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Abstract

A substantial overlap of coreferent mentions
in the CoNLL dataset magnifies the recent
progress on coreference resolution. This is
because the CoNLL benchmark fails to evalu-
ate the ability of coreference resolvers that re-
quires linking novel mentions unseen at train
time. In this work, we create a new dataset
based on CoNLL, which largely decreases
mention overlaps in the entire dataset and ex-
poses the limitations of published resolvers
on two aspects—lexical inference ability and
understanding of low-level orthographic noise.
Our findings show (1) the requirements for em-
beddings, used in resolvers, and for corefer-
ence resolutions are, by design, in conflict and
(2) adversarial approaches are sometimes not
legitimate to mitigate the obstacles, as they
may falsely introduce mention overlaps in ad-
versarial training and test sets, thus inflating
the performance.

1 Introduction

Resolution of coreferring expressions is a natu-
ral step for text understanding, but coreference
resolvers appear to have a negligible effect in
downstream NLP tasks (Yu and Ji, 2016; Durrett
et al., 2016; Voita et al., 2018). For instance, Dur-
rett et al. (2016) rewrite pronouns with their an-
tecedents (e.g., he is replaced by Dominick Dunne),
using the Berkeley Entity Resolution System (Dur-
rett and Klein, 2014). However, this fails to im-
prove the cross-sentence coherence of system sum-
maries, although the resolver performs well on the
OntoNotes 4.0 dataset (Pradhan et al., 2011).

The CoNLL benchmark (Pradhan et al., 2012) re-
flects the recent advances of coreference resolution
systems. Nevertheless, previous work (Moosavi
and Strube, 2017) indicates that the progress on the
CoNLL benchmark is inflated, as the training and
test sets share a large size of mentions. This may

Test Example: Iraqi leader Saddam has given a speech
to mark the tenth anniversary of the Gulf war. The Iraqi
leader said the Gulf war was a confrontation...
Train Example: There were other signs today that Iraq’s
leaders have few regrets over the action that precipitated
the Gulf war. The Gulf war began 10 years ago...

Table 1: Replacing ”the Gulf war” with ”the Gulf war-
fare” or ”the Gulf wärfäre” addresses (1) exact match
in the test example; (2) mention overlaps across exam-
ples.

be the reason why coreference resolvers have little
effect in downstream tasks.

As opposed to evaluating on standard bench-
marks, recent work (Glockner et al., 2018; Pruthi
et al., 2019; Eger et al., 2019; Eger and Benz, 2020)
investigates the generalization ability of NLP sys-
tems under adversarial attacks. For instance, Glock-
ner et al. (2018) show that natural language infer-
ence systems fail blatantly when lexical changes,
e.g., replacing a word by its synonym, occur in
premises and hypotheses. Pruthi et al. (2019) ob-
serve that spelling errors distract text classifica-
tion systems from correct prediction. Inspired by
these works, we investigate published coreference
resolvers in two realistic adversarial setups, which
challenge (a) lexical inference ability to resolve
coreferent mentions, where one mention is, e.g.,
synonymous or in a type-of relationship with its
antecedent and (b) denoising ability against typo-
graphic (low-level) noise. To do so, we construct a
new benchmark dataset by modifying the mention
spans from CoNLL (Pradhan et al., 2012). This
can mitigate lexical overlaps between the CoNLL
training and test sets, as illustrated in Table 1.

Our analysis yields several findings: (1) We
show that the lexical inference ability of published
resolvers, including the state-of-the-art resolver
based on BERT, is poor, i.e., the failure to properly
resolve the coreference of a mention and its hy-
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pernymous (or hyponymous) antecedent within the
same synset. (2) We identify an important reason
for this failure: a mismatch, by design, between the
requirements of coreference resolution and embed-
dings (used in resolvers). While a plausible coref-
erence resolver anticipates ignoring the semantic
difference of a word and its hypernym and linking
them as coreferent mentions, embeddings capture
the nuanced and fine-grained meanings well. (3)
Further, we show that coreference resolvers fail to
generalize to the CoNLL benchmark dataset with
minor low-level (orthographic) noise. As a remedy,
we use a common adversarial approach (Goodfel-
low et al., 2015) to incorporate lexical changes
and low-level noise in coreferent mentions at train
time, which appears to largely address the obsta-
cles. However, we reveal that it introduces a large
size of mention overlaps in the adversarial training
and the test sets. This indicates an unrealistic situ-
ation where resolvers are only robust to what has
been seen during training.

These findings indicate potential directions for
future work, which may benefit coreference re-
solvers in downstream tasks and in real-world ap-
plications with natural occurring noise (e.g., user-
generated texts).

2 Adversarial Data Collection

Our goal is to construct a benchmark dataset on
which we evaluate the ability to resolve coreference
that requires lexical inference and understanding
of low-level noise.

2.1 Generating Adversarial Examples
Recent work for adversarial attacks concerning lex-
ical changes and orthographic modification has
shown deficiencies of NLP models for many tasks.
To adapt previous approaches to coreference res-
olution, we design the following attack schemes
where we focus on text changes occurring in men-
tion spans. This setup also can address lexical
overlap issue. To do so, we collect mentions from
the training and test sets in the CoNLL benchmark
dataset. We i.i.d. randomly attack each word in a
mention with probability p and apply one of the
below schemes. Table 2 shows examples of our
modifications.

