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Abstract

Advances in Natural Language Inference (NLI) have helped us understand what state-of-the-art
models really learn and what their generalization power is. Recent research has revealed some
heuristics and biases of these models. However, to date, there is no systematic effort to capitalize
on those insights through a system that uses these to explain the NLI decisions. To this end, we
propose XplaiNLI, an eXplainable, interactive, visualization interface that computes NLI with
different methods and provides explanations for the decisions made by the different approaches.

1 Introduction

We present XplaiNLI, an interactive visualization, web-based interface that computes Natural Language
Inference (NLI) with three different approaches and provides sketches of explanations for the decision
made by each approach.! An overview of XplaiNLI is found in Figure 1. The user on the frontend (right)
inputs a premise (P) and a hypothesis (H). The pair is passed to the backend (left) where it goes through a
symbolic and a deep learning (DL) component, which compute an inference label each. Each component
also determines the rules and features that lead to the decision: for the symbolic one, we use Natural
Logic (Valencia, 1991) inference rules to explain the inference label, while for the DL approach, we use
insights gained from relevant work (Naik et al., 2018; Gururangan et al., 2018; Dasgupta et al., 2018;
McCoy et al., 2019) to account for the decision. The complete output enters the hybrid component, which
combines the strengths of the symbolic NLI engine and the DL model and determines which approach’s
label should be trusted based on semantic characteristics of the sentences. All output is forwarded to the
frontend, where an intuitive visualization encodes the inference labels of the three approaches as well the
corresponding explanations. The user can interact further with the interface by adding her own heuristics
and by providing feedback on the inference label, which is used for improving the separate components.

2 Related Work

Work on interpretability for NLI is still at an early stage. One strand of research explains the models by
“stress-testing” them and revealing the phenomena that the models cannot handle or by detecting bias in
the training data (Gururangan et al., 2018; Dasgupta et al., 2018; McCoy et al., 2019, inter alia). Another
strand of research has approached the task by directly learning natural language explanations along with
the inference decision (Camburu et al., 2018) or creating distributional representations of syntactic and
semantic inference rules (Zanzotto and Ferrone, 2017) and training machine-learning models on them.
Although all these approaches shed light on the processes behind the reasoning task, the insights gained
have not yet been used in their full potential; XplaiNLI seeks to fill this gap.

3 XplaiNLI Backend Model

The backend outputs the inference relation for a given pair, as well as the features that lead to that decision,
based on each of the following three approaches. The exact backend implementation and the performance
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

'Video: dropbox.com/s/mbgn3u6ilngohel/XplaiNLI.mp4?2dl=0 Demo: bit.ly/XplaiNLI Code:
https://github.com/kkalouli/XplaiNLI
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Figure 1: The high-level architecture of XplaiNLI: on the left, the three NLI approaches providing an
inference label and explainable features, and on the right, the interactive, explainable, visual frontend.

of each of the approaches is detailed in Kalouli et al. (2020); this paper focuses on explainability.

3.1 The Deep Learning Component

For the DL component we use BERT-base (Devlin et al., 2018), one of the state-of-the-art models for
NLI, which we fine-tune for our task. For fine-tuning, we use the SemEval 2014 version of SICK (Marelli
et al., 2014). We utilize a corrected version of the corpus (Kalouli et al., 2018)? to mitigate some of the
shortcomings of the original corpus, e.g., event and entity coreference issues. We do not fine-tune on other
commonly-used benchmarks, such as MNLI (Williams et al., 2017), as these corpora suffer from similar
problems. For fine-tuning, we use the HuggingFace implementation® and we fine-tune the parameters
suggested by the authors: batch size, learning rate and number of epochs. Our best performing model
uses a batch size of 32, learning rate of 2e-5 and 3 epochs. The trained model classifies an input pair into
E(ntailment), C(ontradiction) or N(eutral).

