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Abstract

Teaching collaborative argumentation is an advanced skill that many K-12 teachers struggle to
develop. To address this, we have developed Discussion Tracker, a classroom discussion analyt-
ics system based on novel algorithms for classifying argument moves, specificity, and collabora-
tion. Results from a classroom deployment indicate that teachers found the analytics useful, and
that the underlying classifiers perform with moderate to substantial agreement with humans.

1 Introduction

Collaborative argumentation in student dialogue is essential to individual learning as well as group
problem-solving (Reznitskaya and Gregory, 2013). Strong collaborative argumentation is characterized
by specific claims, supporting evidence, and reasoning about that evidence as well as by building upon,
questioning, and debating ideas posed by others. However, teaching collaborative argumentation is an
advanced skill that many high school teachers struggle to develop (Lampert et al., 2010), partially due to
the practical challenge of keeping track of important features of students’ talk while managing class and
reflecting on students’ talk when no record of it exists.

To address this challenge, we have developed Discussion Tracker (DT), a system that leverages natural
language processing (NLP) to provide teachers with automatically generated data about three important
dimensions of students’ collaborative argumentation: argument moves, specificity and collaboration.
Discussion Tracker includes visualizations, interactive coded transcripts, collaboration maps, analytics
across discussions, and instructional planning. In contrast to teacher dashboards which largely focus
on discussion analytics such as amount of student/teacher talk, teacher wait time, and teacher question
type (Chen et al., 2014; Gerritsen et al., 2018; Pehmer et al., 2015; Blanchard et al., 2016), DT focuses on
students’ collaborative argumentation. In contrast to related NLP algorithms which largely focus on cod-
ing student essays (Ghosh et al., 2016; Klebanov et al., 2016; Nguyen and Litman, 2016), asynchronous
online discussions (Swanson et al., 2015), and news articles (Li and Nenkova, 2015), DT’s NLP algo-
rithms address the challenges of coding transcripts of synchronous, face-to-face classroom discussions.

2 Description of Discussion Tracker (DT)

To use DT, a teacher first uploads a classroom discussion transcript. Next, NLP classifiers code the tran-
script using a previously developed scheme for representing three important dimensions of collaborative
argumentation (Lugini et al., 2018; Olshefski et al., 2020): argument moves (claim, evidence, expla-
nation), specificity (low, medium, high), and collaboration (new, agree, extension, challenge/probe).
Student turns are the unit of analysis for collaboration. Argumentative Discourse Units (ADUs) — either
entire turns, or segments within turns — are the argumentation and specificity units of analysis.

Each NLP classifier in DT was developed by training on a previously collected and freely available
corpus1 of collaborative argumentation (Olshefski et al., 2020) using transformer-based neural networks.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1http://discussiontracker.cs.pitt.edu/ - we refer to this as corpus C1.
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Figure 1: Partial screenshot of “Overview” page in Discussion Tracker.

Figure 2: Screenshot of “Annotated Transcript” page in Discussion Tracker.

A pretrained BERT model (Devlin et al., 2019; Wolf et al., 2019) is used to generate word embeddings for
each word in an ADU (or turn, for collaboration). An average pooling layer is then used to compute the
final embedding for the target ADU. For predicting specificity, a softmax classifier is applied to the target
ADU embedding. For predicting argument moves, the target ADU as well as a window of surrounding
ADUs are embedded, then concatenated to form the final feature vector. A softmax layer is applied on
top of the feature vector to complete the argument move classifier. This improves our prior argumentation
models (Lugini and Litman, 2018) by using a pre-trained neural network and adding context information
(Lugini and Litman, 2020). The collaboration classifier is slightly more complex since collaboration
labels depend on the relationship between a target turn and a particular reference turn. For the purpose of
this work we assume that the target turn is already provided in the input transcript. A pretrained BERT
model and average pooling layer are used to generate embeddings for the target and reference turns. An
element-wise multiplication between the two embeddings is performed, yielding the feature vector used
by a softmax classifier.

All models use the bert-base-uncased BERT variant from the HuggingFace (Wolf et al., 2019) library,
which results in the smallest available dimensionality to keep computational complexity to a minimum.
The three models were built using the Keras library (Chollet and others, 2015). The Adam optimizer
was used, as well as early stopping to automatically determine the number of epochs for training by
monitoring validation loss (the validation set was chosen randomly and consisted of 10% of the initial
training set for each fold).

After classification, all discussion analytics are automatically generated from the NLP codes. The DT
overview screen (Figure 1) includes pie charts indicating the distribution of the codes for students’ argu-
ment moves, specificity, and collaboration. Other screens include interactive coded transcripts (Figure 2),
collaboration maps (Figure 3), identification of strengths and weaknesses to support teacher goal-setting
(Figure 4), and a history page (not shown) that compares the code distributions across discussions.

We initially implemented a desktop version of DT using Python and Tkinter. The screenshots in the
figures and the usability evaluation below are based on this version. To make DT more portable across
hardware and to allow teachers to easily use DT on multiple machines (e.g., school, home), we now have
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Figure 3: Screenshot of “Collaboration Map” page in Discussion Tracker.

Figure 4: Partial screenshot of “Plan Next Discussion” page in Discussion Tracker.

a web version of DT2. This version is implemented in Python and uses the REMI package3 to convert
Python into HTML and launch a webserver to accept requests for the site and handle user input. With
this setup it is easy to integrate the classifiers, implemented as a REST API on the same server hosting .

