al., 2020).

4 Results and Discussion

The results of selected experiments on Alarm, Time, Reminder and Weather domains are presented
in Tables 5, 6, 7, and 8, respectively. More comprehensive experimental results can be found in the
Appendix. In addition, Figure 1 demonstrates comparative plots of all experiments with more than 70.0%
tree accuracy and a 70.0% data reduction rate. From a pure data reduction point of view, the results
suggest that S2S+KD+DDA and S2S+KD performed the best followed by BART+DDA. S2S+DDA
generally improved performance compared to S2S trained on the same data. It can be also observed that
joint domain training can improve performance compared to training only on the in-domain data.

The methods proposed and applied in the paper vary significantly in term of complexity and engineer-
ing effort needed to execute them. Therefore, we will analyze the results in each domain considering
ease of use and scalability, with the major focus still on data reduction while maintaining performance.

70

Data Reduction Rate (%) Data Reduction Rate (%)
1000 972 944 916 888 '86.0 832 1000 964 928 89.2 855 819 783 747

S2S Bucketed
S2S+DDA
—— BART+DDA
80

Tree Accuracy (%)
[ec]
[3;]

—+— S2S+KD
s —+— S2S+KD+DDA
—— S2S+JT .
. Alarm 525 BASE Time
0 200 400 600 800 1000 0 200 400 600 800 1000 1200

100.0 76.4 68.5

S A e (R R—
>
Q
g
S 85
[&]
(&)
<
@ 80
'_
75
Reminder Weather
70
0 500 1000 1500 2000 2500 0 2000 4000 6000
Number of Training Samples Number of Training Samples

Figure 1: Change of tree accuracy vs. training data size and data reduction for the proposed approaches.

BART+DDA, S2S+KD and S2S+KD+DDA improved the performance in all of the domains. How-
ever, deploying them to production was not justified for all the domains due to higher development
and maintenance resources required. Specifically, BART+DDA has very high latency. S2S+KD and
S2S5+KD+DDA provide similar latency as the S2S variants. However, they require multiple engineering
steps including training 3 models sequentially: First, fine-tune a BART+DDA model on a small dataset,
followed by auto-annotating large amounts of unlabelled data for augmentation. Finally, S2S+KD and
S2S+KD+DDA are trained sequentially on the augmented dataset.

It is also not trivial to create non-annotated query and MR pairs for a new domain. Language ex-
pansion may also prove difficult as the cross-lingual mBART (Liu et al., 2020) is only available for 25
languages, and cross-lingual extension of the auto-annotation techniques should be verified. KD variants
are mostly beneficial where the required resources for annotating more data are high. Moreover, the
gap between KD variants and S2S+DDA might diminish with the addition of 500-1000 examples. The
balance between the required data annotation resources and the required engineering resources should
be considered during approach selection based on the domain complexity.

4.1 Alarm Domain

Alarm was the least complex domain studied here. There were only 286 fine-grained (1PerFBQ) buckets,
which were reduced to 188 buckets after the variation in user query was ignored (1PerFB). As shown
in Table 5 and Figure 1, S2S Bucketed (1PerCB, 1PerMB, 1PerFB, and 1PerFBQ) experiments did
not perform as well as other approaches. Interestingly, S2S+DDA did not perform as well as in other
domains, which was probably due to the extremely low training data size in Alarm. However, combining
Alarm with Reminder data improved the performance considerably (S2S+JT). S2S+JT tree accuracy

71

BLEU TREE e DATA TREEACC
Data Approach SCORE ACCURACY Acceptability REDUCTION STDEV
ALL S2S BASE 93.3 99.8 - 0.0 0.1
5PerMB+Reminder S2S+JT 92.7 99.6 93.8 93.7 1.3
1PerFBQ+Reminder S2S+JT 92.6 97.6 83.5 96.1 2.8
TPerFBQ S2S 91.6 85.0 67.0 96.1 16.2
1PerFB S2S 92.3 91.8 75.0 97.4 28.6
TPerFBQ S2S+DDA 92.7 93.4 77.3 96.1 14.3
1PerFB BART+DDA 92.8 98.4 90.7 97.4 10.0
1PerFB S2S+KD 93.2 99.8 92.8 97.4 0.1
1PerFB S2S+KD+DDA 93.2 99.8 93.8 97.4 0.1

Table 5: Results on selected Alarm domain experiments in percentage.

reached within 0.2% of the S2S BASE case with a data reduction rate of 93.7%. The KD variants had
the highest performance but they required higher development and maintenance resources.

