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Abstract

Word Association Norms (WAN) are collections that present stimuli words and the set of their
associated responses. The corpus is widely used in diverse areas of expertise. In order to reduce
the effort to have a good quality resource that can be reproduced in many languages with mini-
mum sources, a methodology to build Automatic Word Association Norms is proposed (AWAN).
The methodology has an input of two simple elements: a) dictionary, and b) pre-processed Word
Embeddings. This new kind of WAN is evaluated in two ways: i) learning word embeddings
based on the node2vec algorithm and comparing them with human annotated benchmarks, and
ii) performing a lexical search for a reverse dictionary. Both evaluations are done in a weighted
graph with the AWAN lexical elements. The results showed that the methodology produces good
quality AWANs.

1 Introduction

Word associations is a technique that helps researchers to learn how words are connected by their mean-
ings and the relationships among them in the human mind. Although vocabulary diversity and lexicon
size depend on a variety of social elements among individuals, the final result is a kind of word distri-
bution in the population. The method is used in psychology and linguistics to discover how the human
mind structures knowledge (De Deyne et al., 2013). This type of resources reflect both semantic and
episodic contents (Borge-Holthoefer and Arenas, 2009). In free association tests, a person is asked to
say the first word that comes to mind in response to a given stimulus word. The set of lexical relations
obtained with these experiments is called Word Association Norms (WAN).

The development of technological tools that will help gather these kinds of resources is starting to draw
attention, mostly taking advantage of distributed technologies like the Internet. Small World of Words1

is a clear example of that. We believe that this way of collaborative construction could bring a variety of
problems, biasing the final results. On the other hand, the classic methodologies of WAN’s construction
are very time-consuming. Just to mention some disadvantages, many people are needed to compile the
data. Furthermore, good control of the environment conditions of the experiments is important, as well
as carefully selecting a set of metadata that must be annotated: age, education years, gender, etc.

In the end, the complete WAN could take years to be polished and shared with the scientific commu-
nity. Nevertheless, this effort is worthwhile, as WAN could help diverse areas of study: psychologists,
linguists, neuroscientists and others, to test new theories about how we represent and process language.

In this paper, a methodology to build automatic WAN is presented. We called the resource generated
Automatic Word Associaton Norms (AWAN). The language used to prove our methodology is Spanish,
more specifically Mexican Spanish.

The only WAN corpus for Mexican Spanish is the Normas de Asociacion de Palabras para el Español
de México (Arias-Trejo et al., 2015) (from here, this corpus will be referred to as Mexican Spanish
WAN; i.e., MSWAN), which was built using a classic methodology.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1https://smallworldofwords.org/en/project
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The AWAN methodology presented here pretends to infer semantic relatedness between stimuli and
their responses. The main reason is that word association has been of great interest as a tool to research
mechanisms related to semantic memory (Barrón-Martı́nez and Arias-Trejo, 2014). The main relations
shown in MSWAN are: metonymy, meronymy, functionality, cohyponymy, qualification, hyponymy,
’made of’ and synonymy (Mijangos et al., 2017). Our objective is to capture the semantic relatedness
but not the types of relation.

Gómez-Adorno et al. (2019) presented Word Embeddings based on node2vec (Grover and Leskovec,
2016) and a graph constructed with the MSWAN corpus. Besides, the work presented by Reyes-Magaña
et al. (2019a) used the MSWAN to develop a lexical search model for the implementation of a reverse
dictionary. With these two works, we can obtain a gold standard to be compared with our AWAN running
on the same tasks.

The elements we used to build the AWAN are a general dictionary and a set of pretrainned word vec-
tors. Specifically, we used the Mexican Spanish Dictionary, Diccionario del Espanol de México (DEM,
2010), as the main input for our methodology and the pretrained embeddings available for Spanish 2. The
algorithms that were used to train these embeddings are: FastText(Bojanowski et al., 2017), Word2Vec
(Mikolov et al., 2013), and Glove (Pennington et al., 2014).