Lexical Changes. Modifiers and head words of
noun phrases in a chain of mentions sometimes oc-
cur repeatedly. For instance, president both appears
in the mention the 44th president of the US and its

Modification Original → Modification

SWAP people → peolpe
DELETE rise → rse
VISUAL emergency → emergeňcy
SYNONYM next → upcoming
HYPONYM people → workers
HYPERNYM pigeon → bird

Table 2: Examples of text modification.

antecedent the first African-American president of
the US. The CoNLL dataset involves many such
lexical overlaps in coreferent mentions. Further-
more, Moosavi and Strube (2017) find a large size
of mentions are overlapping in the CoNLL training
and test examples. Together, this shows that the
CoNLL evaluation setup does require only little
lexical inference requirements. Subramanian and
Roth (2019) remove named entities overlapping in
the training and test sets. In contrast, we choose a
word overlap randomly from mentions and substi-
tute it with its hyponym, hypernym and synonym,
as found in WordNet (Miller, 1995). To prevent
the meaning of a word substitution deviated from
the original word, we make the substitution only
when two words share one word sense (synset),
obtained from adapted LESK algorithm (Banerjee
and Pedersen, 2002).

Orthographic Changes. Character-level (“low-
level”) text changes, e.g., random swapping of char-
acters (Pruthi et al., 2019), create surface form
noise that often does not affect humans. We inves-
tigate the impact of different forms of low-level
noise, namely (a) swapping a pair of adjacent let-
ters, (b) deleting letters, and (c) visual perturbation,
i.e., changing characters in a word by visually sim-
ilar ones. To make text changes less perceptible to
humans, we restrict for (a) and (b) to: (1) an indi-
vidual word is allowed to be modified only once,
(2) the first and the last letter of a word cannot be
modified—as human reading is more resilient to
internal letter exchanges, as shown by psycholin-
guistic research (Davis, 2003), and (3) modifica-
tions to a word with less than four characters are
not allowed. As for visual attacks (c), we obtain
character ‘embeddings’ from descriptions of each
character in the Unicode 11.0.0 final names list,
and then determine a set of nearest neighbors by
choosing those characters whose descriptions refer
to the same letter. Such perturbations have been
shown little effect on human text processing (Eger
et al., 2019).
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Systems CLEAN Avg 4 α(3) 4 β(3) 4

Non-Neural Systems

DETERMINISTIC 57.10 46.32 −10.78 41.24 −15.86 51.40 −5.70
STATISTICAL 66.83 55.17 −11.66 50.24 −16.59 60.10 −6.73

Neural Systems

DEEP-RL 69.13 58.15 −10.98 51.17 −17.96 65.12 −4.01
COARSE-TO-FINE (C2F) 72.96 60.04 −12.92 55.08 −17.33 64.99 −7.97
C2F⊕BERT 73.38 61.59 −11.79 55.63 −17.75 67.54 −5.84
C2F⊕SPANBERT 77.43 64.62 −12.81 58.44 −18.99 70.80 −6.63

Table 3: Overall results of the published baselines, on the clean, α (orthographic noise) and β (lexical changes)
test sets. Brackets denote the number of modified test sets per group (α or β). Results are averaged for each group.
4 is the difference between the performance of the clean and average result per group.

3 Experiments

Benchmark Dataset. We collect the training, de-
velopment and test documents in the CoNLL bench-
mark dataset and use the above-described adver-
sarial schemes to generate 16,812 training, 2,058
development and 2,088 test documents. We note
that there are only about 2.3 words per mention
and about 2 mentions per sentence on average in
the CoNLL dataset. Therefore, we set a relatively
low modification probability p = 0.5, thus making
about 2 words changes per sentence. The percents
of the mentions in the CoNLL test set modified
by lexical and orthographic changes are 24% and
46%, respectively. When applying text changes to
the test set, the percent of mention overlaps in the
training and the test sets are decreased from 56.7%
to 34.3%.

Baselines. We investigate non-neural systems1

, namely the DETERMINISTIC (Lee et al., 2013)
and STATISTICAL (Clark and Manning, 2015) sys-
tems together with neural systems, including DEEP-
RL (Clark and Manning, 2016), COARSE-TO-
FINE (C2F) (Lee et al., 2018), C2F⊕BERT and
C2F⊕SPANBERT (Joshi et al., 2019). The results
are reported using the CoNLL F1 score—the aver-
age of MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998) and CEAFe (Luo, 2005).

Overall Results. Despite the minor changes in
text, Table 3 shows that, the drop in performance is
consistently big on average (10-12 points CoNLL
F-score) across systems. The systems appear to suf-
fer the most from orthographic changes, however,
the percent of the examples of low-level noises is
twice as large as that of lexical changes. Together,

1For non-neual systems, their linguistic features are ex-
tracted from our benchmark dataset using spaCy.

