
Proceedings of the 27th International Conference on Computational Linguistics, pages 18–22
Barcelona, Spain (Online), December 12, 2020.

18

Demo Application for the AutoGOAL Framework

Suilan Estevez-Velarde1, Alejandro Piad-Morffis1, Yoan Gutiérrez2,3,
Andrés Montoyo2,3, Rafael Muñoz2,3, and Yudivián Almeida-Cruz1

1School of Math and Computer Science, University of Havana, Cuba
{sestevez,apiad,yudy}@matcom.uh.cu

2University Institute for Computing Research (IUII), University of Alicante, Spain
3Department of Languages and Computing Systems, University of Alicante, Spain

{ygutierrez,montoyo,rafael}@dlsi.ua.es

Abstract

This paper introduces a web demo that showcases the main characteristics of the AutoGOAL
framework. AutoGOAL is a framework in Python for automatically finding the best way to
solve a given task. It has been designed mainly for automatic machine learning (AutoML) but
it can be used in any scenario where several possible strategies are available to solve a given
computational task. In contrast with alternative frameworks, AutoGOAL can be applied seamlessly
to Natural Language Processing as well as structured classification problems. This paper presents
an overview of the framework’s design and experimental evaluation in several machine learning
problems, including two recent NLP challenges. The accompanying software demo is available
online1 and full source code is provided under the MIT open-source license2.

1 Introduction

The field of machine learning has applications across a wide range of computational problems in different
domains. However, given the vast quantity of resources and technologies available, often one of the
most difficult challenges is to select the best combination of them when a specific problem is faced.
Researchers often spend a significant amount of time and computational resources exploring multiple
approaches in search of optimal configurations. The field of automatic machine learning (AutoML) has
risen to prominence as a principled alternative for finding optimal or close to optimal solutions to complex
machine learning problems (Hutter et al., 2018). Several software libraries have been created, which
leverage existing machine learning technologies and provide AutoML features built on them. Most existing
AutoML tools focus on a specific family of algorithms (such as neural networks) or a specific problem
setting (such as supervised learning from tabular data). Hence, despite the recent success of AutoML,
several challenges still remain, specially in complex domains such as natural language processing, where
tools and technologies from different sources must be combined.

This work presents AutoGOAL, a software library for AutoML that can seamlessly combine technolo-
gies and resources from different frameworks. To unify disparate APIs into a single interface, AutoGOAL
proposes a novel graph-based representation for machine learning pipelines. Furthermore, a search
strategy based on probabilistic grammatical evolution is used to discover optimal machine learning
pipelines (Estevez-Velarde et al., 2019) whose components can be from different back-end libraries. A
showcase web application is provided to illustrate the use of the framework.

The key features of AutoGOAL are:

Ease of use: AutoGOAL provides high-level classes that non-experts can use as black-box AutoML
solutions, compatible with several data types including text, images and structured (tabular) data.

Multiple domains: AutoGOAL comes prepackaged with 133 plus adapters of existing algorithms, from
7 different back-end libraries, for multiple problems including text preprocessing, feature extraction,

1https://autogoal.github.io/demo
2https://autogoal.github.io

This work is licensed under a Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/.



19

dataset augmentation, dimensionality reduction, as well as supervised and unsupervised learning
techniques.

Extensibility: AutoGOAL proposes a simple programming interface that developers can implement to
create an automatically discoverable adapter for an existing technology from any machine learning
framework.

This paper focuses on the engineering design of AutoGOAL by introducing a demo application using the
library to solve several machine learning problems, organised as follow: Section 2 describes AutoGOAL
from the perspective of a user of the library. Section 3 describes the library’s design. Section 4 presents
experimental results of the application of AutoGOAL to several different machine learning problems.
Finally, Section 5 presents the conclusions and recommendations for future work.

2 Library Usage

AutoGOAL can be used as a software library in the Python programming language. This library is oriented
towards two machine learning user profiles: non-experts and experts, and provides a High-Level and
Low-Level API respectively.

High-Level API (non-experts): This API allows AutoGOAL to be used as a black-box classification
or regression algorithm with an interface similar to the scikit-learn library (Pedregosa et al., 2011).
Behind this interface, a complete process including preprocessing, feature selection, dimensionality
reduction, and learning is performed. The user must define a dataset for training and evaluation, a
metric to optimise (which defaults to accuracy) and the type of input and output data. In many cases
AutoGOAL can automatically infer the input and output type from the dataset. Input and output types
can vary from tabular data to complex types such as images, natural language text with different
semantic structures, and combinations thereof. Figure 1 shows an illustrative example source code,
specifically in the context of a text classification problem.

1 from autogoal.ml import AutoML
2 from autogoal.datasets import haha
3 # import lines for semantic datatypes
4

5 automl = AutoML(
6 # problem-specific input and output (semantic datatypes)
7 input=List(Sentences()),
8 output=CategoricalVector()
9 # additional parameters for timeout, memory, iterations, etc.