The rest of the paper is organized as follows. In Section 2, the related work is discussed. In Section 3,
a description of the methodological framework for the construction of the Automatic Word Association
Norms is presented. Section 4 shows the evaluation of the generated norms, using a word similarity
dataset in Spanish and the lexical search model. Finally, in Section 5, we establish some conclusions and
discuss possible directions of future work.

2 Related Work

In linguistics and psycholinguistics, semantic networks (Sowa, 1992) are defined as graphs relating
words (Aitchison, 2012). Their use is not exclusive to learn the organization of the vocabulary, but
also to draw the structure of knowledge.

WAN are a special kind of semantic networks, and they are available in many languages. The creation
of WAN is not new. The first example is Roget (1911), and two very well-known resources are the
Edinburgh Associative Thesaurus3 (EAT) (Kiss et al., 1973) and the collection of the University of South
Florida (USF) (Nelson et al., 1998)4. Thanks to the Internet and new technologies, WAN lists have been
more efficiently compiled in the last years, with the help of a large number of volunteers. Some examples
are: Jeux de Mots5, in French (Lafourcade, 2007) and the multilingual dataset Small World of Words 6.

For Spanish, there exists several corpora of word associations. Algarabel et al. (1998) integrate 16,000
words, including statistical analyses of the results. Macizo et al. (2000) build norms for 58 words in
children, and Fernández et al. (2004) work with 247 lexical items that correspond to Spanish (Sanfeliu
and Fernández, 1996).

As stated above, the only resource designed and compiled for Mexican Spanish is the MSWAN. Reyes-
Magaña et al. (2019a) introduced a method for lexical search based on that compilation that worked from
clue words or definitions to the concept, i.e., from the responses to the stimuli.

In some cases, authors create this type of corpus from scratch and in other cases, they extend the avail-
able WAN to learn more responses to the stimuli. In recent years, Bel-Enguix et al. (2014) used tech-
niques of graph analysis to calculate associations from large collections of texts. Additionally, Garimella
et al. (2017) published a model of word associations that was sensitive to the demographic context. This
was based on a neural network architecture with n-skip-grams and improved the performance of the
generic techniques, which do not take into account the demography of the participant.

Sinopalnikova and Smrz (2004) showed that Word Association Thesaurus (WAT) is comparable to
balanced text corpora and can replace them in case of absence of a corpus. The authors presented a

2https://github.com/dccuchile/spanish-word-embeddings
3http://www.eat.rl.ac.uk/
4http://web.usf.edu/FreeAssociation
5http://www.jeuxdemots.org/
6https://smallworldofwords.org/
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methodological framework for building and extending semantic networks with WAT, including a com-
parison of quality and information provided by WAT vs. other language resources.

Borge-Holthoefer and Arenas (2009) used free association information for extracting semantic sim-
ilarity relations with a Random Inheritance Model (RIM). The obtained vectors were compared with
LSA-based vector representations and the WAS (word association space) model. Their results indicate
that RIM can successfully extract word feature vectors from a free association network.

In the work by De Deyne et al. (2016), the authors introduced a method for learning word vectors
from WANs using a spreading activation approach in order to encode a semantic structure from WAN.
The authors used part of the Small World of Words network. The word-association-based model was
compared with a word embeddings model (Word2Vec) using relatedness and similarity judgments from
humans, obtaining an average of 13% of improvement over the Word2Vec model.

In the recent work by Bel-Enguix et al. (2019), the authors used two WAN in English, EAT and USF
to produce word embeddings that were tested against human-annotated benchmarks and some external
tasks, Showing that this kind of learning method produces good quality vectors without a training corpus
based on billions of words.