4.2 Time Domain

Time was the second simplest domain in this study. There were 860 fine-grained buckets, which were
reduced to 330 buckets when the variation in user query was ignored. However, Time was unique in
having tense as an argument which could result in errors that could pass tree accuracy.

S2S Bucketed (1PerCB, 1PerMB, 1PerFB, and 1PerFBQ) showed significantly lower performance
both in terms of tree accuracy and acceptability compared to the S2S BASE experiment. S2S+DDA with
1PerFBQ data achieved tree accuracy of 99.6%, which was just 0.4% lower than S2S BASE (Figure 1).
In addition, S2S+DDA represented a data reduction of 85.0%. Similar to Alarm, the KD variants perform
the best but they require higher engineering resources.

4.3 Reminder Domain

Reminder was the second most complex domain with more than 1900 fine-grained buckets (1PerFBQ).
As shown in Table 7 and Figure 1, S2S Bucketed experiments with limited data (1PerCB, 1PerMB,
1PerFB, and 1PerFBQ) significantly under performed compared to the S2S BASE case. S2S+DDA
with 1PerFB achieve tree accuracy of 96.3% with data reduction of 92.5%. However, a specific issue
with change of ordering was detected during the human evaluations, which resulted in considerably
low acceptability. A more comprehensive implementation of tree accuracy will be worked on to solved
this issue. While joint-training increased both tree accuracy and acceptability over the S2S Bucketed
experiments, other methods still outperformed joint-training.

S2S5+KD and S2S+KD+DDA performed higher than other methods. Specifically, S2S+KD+DDA
with a data reduction of 92.5% achieved tree accuracy of 98.3%, which was within 1.0% of the S2S

BLEU TREE - DATA TREEACC
Data Approach SCORE ACCURACY Acceptability REDUCTION STDEV
ALL S2S BASE 95.9 100 - 0.0 0.1
1PerFBQ S28 954 97.7 90.0 85.0 2.5
1PerFBQ S2S+DDA 95.7 99.6 96.7 85.0 4.8
1PerFBQ BART+DDA 95.5 99.6 98.0 85.0 0.2
1PerFBQ S2S+KD 95.8 99.9 98.0 85.0 0.1
1PerFBQ | S2S+KD+DDA 95.8 100.0 99.3 85.0 0.1
1PerFB S2S+KD+DDA 94.6 100.0 98.6 94.0 0.1
Table 6: Results on selected Time domain experiments in percentage.
BLEU TREE o DATA TREEACC
Data Approach SCORE Accuracy ACCePability poiicrion STDEV
ALL S2S BASE 92.6 99.3 - 0.0 0.1
5PerMB+Alarm S2S+JT 92.4 97.6 88.7 82.6 1.3
1PerFBQ+Alarm S2S+JT 92.8 97.6 88.0 80.0 0.9
1PerFBQ S28 92.1 95.6 83.3 80.0 0.3
1PerFB S28 90.4 85.7 47.3 92.5 27.0
1PerFB S2S+DDA 92.1 96.3 84.0 92.5 26.0
1PerFB BART+DDA 91.5 97.1 86.7 92.5 1.6
1PerFB S2S+KD 91.9 98.1 89.3 92.5 0.2
1PerFB S2S+KD+DDA 91.9 98.3 94.0 92.5 0.2

Table 7: Results on selected Reminder domain experiments in percentage.
72

BASE experiment. Higher model maintenance resources will be required here as well, which might
provide incentives for more data collection and ensuring higher data quality to improve the performance
of S2S+DDA or S2S+JT to production levels.