To provide potential explanations for the model’s decision, we implement the findings of Naik et
al. (2018), Gururangan et al. (2018), Dasgupta et al. (2018) and McCoy et al. (2019). Their work has
revealed specific heuristics and artifacts that arguably appear in the training sets of these models and can
thus explain to some extent the way the models label a pair. Particularly, we implement four kinds of
heuristics/explanations. First, the presence of negation. As observed by Naik et al. (2018), Dasgupta et
al. (2018) and McCoy et al. (2019), negation words such as no, not, don’t, nobody, etc. make the model
predict C, consistent with the heuristic found in the SNLI training set. Second, we follow Dasgupta et al.
(2018), Naik et al. (2018) and McCoy et al. (2019) and compute the lexical overlap of the two sentences.
It is argued that whenever H is completely contained in P, the models tend to predict E, no matter the word
order or other constraints. The third heuristic of sentence length is similar (Naik et al., 2018; Gururangan
et al., 2018): Hs that are much longer than their Ps tend to be neutral, while Hs that are shorter than
their Ps tend to be entailed. Last, we add relation-specific word heuristics. According to the findings
of Gururangan et al. (2018), specific words being present in H or/and P are characteristic for a specific
inference relation. So, generic words like animal, instrument, outdoors are mostly found in the Hs of
entailments, while modifiers and superlatives like sad, tall, best, first are mostly found in neutral pairs.

3.2 The Symbolic Component

The symbolic component implements a version of Natural Logic (NL) (Valencia, 1991). NL attempts to
explain inferences through monotonicity, i.e., by whether the concepts expressed in a sentence can become
“more general” or “more specific” salva veritate. For example, in the sentence a woman is walking, woman

2 Available under github.com/kkalouli/SICK-processing
3 Available under github.com/huggingface/transformers
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can be replaced by the more general person while preserving truth. The symbolic component is based on
an improved version of the Graphical Knowledge Representation (GKR) by Kalouli and Crouch (2018) —
GKR allows for the kind of inference mechanism we require. In the first stage of the process, P and H
are parsed to their GKR representations, each producing six default GKR graphs: a dependency graph,
a conceptual graph, a contextual graph, a lexical graph, a properties graph and a coreference graph. In
the next stage, the lexical graphs, which contain, for each content word, the WordNet (Fellbaum, 1998)
senses, synonyms, antonyms, hypernyms, hyponyms and the SUMO (Niles and Pease, 2001) concepts,
superconcepts and subconcepts are used to determine matches between H and P and their specificity. For
example, person in H can be matched to woman in P and be assigned the specificity superclass: person
is a hypernym of woman. One of the four specificity markers (equal, subclass, superclass, disjoint) can
be assigned. In the next stage, the determined specificities are updated based on the predicate-argument
structure of each sentence, captured in the concept graph. For instance, woman is a subclass of person but it
is not a subclass of fall person (not all women are tall). For the two terms of a match, the system considers
if both, none or only one of them have dependents (modifiers/arguments) in their respective concept graph.
Based on that, different update rules apply. For example, if person in H has additional dependents such
as tall but woman in P does not, then the match becomes more specific: since H (person) was already
more general than P (woman) (specificity superclass), then making this match more specific leads to the
specificity becoming undetermined (none). After updating all H-P matches, the exact inference relation is
determined based on the GKR context graphs, the instantiabilities they contain and the specificities of the
matches. For example, if the H-term is instantiated and more or equally specific than the uninstantiated
P-term (a woman — no woman), there is a contradiction. If the H-term is instantiated and more general (a
person — no woman) than the P-term, we cannot determine the relation. Similarly for entailments: if the
match is equally or more specific and both terms are instantiated, there is an entailment (a woman - a
woman. See Kalouli et al. (2020) for more details on the symbolic engine.

These rules, i.e. the exact combinations of specificity relations and contexts, can be used straight-
forwardly to explain the decision made by the symbolic component.

3.3 The Hybrid Component

The hybrid approach is based on the fact that distributional features are suitable for dealing with conceptual
aspects of the meanings of words, phrases, and sentences, but struggle with Boolean and contextual
phenomena like modals, quantifiers, negation, implicatives, propositional attitudes, conditionals, etc.
(Dasgupta et al., 2018; Naik et al., 2018; McCoy et al., 2019, to name only a few). These are phenomena
to which more symbolic/structural approaches are well suited. Thus, we expect that “easy” cases which do
not involve such phenomena will be best handled by the DL approach, while hard linguistic phenomena
like the ones mentioned will be best handled by the symbolic approach. Thus, the hybrid component
determines whether to use the symbolic or the DL label as its own inference label, based on specific
semantic characteristics of the pair.