WANs are proved to be good in a reverse dictionary task since they suitably represent the connections
between words and the way concepts are linked in the human mind. The whole scenario of onomasio-
logical searches changed with the universalization of the Internet and language technologies that allowed
to build online resources powered by the huge corpus the World Wide Web provides. In the last two
decades, several online dictionaries have been designed that allow natural language searches. Users en-
ter their own definition in natural language and the engine looks for the words that match such definition.

One of the first online dictionaries allowing this type of search was the one created for French by Dutoit
and Nugues (2002). Bilac et al. (2004) designed a dictionary for Japanese where the users can freely enter
their definitions. It has an algorithm that calculates the similarity between concepts comparing the words.

El-Kahlou & Oflazer (El-Kahlout and Oflazer, 2004) built a similar resource for Turkish. They took
into account some synonymy relations between words, as well as the similarity of definitions by means
of a counter of similar words in the same order and in subsets of such words. For English, there exists an
online onomasiological dictionary, OneLook Reverse Dictionary,7 that retrieves acceptable results.

One of the main works in Spanish is the one by Sierra and McNaught (2000). DEBO is an onomasio-
logical dictionary that works with user queries given in natural language and a search engine, which was
later improved; the database structure was also optimized (Sierra and Hernández, 2011).

Finally, the use of WANs to build a reverse dictionary in Spanish is presented by Reyes-Magaña et
al. (2019a). The authors used the corpus MSWAN and graph-based techniques, specifically a measure
of betweenness centrality, to perform searches in the knowledge graph. The results of the search model
overcome the information retrieval systems it was compared to. The same methodology is successfully
applied to English in Reyes-Magaña et al. (2019b). In the latter work, another graph algorithm was
presented additionally to perform the search, the PageRank. Nevertheless, the results show that between-
neess centrality is more suitable for the reverse dictionary task.

3 Methodology of Automatic Word Association Norms

The aim of this work is to present a general methodology that could serve as a model to build WAN for
any language. The main process consists in parsing the entire dictionary, working with the entries and
their definitions. We consider that all the entries become the stimuli words, and each one of the words
that define the entries become the associate responses to them. The process also involves the inference
of a numeric value that measures the relationship between words, allowing us to obtain the weight the
classic WANs have.

Algorithm 1 presents the overall schema of our model. The dictionary, Diccionario del Español de
México (DEM, 2010), is the result of a set of investigations of the vocabulary used in Mexico since 1921.
The investigations have been carried out since 1973 at the Center for Linguistic and Literary Studies of
El Colegio de México. The Mexican Dictionary of Spanish is a comprehensive dictionary of Spanish in

7https://www.onelook.com/reverse-dictionary.shtml
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Algorithm 1: Automatic Word Association Norms
Data: Dictionary, Word embeddings
Result: AWAN
pre-process(Dictionary)

for each entry do
for each word in definition do

similarity = cosine similarity(entry,word);
weight = similarity * tf idf(words);

ordering(words)

its Mexican variety, prepared on the basis of an extensive study of the Corpus of contemporary Mexican
Spanish (1921-1974) and a set of data after that last date to the present.

Sometimes, the definitions of each one of the entries bring examples of use. All of this additional
information was removed because we consider that this kind of data could contaminate the final WANs.
Then, in order the prepare the definitions, we performed some preprocessing steps, as described.

• All the words are lemmatized using Freeling (Padró and Stanilovsky, 2012) for the Spanish lan-
guage.

• All the functional words were removed using the Spanish stop words list available in the NLTK
package (Bird and Loper, 2004).

• Some specific words were added to the stop list in order to be removed as well. These words are
very common in dictionaries but do not provide meaningful data for our purpose of building AWAN.
Some of them are: ’etc.’, ’approximately’, ’generally’, ’specifically’, ’type’, among others.

Later, with the remaining words, we calculate the cosine similarity between the entry and each word
corresponding to its definition. For this purpose, we use pretrainned word embeddings8 for Spanish
language. Table 1 presents the main characteristics of each embeddings model. The corpora used to
train these embeddings are the following: FastText, Glove and Word2Vec with a Spanish Billion Word
Corpus, and FastWiki with Wikipedia Spanish Dump.