4.4 Weather Domain

Weather was the most complex domain in this study. There were thousands of possible scenarios and
the dataset size was considerably larger, accordingly. As demonstrated in Table 8, even a simple method
such as S2S with only 1PerMB data achieved performance within 1.0% of the S2S BASE case with a
data reduction rate of 74.8%. This is due to the high variety in the data that results in creation of more
than 6400 medium-grained buckets, which was considerably higher than other domains. Therefore, we
sub-sampled the buckets aggressively to examine the extent of possible data reduction.

Using only 1/4 of the fine-grained buckets to train the models in the S2S+KD and S2S+KD+DDA
approaches resulted in tree accuracy values within 2.0% of the S2S BASE case. However, BART+DDA
and S2S+DDA did not perform comparable to the KD variants. In addition, S2S+KD and S2S+KD+DDA
provided low latency, which made the 92.5% data reduction very favorable. In complex domains such as
Weather, deploying models trained with more complex approaches that require higher development and
maintenance resources is justified by high data-efficiency gains (19,000 fewer training samples here).

Data Approach BLEU TREE DATA TREEACC
SCORE ACCURACY REDUCTION STDEV

ALL S2S BASE 91.4 91.4 0.0 0.1
1PerMB S2S 90.7 90.6 74.8 0.3
0.5PerFB S2S+DDA 89.8 86.6 85.0 18.5
0.25PerFB BART+DDA 89.2 86.2 92.5 1.8
0.25PerFB S2S+KD 89.7 89.4 92.5 0.1
0.25PerFB | S2S+KD+DDA 89.8 89.8 92.5 0.1

Table 8: Results on selected Weather domain experiments in percentage.
5 Conclusions

Several considerations are necessary for deploying model-based task-oriented dialogue systems to pro-
duction. While increasing data efficiency was the primary goal of our study, we also considered and
balanced data efficiency gains with several other factors such as acceptability, latency, and the required
development and maintenance resources. Focusing on four datasets for domains with varying level of
complexity, we propose a sequential domain development run-book, where development of different
domains can halt at different steps based on model performance evaluation. The steps are as follows:

* Bucketing MRs based on a structure (tree-based here) in the data to avoid unnecessary and imbal-
anced data collection. Collect 1-3 examples per bucket. Train a model and evaluate it.

e If data for domains with similar tasks and semantics (like Reminder and Time) are available, Per-
form joint-training possibly followed by in-domain fine-tuning. Evaluate the model performance.

¢ Implement Dynamic Data Augmentation (DDA) to reduce the dependency of responses on inter-
changeable argument values. Train with DDA and evaluate the model performance.

* First, use pre-trained models (e.g. BART) to generate responses for unlabelled data. Then, combine
the augmentation data with human-annotated data and train a small model (KD). Finally, fine-tune
the model using DDA with the small human-annotated data. Evaluate the model performance.

* If necessary, collect more examples per MR bucket and start from the beginning to deploy the model
with the lowest required development and maintenance resources.

Acknowledgements

We would like to thank our reviewers for their helpful feedback. Many thanks to our linguistic engi-
neering team (Anoop Sinha, Shiun-Zu Kuo, Catharine Youngs, Kirk LaBuda, Steliana Ivanova, Ceci
Pompeo, and Briana Nettie) for their hard work and for being great partners in this effort. We would also
like to thank Jinfeng Rao, Kartikeya Upasani, Ben Gauthier, and Fiona Yee for their contributions.

73

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani, Michael White, and Rajen Subba. 2019. Constrained
decoding for neural NLG from compositional representations in task-oriented dialogue. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, July. To appear.

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Ifiigo Casanueva, Stefan Ultes, Osman Ramadan,
and Milica Gasic. 2018. Multiwoz-a large-scale multi-domain wizard-of-oz dataset for task-oriented dialogue
modelling. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 5016-5026.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu, and William Yang Wang. 2020. Few-shot nlg with pre-
trained language model. Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

Robert Dale. 2020. Natural language generation: The commercial state of the art in 2020. Natural Language
Engineering. To appear.

Ondrej Dusek and Filip Jurcicek. 2016. Sequence-to-sequence generation for spoken dialogue via deep syntax
trees and strings. In The 54th Annual Meeting of the Association for Computational Linguistics, page 45.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017. The WebNLG chal-
lenge: Generating text from RDF data. In Proceedings of the 10th International Conference on Natural Lan-
guage Generation, pages 124—133, Santiago de Compostela, Spain, September. Association for Computational
Linguistics.

Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural language generation: Core tasks,
applications and evaluation. Journal of Artificial Intelligence Research, 61:65-170.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’ Aurelio Ranzato. 2020. Revisiting self-training for neural sequence
generation. In International Conference on Learning Representations.

Chris Kedzie and Kathleen McKeown. 2019. A good sample is hard to find: Noise injection sampling and self-
training for neural language generation models. In Proceedings of the 12th International Conference on Natural
Language Generation, pages 584-593, Tokyo, Japan, October—November. Association for Computational Lin-
guistics.

Yoon Kim and Alexander Rush. 2016. Sequence-level knowledge distillation. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Processing, pages 1317-1327.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. the 3rd International
Conference for Learning Representations.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoy-
anov, and Luke Zettlemoyer. 2019. Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv preprint arXiv:1910.13461.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke
Zettlemoyer. 2020. Multilingual denoising pre-training for neural machine translation. In arXiv preprint
arXiv:2001.08210.

Jekaterina Novikova, Ondiej DuSek, and Verena Rieser. 2017. The e2e dataset: New challenges for end-to-end
generation. arXiv preprint arXiv:1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei Jing Zhu. 2002. Bleu: a method for automatic evaluation
of machine translation. In Proc. ACL-02.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng, and Jianfeng Gao. 2020.
Few-shot natural language generation for task-oriented dialog. arXiv preprint arXiv:2002.12328.

74

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word represen-

tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532-1543.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners. OpenAl Blog, 1(8):9.

Jinfeng Rao, Kartikeya Upasani, Anusha Balakrishnan, Michael White, Anuj Kumar, and Rajen Subba. 2019. A
tree-to-sequence model for neural nlg in task-oriented dialog. In Proceedings of the 12th International Confer-
ence on Natural Language Generation, pages 95-100.

Ehud Reiter and Robert Dale. 2000. Building Natural-Language Generation Systems. Cambridge University
Press.

Pararth Shah, Dilek Hakkani-Tiir, Bing Liu, and Gokhan Tiir. 2018. Bootstrapping a neural conversational agent
with dialogue self-play, crowdsourcing and on-line reinforcement learning. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 3 (Industry Papers), pages 41-51, New Orleans - Louisiana, June. Association for Com-
putational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104-3112.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksié, Pei-Hao Su, David Vandyke, and Steve Young. 2015. Semanti-
cally conditioned LSTM-based natural language generation for spoken dialogue systems. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages 1711-1721. Association for
Computational Linguistics.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina M. Rojas-Barahona, Pei-Hao Su, David Vandyke, and Steve
Young. 2016. Multi-domain neural network language generation for spoken dialogue systems.

75

6 Appendix

6.1 Detailed Experimental Results

BLEU TREE o1 DATA TREEACC
Data Approach SCORE ACCURACY Acceptability REDUCTION STDEV
BASE S2S8 93.3 99.8 - 0.0 0.1
1PerCB S2S 51.5 0.6 5.2 99.6 35
1PerMB S28 87.0 56.2 38.1 98.3 23.9
SPerMB+Reminder S2S+JT 92.7 99.6 93.8 93.7 1.3
3PerFB+Reminder S2S+JT 92.7 98.1 91.7 94.0 2.0
TPerFBQ+Reminder S2S+JT 92.6 97.6 83.5 96.1 2.8
1PerFBQ S28 91.6 85.0 67.0 96.1 16.2
1PerFB S2S 92.3 91.8 75.0 974 28.6
1PerFBQ S2S+DDA 92.7 934 77.3 96.1 14.3
1PerFB S2S+DDA 91.6 83.8 67.0 974 20.9
1PerFBQ BART+DDA 92.5 99.8 93.8 96.1 1.3
1PerFB BART+DDA 92.8 98.4 90.7 97.4 10.0
1PerFBQ S2S+KD 92.9 99.9 94.8 96.1 0.1
1PerFB S2S+KD 93.2 99.8 92.8 97.4 0.1
1PerFBQ S2S+KD+DDA 92.9 99.9 94.8 96.1 0.05
1PerFB S2S+KD+DDA 93.2 99.8 93.8 974 0.1

Table 9: Results on all Alarm domain experiments. All metrics are percentages.