During training, the hybrid classifier learns for each pair which of the components delivers the right
label (again based on the SICK-train corpus): the symbolic one (S), the DL one (DL) or both of them (B).*
With this, the classifier indirectly learns whether the pair is “easy” or hard: if S is right, the pair is probably
hard; if DL is right, the pair is probably easier; if both are right, we cannot make any claims about the
nature of the pair. The learning is based on the implemented rules of the symbolic component (cf. Section
3.2), which are converted to features, e.g., the pair P: The woman is walking. H: The person is not walking
would be assigned the features veridical, antiveridical, superclass because the match person-woman has
the superclass specificity and the highest match walk-walk is instantiated in P and uninstantiated in H.
These features (rules) capture the effects of hard linguistic phenomena like modals, negation, quantifiers,
implicatives, factives, etc. To target explainability and as decision trees have been shown to be one of the
most interpretable models (Guidotti et al., 2018), we train a Random Forest classifier (Gini impurity) with
30 estimators:> each pair is classified as one of S, DL or B, and then mapped to the respective label: if

*If none of them delivers the right label, then we cannot make any claims about the nature of the pair.
>This classifier is different from the one in Kalouli et al. (2020), where the focus is on performance rather than explainability.
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classified as S or DL, the symbolic or the DL inference label are used, respectively; if classified as B, then
either one of S or DL can be chosen but we use the DL label for higher robustness.
The features used for prediction are also used for explainability purposes.

4 Explainable Visual Interface

The user interface (Figure 1, right) features three main components, all emphasizing the role of the
human-in-the-loop. Two text fields (for P and H) allow users to insert the inference pair to be computed.

Visualizing Explanations With the submission of the input pair, the system on the backend computes
one inference label for each approach as well as explanations for each label. The results are visualized
with an intuitive visualization schema (Figure 1, right): each sentence of the pair is presented along with
all features that could lead to a certain inference label. On the left side, the user can find the features
(rules) of the symbolic approach and on the right, the features of the DL model. The features that are
relevant for this pair are colored and contain v/, if the feature’s value is true, or no v/, if the value is false.
The color of the features encodes the inference relation that each approach predicted: green is for E, red
for C and grey for N. Some DL features might have lower opacity: this means that they should — according
to the literature — lead to a different label than the one actually predicted by the model. In this way, the
user can verify previous literature findings or discover new patterns. The colored features are then linked
with the predicted inference label, also encoded by color. No link between the DL features and the label
means that the prediction is not based on any of these features. In the middle of the visualization, the user
can find the label of the hybrid approach, marked with bold text. Again, links visualize the behavior of the
approach: if there is a link between the symbolic decision and the hybrid one, the hybrid approach chose
the symbolic label; if the link is between the DL label and the hybrid one, the hybrid approach chose the
DL Iabel. If both links exist, then the labels of symbolic and DL were the same and so the hybrid approach
just chose one of them. In terms of visualization, all features used for the hybrid decision are marked with
a grey H in increasing opacity: the darker the color, the more weight this feature had for the decision.

User-defined Heuristics Along with the input pair, users can also input words — also words not found
in P or H — that are expected to act as heuristics for a certain inference relation. The option of input words
is available for both P and H and for all three inference relations. For instance, the user can insert the
word asleep in the Contradiction field of H to check the artifact that hypotheses containing the word
asleep are bound to be labeled as C by a DL model. Due to the system’s architecture (see Section 3), only
the DL model might get explained by additional heuristics; the symbolic approach is based on predefined
inference rules and the hybrid approach uses semantic features to make its decision, independently from
surface heuristics. The current version of the system only supports the search for specific words as
heuristics; future versions will extend to further user-defined heuristics, e.g. Part-Of-Speech tags.

Learning from User Feedback The labels of the hybrid decision are at the same time clickable buttons
for users to provide their annotation of the pair. With this annotation, an (offline) learning process is
initiated: the pair and the user’s annotation are added to the training pool of the DL model so that the
model can be re-trained on increasingly large data. Whenever enough data has been collected, the model
is re-trained; this re-training also triggers the re-training of the hybrid model, leading to improved results.

5 Conclusion

This paper presented an interactive visualization interface for explainable NLI. The interface uses three
different approaches to compute inference and visualizes the features that lead to each decision. In contrast
to black-box machine-learning models, this approach enables users to get intuitions of the decision-making
process (Spinner et al., 2020), as well as to distill linguistic knowledge about the analyzed phenomena.
The options for user-defined heuristics and user-driven learning can help refine the used models and
components and optimize them to the users’ intuition and domain understanding. To increase explainability
and comparability, future work will allow the user to a) choose between different DL models for training,
b) choose between hybrid models trained on different datasets, c) define their own rules for the hybrid
classifier, and d) display the decision tree of the hybrid classifier for better exploration.
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