Short
name

Model file Dimen-
sions

# vectors Algorithm

FastText FastText from SBWC 300 855,380 FastText with Skipgram
Glove GloVe from SBWC 300 855,380 GloVe
Word2Vec Word2Vec from SBWC 300 1,000,653 Word2Vec with Skipgram
FastWiki FastText from Spanish

Wikipedia
300 985,667 FastText with Skipgram

Table 1: Description of the pretrained vectors in Spanish used to measure similarities.

With the remaining lexical elements, the tf-idf of each word is calculated; every definition is consid-
ered as a different document. The value will be used as adjustment factor of the cosine similarity between
words. The weight is calculated as follows:

Was(stimulus, response) = tf idf(response) ∗ cosine similarity(stimulus, response) (1)

We called this weight Approximation Strength (Was). The final step is to order from high to low the
weights of all the associated responses (words in a definition) to the entries (stimuli).

8https://github.com/dccuchile/spanish-word-embeddings
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The corpus of the AWANs is available in github9. We generate four different collections, one for each
embedding used to calculate the cosine similarity.

3.1 AWAN Corpus and Graph
The corpus AWAN has a total of 17,330 stimuli. The vocabulary size of each AWAN is : a) FastText with
22,699 b) Glove with 21,867 c) Word2Vec with 22,045 and d) FastWiki with 22,517. The discrepancy in
the vocabulary sizes is due to the embeddings corpus, not all the words that appear in the definitions are
in the vector resources. The richest AWAN, in terms of amount of lexical items, is the FastText version.

The graph representing the AWAN is elaborated with all the lexical items. It is formally defined as:
G = {V,E, φ} where:

• V = {vi|i = 1, ..., n} is a finite set of nodes of length n, V 6= ∅, that corresponds to the stimuli and
their associates.

• E = {(vi, vj)|vi, vj ∈ V, 1 ≤ i, j ≤ n}, is the set of edges.

• φ : E → R, is a function over the weight of the edges.

The graph is undirected so that every stimulus is connected to their associated words without any
precedence order. For the weight of the edges we use the Approximation Strength measure. Table 2
presents a brief snapshot of the AWAN corpus, in specific for the stimulus stimulus Bee (Abeja) and
its responses, using the FastText and Glove embeddings. It can be observed that they share the same
responses, but they are located in different positions. The cosine similarity obtained on each embedding
corpus produces the arrangement adjustment.

4 AWAN evaluation

To measure the quality of the AWANs, two types of experiments were performed. The first one allows us
to know the representativeness of the embeddings that were trained using AWAN and node2vec, trying
to describe similarity against human-annotated benchmarks. The second experiment is about the lexical
search model used in the reverse dictionary. This evaluation is done because the WANs prove to be
well-performing lexical searches using this kind of corpus as input (Reyes-Magaña et al., 2019a). Each
one of the experiments will be compared with the results of these tasks using MSWAN. We select these
outcomes as the gold standard because the WAN corpus used to perform the experiments corresponds to
Mexican Spanish, same as our AWANs.

4.1 Node2vec
Node2vec (Grover and Leskovec, 2016) finds a mapping f : V → Rd that transforms the nodes of a
graph into vectors of d-dimensions. It defines a neighborhood in a network Ns(u) ⊂ V for each node
u ∈ V through a S sampling strategy. The goal of the algorithm is to maximize the probability of
observing subsequent nodes on a random path of a fixed length.

The sampling strategy designed in node2vec allows it to explore neighborhoods with skewed random
paths. In this work, we used the implementation of the project node2vec, which is available on the web10

considering a dimension of 300.
With the embeddings trained on AWAN, we evaluated the ability of word vectors to capture semantic

relationships through a word similarity task. Specifically, we used two widely-known corpora: a) the
corpus WordSim-353 (Finkelstein et al., 2001) composed of pairs of terms semantically related to simi-
larity scores given by humans and b) the MC-30 (Miller and Charlees, 1991) benchmark containing 30
word pairs. Both datasets in their Spanish version (Hassan and Mihalcea, 2009).

