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Abstract

We present a lightweight annotation tool, the Data AnnotatoR Tool (DART), for the general task
of labeling structured data with textual descriptions. The tool is implemented as an interactive
application that reduces human efforts in annotating large quantities of structured data, e.g. in the
format of a table or tree structure. By using a backend sequence-to-sequence model, our system
iteratively analyzes the annotated labels in order to better sample unlabeled data. In a simulation
experiment performed on annotating large quantities of structured data, DART has been shown to
reduce the total number of annotations needed with active learning and automatically suggesting
relevant labels.

1 Introduction

Neural data-to-text generation has been the subject of much research in recent years (Gkatzia, 2016).
Traditionally, the task takes as input structured data which comes in the form of tables with attribute and
value pairs, and generates free-form, human-readable text.
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Figure 1: Left: Overview of the DART toolkit usage. Right: Diagram of the framework architecture.

Past example datasets include Restaurants (Wen et al., 2015) or graph-structure inputs (Balakrishnan
et al., 2019). Analogously, most conversation systems (Williams et al., 2015; Crook et al., 2018) utilize
intermediate meaning representation (data) as input to generate natural language sentences. In practice,
however, these systems are highly reliant on the use of large-scale labeled data. Each new domain
requires additional annotations to pair the new data with matching text. With the rise in development
of natural language generation (NLG) systems from structured data, there is also an increased need for
annotation tools that reduce labeling time and effort for constructing complex sentence labels. Unlike
other labeling tasks, such as sequence tagging (Lin et al., 2019), where the labels are non-complex and
correspond to fixed sets of classes, data-to-text generation entails providing complete sentence labels for
each data instance. To construct textual description is time-consuming and therefore it can be beneficial
for the system to automatically suggest texts and allow the annotators to accept or partially correct them.
To this end, we propose to create an interactive annotation tool: Data AnnotatoR Tool (DART!) that
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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Label Programming Has Label User Use Active

System Types Language Recommendation ?  Interface  Learning ?
DART Text Python v GUI v
AlpacaTag (Lin et al., 2019) Tag Python v GUI v
YEDDA (Yang et al., 2018) Tag Python v GUI X

Table 1: A general comparison of relevant GUI-based annotation tools.

reduces structured data-to-text annotation efforts by incorporating automatic label suggestion and the
uncertainty-based active learning algorithm (Lewis and Catlett, 1994; Culotta and McCallum, 2004).
DART serves as a natural complement to downstream data-to-text systems, rather than an end-to-end
NLG system. As such, it can assist in the development of both traditional rule-based systems (e.g.
(Reiter, 2007)), and the recent neural systems (e.g. (Balakrishnan et al., 2019; Chang et al., 2020; Shen
et al., 2020; Hong et al., 2019)).

As a lightweight, standalone desktop application, DART can be easily distributed to domain experts
and installed on local devices. DART consists of a user-friendly interface that allows experts to iteratively
improve the overall corpus quality with partial corrections. Overall, the toolkit provides three advantages:
(1) It reduces labeling difficulty by automatically providing natural language label recommendations; (2)
It efficiently solicits data for which it has low confidence (or high uncertainty) in its generated text to be
annotated, so that overall annotation efforts can be reduced; (3) Lastly, it provides real-time in-progress
updates with statistics about the labeled corpus as to help direct the overall annotation process. This is
achieved with a myriad of quality estimators that assess corpus diversity and the overall text quality.

2 Annotation Framework

DART is a desktop application built with PyQt5%. It is compiled into a single executable with PyIn-
staller?, a tool that supports both Mac OS and Windows environments. It contains an intuitive interface
as described in section 3. Annotation experts interact with DART in the following way: (1) A file con-
taining unlabeled data is uploaded. (2) The system samples some data instances from the file, with a
selection strategy based on signals from the sequence-to-sequence uncertainty scorer (section 2.1) and
performed with the data sampler (section 2.2). (3) Experts then annotate the provided data by correcting
the suggested labels (available after the first iteration of (1)-(2)). (4) During the process of annotation,
the labeled corpus quality is indicated by the annotation quality estimators (section 2.3) for experts to
determine if the process were to be terminated. We discuss each component in more detail below.

2.1 Uncertainty Scorer

We represent the structured unannotated corpus as D = dfil where each data sample d; comprises of a
token sequence linearized from underlying structured data samples x;, as motivated by past works in the
multilingual surface realization tasks (Mille et al., 2018). We employ the Transformer-based (Vaswani
et al., 2017) encoder-decoder architecture as the sequence-to-sequence model. The sequences d; are fed
into the model in order to generate a text sequence t; = w1, wa, ..., wyy; of length M;.

Since the model is given only the input data d, we compute reconstruction scores for this data, and
use the cross-entropy loss as the uncertainty score. To do so, we perform round-trip training* where the
source data is reconstructed to achieve cycle consistency. In this setup, the same encoder and decoder
are used in both forward and backward training i.e. a forward model M,,qrq goes from data to text
and the backward model My, kwarg converts the text back into data. We define the round-trip training
log-loss as the uncertainty score Syncertainty (as Eq. 1a) where £(-) is the cross-entropy loss. d' is the

https://riverbankcomputing.com/software/pyqt/intro

Shttps://www.pyinstaller.org/

“Defined in (Lample et al., 2017) as the back-translation technique where input data is reconstructed with M oryqra and
Mpackward to compute consistency loss.
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generated data using M forpard and Mpgckward given input data d.