10 )
11

12 X, y = haha.load() # load problem-specific dataset
13 automl.fit(X, y) # run optimisation

Figure 1: Example source code for running AutoGOAL on a specific dataset, in this case an NLP problem.

Low-Level API (experts): This API is designed for users with more experience that need control over
the AutoML process. For this type of user, AutoGOAL provides a simple language for defining a
grammar that describes the solution space. This is done using an object oriented approach were the
user defines a Python class for each component of the solution (e.g., each algorithm) and annotates
the parameters of these classes with attributes that describe the space of possible values, which can be
primitive value types (i.e., numeric, string, etc.) and instances of other classes, recursively. Based on
the annotations, AutoGOAL can automatically construct all possible ways in which the user classes
can be instantiated. An example code of this process is available in the online documentation.3

3https://autogoal.github.io/examples/sklearn_simple_grammar/



20

AutoGOAL

High Level API

Low Level API

Gensim SklearnNLTK Spacy KerasPythorch

FastText PorterBERT Tokenizer PCAWord2Vect SVM LSTM Naive Bayes

Dropout RegexID3 Lemmatizer POS-TagTF-IDF LDA CRF CNN

Algorithms Adapter

Grammar
Context free grammar

Distributions

Optimisation
Sampling

Probabilistic Grammatical 
Evolution

Pipelines

Algorithms graph

AutoML Class Semantic Datatypes

Algorithms 
Library

External
Libraries

Wikipedia SentiWordnetWordnet
External

Resources

Figure 2: Overall architecture of the AutoGOAL framework.

3 Implementation Details

This section presents the overall architecture of the AutoGOAL library. For reference purposes, Figure 2
illustrates the most relevant components of AutoGOAL, ranging from the High-Level API down to the
actual implementation of algorithm adapters and the interfaces to external resources and back-end libraries.
The core of the AutoGOAL library is the Low-Level API, composed of the following elements (see
Figure 2): a probabilistic context-free grammar module (Grammar); a sampling and optimisation module
(Optimisation); and, a pipeline discovery module (Pipelines).

The Grammar module provides a set of type annotations that are used for defining the hyperparameter
space of an arbitrary technique or algorithm. Each technique is represented as a Python class, and the
corresponding hyperparameters are represented as annotated arguments of the __init__ method, either
primitive values (e.g., numeric, string, etc.) or instances of other classes, recursively annotated. Given a
collection of annotated classes, this module automatically infers a context-free grammar that describes the
space of all possible instances of those classes.

The Optimisation module provides sampling strategies that traverse a context-free grammar and
recursively construct one specific instance following the annotations. Two optimisation strategies are
implemented: random search and probabilistic grammatical evolution (O’Neill and Ryan, 2001). The
latter performs a sampling/update cycle that selects the best performing instances according to some
predefined metric (e.g., accuracy on a development set) and iteratively updates the internal probabilistic
model of the sampler (Estévez-Velarde et al., 2020).

The Pipelines module provides an abstraction for algorithms to communicate with each other via an
Facade pattern, i.e., the implementation of a method run with type-annotated input and output. Classes
implementing this pattern are automatically connected in a graph of algorithms where each path represents
a possible pipeline for solving a specific problem (defined by the input and output datatypes).

The High-Level API that provides the AutoML class (see Listing 1) and the Semantic Datatypes is
built on top of this architecture, knitting together all the components of AutoGOAL. AutoGOAL also
provides an Algorithms Library of pre-made adapters for existing machine learning technologies from
External Libraries and Resources. A total of 133 algorithms from 7 different back-end libraries4 are
provided, several of which are semi-automatically created by code introspection (e.g., algorithms from
scikit-learn and nltk which conform to a consistent API and the hyperparameters are documented in a
consistent format), and the rest are manually added by the library developers. This library is undergoing
continuous expansion. Additionally, a Docker image is provided with all optional dependencies and

4Including scikit-learn, nltk, gensim, spacy, keras, pytorch, among others.



21

back-end libraries already installed5.

4 Evaluation

AutoGOAL has been evaluated in different domains and compared to other AutoML tools, including
Auto-Weka (Thornton et al., 2013), TPOT (Olson and Moore, 2016), Auto-Sklearn (Feurer et al., 2015),
and ML-Plan (Mohr et al., 2018), see Table 1. AutoGOAL is compared with other AutoML approaches in
classic datasets (Dua and Graff, 2017) but can applied to more complex domains such as text classification
in HAHA (Chiruzzo et al., 2019) and entity recognition in MEDDOCAN (Lara-Clares and Garcia-Serrano,
2019).