We calculated the cosine similarity between the vectors of word pairs contained in the above mentioned
datasets and compared it with the similarity given by humans using the Spearman correlation. To deal
with the non-inclusion of every word of the testing datasets in our AWAN, we introduced the concept

9https://github.com/jocarema/AWAN
10http://snap.stanford.edu/node2vec/
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Table 2: Responses for stimulus Bee, using FastText and Glove.
Abeja (Bee)

FastText Glove
Response Approximation

Strength
Response Approximation

Strength
mellifera 0.599 apis 0.521
miel 0.580 miel 0.442
zángano 0.552 mellifera 0.441
apis 0.550 hembra 0.393
himenóptero 0.546 zángano 0.353
aguijón 0.532 reina 0.343
insecto 0.520 nido 0.336
néctar 0.511 insecto 0.321
cera 0.506 macho 0.320
hembra 0.485 cera 0.310
polen 0.482 aguijón 0.304
macho 0.464 panal 0.303
polinizador 0.461 néctar 0.290
apidae 0.431 polen 0.286
nido 0.412 estéril 0.259
reina 0.403 apidae 0.195
panal 0.367 himenóptero 0.181
domesticar 0.339 fértil 0.179
estéril 0.318 colonia 0.164
amarillo 0.315 amarillo 0.160
rojizo 0.311 alimentar 0.131
colonia 0.300 solo 0.126
obrero 0.284 vivir 0.117
fértil 0.273 domesticar 0.107
solo 0.257 obrero 0.106
vello 0.240 rojizo 0.099
producto 0.230 misión 0.081
galerı́a 0.220 vello 0.076
alimentar 0.214 existir 0.073
medir 0.195 producto 0.064
vivir 0.185 construir 0.062
existir 0.176 galerı́a 0.061
constituir 0.171 frecuencia 0.058
frecuencia 0.169 polinizador 0.056
numeroso 0.163 cubrir 0.055
cubrir 0.162 medir 0.047
misión 0.155 constituir 0.043
aprovechar 0.146 aprovechar 0.035
subterráneo 0.146 subterráneo 0.025
proveer 0.138 numeroso 0.007
construir 0.107 proveer 0.003

of overlap in the experiments, and calculated the total number of common words between the lists that
are being compared. The others are excluded from the evaluation. In principle, having large overlaps is
a positive feature of this approach. Tables 3 and 4 present the Spearman correlation of the similarity
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given by human taggers with the similarity obtained with word vectors (learned from MSWAN and
AWAN separately). We also report the overlap, which is the number of words that can be found in both,
the given WAN corpus (MSWAN or AWAN) and the evaluation dataset (ES-WS-353 or MC-30).

Table 3: Spearman rank order correlations between Mexican Spanish WAN embeddings (300 dimension)
and the ES-WS-353 dataset.

WAN Weighting function Overlap Correlation

MSWAN (Gómez-Adorno et al., 2019)
Inv. Frequency

140
0.489

Inv. Association 0.463
Time 0.461

AWAN FastText

Inv. Approximation 291

0.595
AWAN Glove 0.555
AWAN Word2Vec 0.550
AWAN FastWiki 0.572

Table 4: Spearman rank order correlations between Spanish WAN embeddings (300 dimension) and the
MC-30 dataset

WAN Weighting function Overlap Correlation

MSWAN (Gómez-Adorno et al., 2019)
Inv. Frequency

11
0.305

Inv. Association 0.563
Time 0.545

AWAN FastText

Inv. Approximation 22

0.747
AWAN Glove 0.698
AWAN Word2Vec 0.706
AWAN FastWiki 0.771

It can be observed that the word embeddings obtained from the AWAN corpus achieved better correla-
tion with the human similarities than the embeddings obtained from the MSWAN corpus in both datasets,
ES-WS-53 and MC-30.