3 Evaluation

From January to March 2020, we collected data (corpus C2) to evaluate both teacher perceptions of
DT as well as NLP classifier performance. In particular, the desktop version of DT was used by 18
high school English Language Arts teachers from 4 schools, where: 1) each teacher led a discussion
about a literary text that was audio-recorded and observed by a researcher, 2) each teacher completed
an online survey within a day, 3) experienced annotators4 hand-coded transcripts of the discussion for
the three dimensions of collaborative argumentation discussed above and uploaded them into the DT
system, 4) within two weeks, researchers conducted a 45-minute cognitive interview (Voet and Wever,
2017) with each teacher while they were using DT to look at their students’ discussion5, and 5) the same
day, teachers completed a second survey that mirrored the first with additional items for ratings of DT.

DT Usability. We measured teachers’ perceptions of the overall usefulness of DT and of specific
features/visualizations through Likert-scale items on the survey from step 5 above. Survey items were
based on Holden and Rada’s (2011) teacher survey of perceived usability of technology. To remove
noise that might distract from this usability evaluation, we evaluated DT under the best possible NLP
conditions by using the manual codings of collaborative argumentation from step 3 above to generate
all analytics. The NLP codings are separately evaluated in the classifier discussion below. Table 1
indicates that teachers perceived DT to be very helpful for their learning about facilitating collaborative
argumentation. For nine of the 13 items, all teachers selected either “Agree” or “Strongly agree” (a mean
score of 4.5), and no item received a “Strongly disagree.” Although the item “I find the system easy to

2Web app demo link and details and source at discussiontracker.cs.pitt.edu
3https://github.com/dddomodossola/remi
4Kappa for argumentation (0.971) and collaboration (0.578) and Quadratic Weighted Kappa for specificity (0.813).
5Teachers navigated DT with minimal training (a 15-minute, face-to-face demo).
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Question Mean Question Mean
The overview of the discussion is helpful. 4.67 I find the system easy to use. 4.11

The pie charts of different features
of the student discussion are helpful.

4.78
The system helps me to recognize
my students’ strengths during
discussion.

4.72

The annotated transcript of student
discussion is helpful.

4.89
The system helps me to recognize
my students’ weakness during
discussion.

4.72

The collaboration diagram is helpful. 4.22
The system gives me more insight
into student learning than I usually get
from thinking about the discussion.

4.67

The system-generated strengths
and weaknesses are helpful.

4.44
The system encourages me to
make more changes to my facilitation
of discussion than I usually do.

4.28

The goal-setting is helpful. 4.56
Overall, Discussion Tracker is
helpful for my teaching of literature
discussions.

4.72

The instructional resources are helpful. 4.17

Table 1: Teacher survey items and Likert score means.

Annotation Distribution
Argumentation claim (72%), evidence (18%), explanation (10%)
Specificity low (29%), medium (36%), high (36%)
Collaboration new (22%), agree (3%), extensions (54%), challenge/probe (21%)

Table 2: Descriptive statistics of gold-standard annotations in test corpus.

Code N Kappa Macro F Micro F
Argument Move 1942 ADUs 0.574 0.730 0.789

Specificity 1942 ADUs 0.727 0.688 0.679
Collaboration 1467 Turns 0.566 0.439 0.775

Table 3: Transfomer-based neural classification results.

use” received the lowest score (4.11), all teachers either agreed or agreed strongly with the item. Other
items that scored higher, however, varied more in responses. For example, although the majority of
teachers agreed with “The collaboration diagram is helpful,” three neither agreed nor disagreed.

NLP Classifier Performance. As the gold standard for evaluating DT classifier performance, we
used the manual annotations from step 3 of the data collection discussed above. Table 2 shows the distri-
bution of the gold-standard codes, while Table 3 shows classifier performance when compared to these
gold-standards.6 The results in Table 3 were obtained by training each classifier separately on corpus
C1 (footnote 1) and testing on corpus C2 (the 18 discussions collected in this study). Hyperparameter
optimization was performed using cross-validation on C1 in order to find out how much contextual in-
formation before/after the target ADU to consider (i.e. context window size). This yielded an argument
classifier that added a window of 2 ADUs preceding and 2 ADUs following the target ADU for em-
bedding. Though all classifiers show respectable results, predictions for argument move and specificity
are more consistent for individual class labels, as evidenced by the small difference between macro and
micro F-score. The lower macro F-score for collaboration is due to poor prediction performance for the
agree and challenge/probe codes.

6The input for the gold-standard and automated coding was identical (loosely, a spreadsheet version of the first three columns
in Figure 2). A professional service (rather than ASR) performed the audio transcription and segmentation into turns (for
collaboration coding). A researcher further segmented student turns into ADUs (for argumentation and specificity coding).
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4 Summary and Future Directions

In this work we described the development of a classroom analytics system and reported usability results
from real world classroom deployment. We conducted a survey that showed teachers found the system
easy to use and the analytics (based on human-annotated labels) helpful in analyzing collaborative argu-
mentation. Evaluation of the automated NLP classifiers showed that they are in moderate to substantial
agreement with the labels provided by human annotators. The main goal of future work is to continue
to enhance our neural classification methods, and to develop an end-to-end, completely automated sys-
tem. To this end, we will consider several aspects: perform new data collections and improve classifier
performance; incorporate Automatic Speech Recognition to perform automated transcription; develop
algorithms to automatically segment turns into ADUs. In addition, we will further develop the interface
by addressing teacher feedback and improving the system’s ease of use. Finally, teachers will evaluate
our newer versions of DT, including versions where the analytics are based on classifier outputs rather
than human-annotated labels.
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