Training Set CLEAN SYNO HYPO HYPER

100% CLEAN 73.4 69.1 67.9 65.6
50% CLEAN and 50% SYNONYM 72.7 71.8 70.4 69.2

Table 4: Results of C2F⊕BERT on the test sets.

this exposes the limitation of non-neural and neural
systems, including the systems based on BERT and
SpanBERT, on lexical inference ability and under-
standing of low-level noise. Also, we note that the
drop in non-neural baselines is smaller, which we
believe is because linguistic features are primary
predictors in them and have a positive effect.

4 Shielding via Adversarial Training

Shielding Setup. We measure to what extent ad-
versarial training (Goodfellow et al., 2015) can im-
prove lexical inference ability and the robustness
to low-level noise for the baseline systems. We
include the adversarial training set at train time, but
do not augment the training data, i.e., only replace
50% clean examples using our text manipulations.
We split our evaluation into two setups: (1) in-
domain evaluation, e.g., the training and test set
used for training and evaluation are modified by
swapping characters and (2) out-of-domain evalua-
tion, e.g., we use adversarial training that trains a
baseline system from scratch on a modified training
set of one noise, denoted as AT-NOISE, and eval-
uates on the adversarial test sets of the remaining
noise.

Lexical Changes Analysis. Table 4 shows that
the performance drops for C2F⊕BERT in the HY-
PONYM and HYPERNYM test sets are much big-
ger than that in the SYNONYM test set, but AT-
SYNONYM considerably helps. To more thoroughly
examine this, we randomly extract pairs of 1,000

https://spacy.io/
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words and their synonyms, hyponyms and hyper-
nyms from WordNet, as a form of coreferent men-
tions. We show histograms of the cosine similarity
scores of word pairs, based on the last layer of
BERT embeddings, used in C2F⊕BERT. Figure
1 (above) shows that a pair of a mention and its
hypernymous/hyponymous antecedent is often as-
signed lower a cosine similarity score than a men-
tion and its synonymous antecedent pair, suggest-
ing that BERT embeddings capture the semantic
differences of the three well. However, a plausible
coreference resolver requires to ignore such fine-
grained differences in meanings and links them all
as coreferent mentions. This indicates the require-
ments for embeddings, used in resolvers, and for
coreference resolvers, by design, are in conflict.
However, this issue can be mitigated using AT-
SYNONYM, as illustrated in Figure 1 (below). This
is because a gold label can bridge a mention and
its hypernymous/synonymous antecedent (within
the same synset), thus omitting the semantic differ-
ences of them.
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Figure 1: Histograms of cosine similarity scores of
word pairs. C2F⊕BERT trained on the clean training
set (above) and on SYNONYM training set (below).

In-domain and Out-of-domain Evaluations.
Figure 2 shows that C2F⊕BERT via adversarial
training appears to achieve consistent improve-
ments in the in-domain evaluation setup, e.g., the
gain achieved by AT-SWAP is 15.3 points on the
SWAP test set. However, we observe that about
10% percent of mention are overlapping in the ad-
versarial training and test sets, introduced by the

Training Set SWAP DELETE VISUAL

100% CLEAN 56.8 55.4 54.5
100% SYNONYM 50.1 48.7 48.0
50% CLEAN and 50% SYNONYM 58.1 57.1 55.6

Table 5: Results of C2F⊕BERT trained via AT, on the
training sets with synonym changes.
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Figure 2: Performance gains (in points) in the in-
domain and out-of-domain evaluation setup.

adversarial training approach. This may give a
false and inflated impression for the improvements.
Further, the effects for the out-of-domain evalua-
tion are different. For instance, AT-SWAP obtains
a large gain (+6.76 points) on the DELETE and VI-
SUAL test sets, as the domain difference between
the two and the SWAP test set is small. However,
we note that AT-SWAP has a negative effect for the
performance on the adversarial test sets involving
lexical changes, since character-level noise and lex-
ical replacement have little in common. In contrast,
AT-SYNONYM appears to have a positive effect
for the performance in the low-level noise domain.
However, Table 5 shows that C2F⊕BERT trained
on full SYNONYM training set causes a big per-
formance drop on average across low-level noise.
This indicates that enriching the system with lex-
ical knowledge fails to improve its robustness to
orthographic changes (similarly as for the negative
effect of AT-SWAP to lexical changes). The gain on
the test sets with low-level noise only appears when
involving clean training examples at train time, as
this substantially increases the size of mention over-
laps, leading to a simpler coreference resolution
task.

5 Conclusions

Coreference resolution have the potential to help
downstream NLP systems solve problems that re-
quire text understanding. However, the perfor-
mance scores on the CoNLL benchmark are in-
flated, because mentions are largely overlapping
in the whole dataset, and the evaluation in a con-
strained domain fails to expose the limitations of
coreference resolvers in the wild. Our experiments
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show that published resolvers fail to link coreferent
mentions involving minor low-level noise and lexi-
cal changes. Beyond that, we show a caveat when
mitigating the obstacles via adversarial approaches:
lexical overlaps introduced by data augmentation
must be removed from adversarial training and test
sets so as to see how the approaches perform real-
istically.
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