4.2 Lexical Search Model

Given a definition, the search in the graph is done considering the word that better matches with it.
For this purpose, centrality measures identify the most important nodes in a graph; the variation of the
betweenness centrality (BT) algorithm (Freeman, 1977) which instead of computing BT of all pairs of
nodes in a graph, calculates the centrality based on a sample (subset) of nodes (Brandes, 2008). This
approximation is formally described as follows:

Cbtw aprox(v) =
∑

i∈I,f∈F

σi,f (v)

σi,f
(2)

where: I is the set of initial nodes, F is the set of final nodes, σi,f is the number of shortest paths between
i and f , and σi,f (v) is the number of those paths that passes through some node v that is not i or f .

In a non-weighted-graph, the algorithm looks for the shortest path. In a weighted graph, such algorithm
finds the path that minimizes the sum of the weight of the edges. When using WAN as the input corpus,
we obtain the weighted one.

We employ the approximation of the BT algorithm in order to search for the concept related to a given
definition because it only uses a subset of nodes to find the most central nodes in the graph. Therefore,
we define a subgraph composed by the words (nodes) of the definition. This subgraph is used as both
initial and final nodes to calculate the shortest paths from each of the nodes of the initial nodes set to
each one of the nodes of the final nodes set. Finally, the nodes are ranked taking the measure of BT as a
parameter for the comparison of the most important nodes found by the algorithm.
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We constructed the AWAN graph considering only the 234 stimuli of MSWAN but having the response
associated and the weights, using the algorithm 1 previously described.

For the experiments, we use the small corpus available in github11. It is reported that this corpus
contains 5 definitions for 56 concepts corresponding to stimuli of the MSWAN, with a total number
of 280 definitions. The corpus was gathered with the collaboration of students who gave their own
description of the word. For the evaluation of the inference process, we used the technique of precision at
k (p@k) (Manning et al., 2009), for example, p@1 shows that the concept associated to a given definition
was ranked correctly in the first place; in p@3 the concept was in the first three results, and the same
applies to p@5.

The results are shown in Table 5. It is clear that when the model searches over MSWAN graphs
weighted with any function, the results are higher than when searching on the AWAN graph. We consider
that the precision obtained with the AWAN corpus is still competitive. We can affirm this because in the
work of Reyes-Magaña et al. (2019a), the authors describe and implement other retrieval information
systems applied to the reverse dictionary, being all outperformed by our AWAN graphs. These methods
were: Boolean IR, Onelook reverse dictionary 12, BM-25 (Robertson and Zaragoza, 2009) and CAS
(Ghosh et al., 2014).

Table 5: Lexical Search Results in terms of precision.

WAN Weighting function p@1 p@3 p@5

MSWAN (Reyes-Magaña et al., 2019a)
Inv. Frequency 0.616 0.741 0.774

Inv. Association 0.655 0.804 0.829
Time 0.362 0.550 0.652

AWAN FastText

Inv. Approximation

0.329 0.526 0.584
AWAN Glove 0.333 0.544 0.587
AWAN Word2Vec 0.340 0.537 0.584
AWAN FastWiki 0.326 0.526 0.580

We did some additional experiments to prune the graph. For this purpose, on each AWAN we vary the
weight with incremental intervals of .05. Figure 1 shows the precision of the lexical search; this value
is seen on the vertical axis. The horizontal axis represents from left to right the reductions of responses
that satisfy the filter, meaning that, if we have the value of .1, the responses to be considered will be
those whose weights vary from 1 to .1. In the case of .55, we only select responses with weight from
1 to .55, and so on. With this technique, we could see if there is an improvement of precision as we
vary the values in weights. The reason to perform this experiment is that in some cases, a more compact
graph yields more efficient searches. When the reduction reaches a value of .60, the filtered responses
are bigger, having fewer words to work with and making the precision of lexical search, turns almost to
0. We can see that in the first intervals, reducing the graph does not make a significant difference in the
precision outcomes. A slight peak can be reached before the precision starts to decrease. For this reason,
we provide full AWANs without any reduction.