U
Suncertainty = Edwpdata(D)*C (d ,d) (la)
Next, we discuss how Syycertainty 15 used in uncertainty sampling during data selection.

2.2 Data Sampler

The process of data selection identifies N data instances to be labeled such that the overall generation
quality is improved. This can be achieved by learning the structure over data DD (Tosh and Dasgupta,
2018). We adopt a simple technique to represent each data instance d as a bag-of-word (BOW) vector
and further divide each attribute-type (first layer) into k clusters (sub-type, second layer) with the K-
means algorithm® (Alsabti et al., 1997), which splits data instances into k clusters based on selected
centroids.

We first rank the order of batch-size samples within each sub-type using uncertainty scores (in sec-
tion 2.1) so that experts can annotate the ones with the least confident scores first. At sampling time, we
obtain unlabeled data instances from all sub-types across all attribute-types iteratively. One sample is
obtained from each sub-type before moving on to the next sub-type.

For data presented to be labeled, the system also suggests labels in order to reduce annotation efforts.
DART employs a simple retrieval-based technique to obtain a text label ¢ for each data instance d. Using
the BOW representation of d, we simply find the most similar d’ (cosine similarity) in the labeled pool of
(d;, t;) pairs, and use its text label ¢; as the suggestion®. The sampling process continues until either all
data instances are labeled or a satisfactory threshold value is reached for the quality metric on the labeled
corpus (as defined in section 2.3).

2.3 Quality Estimator

To better manage the annotation process, we include the diversity metrics used in (Balakrishnan et al.,
2019): number of unique tokens, number of unique trigrams, Shannon token entropy, conditional bigram
entropy. Following (Novikova et al., 2016), we also measure various types of lexical richness including
type-token ratio (TTR) and Mean Segmental TTR (MSTTR) (Lu, 2012), where higher values of TTR and
MSTTR correspond to more diverse corpus. DART displays these scores on the Status Display as shown
in Figure 2. These scores serve as on-the-fly quality estimates that help experts decide when sufficient
labels have been collected.

3 User Interface
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Figure 2: Screenshot of sample annotation interface showing the provided data, and the text box for
annotation. On the bottom right, user can select either the statistics or plots indicating the corpus diversity
and annotation count.

The interactive interface divides the interactive application window into a few compartments: DART

includes a configuration editor interface that allows the experts to modify the delimiter (e.g. *“,”) between
attribute:value pairs. For graph structured input, the delimiter (e.g. “__") is used to identify the attribute

5Using the implemented version from https://scikit-learn.org
SThere are no suggestions for the initial batch of annotations.
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Figure 3: Performance comparison between DART’s data sampler, random sampling, and retrieving
labels from the full dataset (ALL) on E2E (Left) and the Weather (Right) datasets (42k data instances
for E2E and 32k for weather), using the same retrieval method.

tags instead. Note that the system supports three granularity of tokenization: (1) word, (2) character, and
(3) byte-pair encoding (BPE) (Sennrich et al., 2016). The top half of Figure 2 shows the main annotation
page where experts can input constructed sentences into the text boxes based on suggested texts and the
provided image (or short clip) 7. As the expert annotates, the progress bar below the text box indicates
when the background uncertainty scorer training session will begin. The bottom half of Figure 2 shows
the annotation progress statistics, including the percentage of data types that have been annotated and
the quality of overall templates. When a specified number of annotations has been created, experts can
download both the annotated data samples along with data with predicted labels. In general, a high-
quality corpus maintain a high corpus diversity (e.g. a MSTTR score of 0.75 or TTR of 0.01 in the E2E
dataset (Novikova et al., 2016)) even as the number of annotation increases.

4 Experiments

Data. We use two different types of structured data: (A) Attribute-value pairs as used in the crowd-
sourced E2FE dataset (Novikova et al., 2017), and (B) the graph-structured data as defined in (Balakr-
ishnan et al., 2019) on the weather domain. To simulate the annotation process, we employ the given
training, development and test sets of each datasets for annotation tool evaluation, with the test set kept
fixed. This amounts to roughly 42k samples for E2E and 32k for the weather training sets.

Simulation Study. To evaluate the effectiveness of DART, we perform a simulated experiment for each
of our two datasets, E2E and Weather. We simulate the labeling process using both the retrieval-based
method (Sampler, as discussed in section 2.2) and the baseline approach using random selection of data
(Random) and compare the performance of the two methods relative to using the full dataset (All).

Results for the two datasets, E2E and Weather, are presented in Figure 3. On both datasets, the data
sampler allows the retriever to obtain the same performance (i.e. with similar BLEU score as ALL)
using only 10k labeled data instances, which is significantly less than that of the original dataset (i.e.
42k for E2E and 32k for Weather). As such, the number of required annotations to arrive at the same
performance using all labeled data is significantly reduced for both datasets, to one-fifth of the original
dataset size. In contrast, performance obtained using the Random selection is significantly worse (on the
order of 6 to 10 BLEU points lower than the baseline) compared to using the Sampler selection while
matching the number of training samples.

5 Conclusions

While a wide range of annotation tools for NLP tasks exists, most of these tools are targeted at non-textual
labels. DART is designed to enable the ease of annotation where the labels are textual descriptions and
the inputs are structured data. This is the initial version of the tool, and we hope to extend it to include
a web-based version and to expand its functionality in the following ways: (1) support different types of
encoders, and (2) improve upon the data sampling process.

"The use of pictures is shown to elicit better data (Novikova et al., 2016)
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