In terms of performance, AutoGOAL achieves comparative results with other AutoML tools in classic
datasets, with similar computational cost (1 hour per run). However, AutoGOAL’s main strength lies in its
ability to combine different tools for solving complex problems beyond structured supervised learning,
such as natural language processing, using virtually the same code, by specifying the input and output
datatypes. In these domains AutoGOAL performs comparable to state-of-the-art solutions hand-crafted
by human experts, while requiring considerably less expertise and effort (48 hours of execution).

Dataset C
ar

s

C
re

di
tG

.

A
ba

lo
ne

Sh
ut

tle

Ye
as

t

D
or

ot
he

a

G
is

et
te

H
A

H
A

M
E

D
D

.

ML-Plan (Weka) 1.27 25.54 73.72 0.01 39.37 6.49 2.92 - -
Auto-WEKA 0.66 26.50 73.46 0.12 39.72 - 3.90 - -
ML-Plan (Sklearn) 0.34 24.56 73.77 0.02 39.52 8.69 2.76 - -
Auto-Sklearn-v 1.38 25.95 82.92 0.02 40.51 6.32 2.56 - -
Auto-Sklearn-we 1.26 25.39 80.59 0.02 38.99 6.02 2.24 - -
TPOT 0.37 23.91 73.14 0.02 38.47 - - - -

AutoGOAL 0.60 27.01 74.33 0.11 39.94 5.97 2.25 21.1 3.99

Table 1: Comparison of AutoGOAL and other AutoML systems for 9 classic machine learning datasets in
terms of accuracy, except for MEDDOCAN, in which F1 is used. Values for other systems were obtained
from ML-Plan (Mohr et al., 2018).

5 Conclusion

In this paper we presented AutoGOAL, a new tool for AutoML that allows resources from different
machine learning libraries to be combined and applied to different domains with little effort. AutoGOAL
greatly simplifies the application of machine learning for non-expert users while providing powerful low-
level components for experts to effectively optimise complex machine learning pipelines. The framework
has been designed with extensibility as a priority, enabling the addition of new algorithms from any
conceivable machine learning library by conforming to a simple interface. To demonstrate its usefulness,
AutoGOAL is applied to different domains —including classic numeric datasets, text classification, and
entity recognition— achieving competitive results with the state of the art. The software is provided freely
for the research community along with a vast library of algorithms already implemented.

Acknowledgements

Funding: This research has been supported by a Carolina Foundation grant in agreement with University
of Alicante and University of Havana. Moreover, it has also been partially funded by both aforementioned
universities, the Generalitat Valenciana (Conselleria d’Educació, Investigació, Cultura i Esport) and
the Spanish Government through the projects LIVING-LANG (RTI2018-094653-B-C22) and SIIA
(PROMETEO/2018/089, PROMETEU/2018/089).

5https://hub.docker.com/repository/docker/autogoal/autogoal



22

References
Luis Chiruzzo, S Castro, Mathias Etcheverry, Diego Garat, Juan José Prada, and Aiala Rosá. 2019. Overview of

haha at iberlef 2019: Humor analysis based on human annotation. In Proceedings of the Iberian Languages
Evaluation Forum (IberLEF 2019). CEUR Workshop Proceedings, CEUR-WS, Bilbao, Spain (9 2019).

Dheeru Dua and Casey Graff. 2017. UCI machine learning repository.

Suilan Estevez-Velarde, Yoan Gutiérrez, Andrés Montoyo, and Yudivián Almeida-Cruz. 2019. AutoML strategy
based on grammatical evolution: A case study about knowledge discovery from text. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 4356–4365, Florence, Italy, July.
Association for Computational Linguistics.

Suilan Estévez-Velarde, Yoan Gutiérrez, Yudivián Almeida-Cruz, and Andrés Montoyo. 2020. General-purpose
hierarchical optimisation of machine learning pipelines with grammatical evolution. Information Sciences,
543:58–71.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. 2015.
Efficient and robust automated machine learning. In Advances in Neural Information Processing Systems, pages
2962–2970.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. 2018. Automated Machine Learning: Methods,
Systems, Challenges. Springer. In press, available at http://automl.org/book.

Alicia Lara-Clares and Ana Garcia-Serrano. 2019. Key phrases annotation in medical documents: Meddocan
2019 anonymization task.

Felix Mohr, Marcel Wever, and Eyke Hüllermeier. 2018. ML-Plan: Automated machine learning via hierarchical
planning. Machine Learning, 107(8):1495–1515, sep.

Randal S Olson and Jason H Moore. 2016. Tpot: A tree-based pipeline optimization tool for automating machine
learning. In Workshop on Automatic Machine Learning, pages 66–74.

Michael O’Neill and Conor Ryan. 2001. Grammatical evolution. IEEE Transactions on Evolutionary Computa-
tion, 5(4):349–358.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013. Auto-WEKA: Combined selec-
tion and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 847–855. ACM.