5 Conclusions and Future Work

We introduced a method for learning Word Association Norms in Mexican Spanish from a dictionary.
Although we could use a general Spanish dictionary like the Real Academia de la Lengua (RAE), the
experiments did not yield good results, mainly because the test corpus is based on definitions made by
people that use Mexican Spanish as their mother tongue. Nevertheless, the methodology we provide in
this paper can be applied to any kind of dictionary. To evaluate the AWANs, we used two types of test.
The first one is the intrinsic test which uses the node2vec algorithm to learn word vectors on the graph
built with the AWAN corpus. The results determine that these vectors overcome the Spearman correlation
presented with the MSWAN corpus. The second one is the extrinsic test which presents a more realistic

11https://github.com/jocarema/Natural-Language-definitions
12https://www.onelook.com/reverse-dictionary.shtml
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Figure 1: Lexical Search precision based on AWAN

use of this type of corpus; the lexical search model shows that even if we did not outperformed the results
of the MSWAN, it is competitive enough to outperform classic information retrieval systems. We employ
a weighting function on the graph edges considering the inverse approximation strength because all the
tests use the shortest paths.

We consider that the methodology proposed is a helpful tool for the construction of Word Association
Norms. The input elements to produce AWANs are somehow easy to get, and consist mainly of a dic-
tionary, and the pretrained word embeddings. We also believe that the MSWAN collected and processed
by humans, will bring more accurate results depending on the task that will be used. Nevertheless, in
some cases where time and availability of WAN is urgent or simply impossible to collect in the classic
way, the creation of AWAN is a reliable and fast solution. In a more advanced stage, the success of the
technique can make unnecessary the effort and resources that are currently dedicated to collect WANs.

Besides, as a parallel result, we provide the Word Embeddings 13 that we trained using the node2vec
algorithm, having as the most important feature that these vectors are based on Mexican Spanish. We
claim that this methodology can be used to produce embeddings for specific variants of a language
without a huge amount of data.

As future work, we plan to do some additional experiments to increase the precision in lexical search
in order to apply some additional filters in the response words, like having only nouns, verbs, and/or
adjectives, with all the possible combinations a POS tagging can produce. Roth and im Walde (2008)
showed that the WANs can be enriched using diverse types of corpora in addition to a dictionary. Hence,
as future work, we plan to add some encyclopedic and co-ocurrence corpora resources in order to improve
the tasks performance on WANs. Also, it is possible to have the incorporation of multi-terms is possible
to have, adding the vector representation of each word in the multi-term. This could be done by applying
the same methodology.
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13https://drive.google.com/drive/folders/1nmApEvi4ywQl1CDjK5umiSQE79MuGP9C



151

References
Jean Aitchison. 2012. Words in the mind: An introduction to the mental lexicon. John Wiley & Sons.

Salvador Algarabel, Juan Carlos Ruı́z, and Jaime Sanmartı́n. 1998. The University of Valencia’s computerized
Word pool. Behavior Research Methods, Instruments & Computers.

Natalia Arias-Trejo, Julia B. Barrón-Martı́nez, Ruth H. López Alderete, and Francisco A. Robles Aguirre. 2015.
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2010. Diccionario del Español de México (DEM). El Colegio de México, A.C.

M Dutoit and P Nugues. 2002. A lexical database and an algorithm to find words from definitions. In Proceedings
of the 15th European Conference on Artificial Intelligence, pages 450–454.

I.D El-Kahlout and K Oflazer. 2004. Use of wordnet for retrieving words from their meanings. In 2nd Global
WordNet Conference.
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