BLEU TREE o1 DATA TREEACC
Data Approach SCORE ACCURACY Acceptability REDUCTION STDEV
ALL S2S BASE 95.9 100 - 0.0 0.1
1PerCB S2S 76.1 12.1 1.3 99.7 49
1PerMB S2S 92.3 80.1 61.3 94.8 16.5
1PerFBQ S2S 954 97.7 90.0 85.0 2.5
1PerFB S2S 93.5 89.1 76.7 94.0 7.6
1PerFBQ S2S+DDA 95.7 99.6 96.7 85.0 4.8
1PerFB S2S+DDA 94.9 97.8 87.3 94.0 10.2
1PerFBQ BART+DDA 95.5 99.6 98.0 85.0 0.2
1PerFB BART+DDA 93.8 96.1 90.7 94.0 1.7
1PerFBQ S2S+KD 95.8 99.9 98.0 85.0 0.1
1PerFB S2S+KD 94.6 99.8 96.0 94.0 0.1
1PerFBQ | S2S+KD+DDA 95.8 100.0 99.3 85.0 0.1
1PerFB S2S+KD+DDA 94.6 100.0 98.6 94.0 0.1

Table 10: Results on all Time domain experiments. All metrics are percentages.

BLEU TREE — DATA TREEACC
Data Approach SCORE Accuracy Acceptability oo, cTion STDEV

ALL S2S BASE 92.6 99.3 - 0.0 0.1
1PerCB S2S 159 0.1 0.6 99.3 0.2
1PerMB S2S 89.94 75.7 28.0 94.2 22.4
SPerMB+Alarm S2S+JT 92.4 97.6 88.7 82.6 1.3
3PerFB+Alarm S2S+JT 92.6 98.1 86.0 82.0 2.2
1PerFBQ+Alarm S2S+JT 92.8 97.6 88.0 80.0 0.9
1PerFBQ S2S 92.1 95.6 83.3 80.0 0.3
1PerFB S2S 90.4 85.7 47.3 92.5 27.0
1PerFBQ S2S+DDA 92.3 96.9 82.0 80.0 0.2
1PerFB S2S+DDA 92.1 96.3 84.0 92.5 26.0
1PerFBQ BART+DDA 92.1 98.3 93.3 80.0 0.2
1PerFB BART+DDA 91.5 97.1 86.7 92.5 1.6
1PerFBQ S2S+KD 92.6 98.7 92.0 80.0 0.2
1PerFB S2S+KD 91.9 98.1 83.3 92.5 0.2
1PerFBQ S2S+KD+DDA 92.6 98.9 96.0 80.0 0.2
1PerFB S2S+KD+DDA 91.9 98.3 94.0 92.5 0.2

Table 11: Results on all Reminder domain experiments. All metrics are percentages.

76

Data Approach BLEU TREE DATA TREEACC
SCORE ACCURACY REDUCTION STDEV

ALL S2S BASE 914 914 0.0 0.1
1PerCB S28 88.1 77.9 91.2 2.6
1PerMB S28 90.7 90.6 74.8 0.3
1PerFB S28 91.3 914 40.0 0.1
1PerFB S2S+DDA 91.3 91.1 40.0 0.1
0.5PerFB S2S+DDA 89.8 86.6 85.0 18.5
0.25PerFB S2S+DDA 87.3 77.8 92.5 12.3
0.5PerFB BART+DDA 90.2 89.9 85.0 1.7
0.25PerFB BART+DDA 89.2 86.2 92.5 1.8
0.5PerFB S2S+KD 90.8 90.9 85.0 0.1
0.25PerFB S2S+KD 89.7 89.4 92.5 0.1
0.5PerFB | S2S+KD+DDA 90.8 91.0 85.0 0.1
0.25PerFB | S2S+KD+DDA 89.8 89.8 92.5 0.1

Table 12: Results on all Weather domain experiments. All metrics are percentages.

77

