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Abstract
In this paper, we describe a cross-lingual information retrieval (CLIR) system that, given a query in English, and a set of audio and
text documents in a foreign language, can return a scored list of relevant documents, and present findings in a summary form in
English. Foreign audio documents are first transcribed by a state-of-the-art pretrained multilingual speech recognition model that is
fine tuned to the target language. For text documents, we use multiple multilingual neural machine translation (MT) models to achieve
good translation results, especially for low/medium resource languages. The processed documents and queries are then scored using
a probabilistic CLIR model that makes use of the probability of translation from GIZA translation tables and scores from a Neural
Network Lexical Translation Model (NNLTM). Additionally, advanced score normalization, combination, and thresholding schemes
are employed to maximize the Average Query Weighted Value (AQWV) scores. The CLIR output, together with multiple translation
renderings, are selected and translated into English snippets via a summarization model. Our turnkey system is language agnostic and
can be quickly trained for a new low-resource language in few days.

Keywords: cross-lingual informational retrieval, average query weighted value, AQWV

1. Introduction
The popularity of the Internet has made it easy to access
vast amount of multilingual information for anyone. Yet,
it is hard to understand information in a language you do
not speak, not to mention searching through it. Cross-
Language Information Retrieval (CLIR) and Summariza-
tion make it possible to break the language barrier and to
make domain information accessible to all users irrespec-
tive of language and region.
The IARPA MATERIAL1 program presents us with the
challenge of developing high-performance CLIR, machine
translation, automatic speech recognition (ASR), and sum-
marization for a new language in a few weeks, given limited
training resources. In this paper, we describe our CLIR sys-
tem entry to the MATERIAL evaluation of October, 2019.
We were to process evaluation data for both Lithuanian and
Bulgarian and to submit system output in 10 days.
Our CLIR system achieves the same goal as the SARAL
system (Boschee et al., 2019a). While both systems feature
a neural network (NN) architecture, the main difference lies
in the way an NN model is used. The SARAL system uses
a neural network attention model (dot-product) to compute
query-document relevance from a shared embedding space,
while our system utilizes neural network (multilayer per-
ceptron) as part of the Neural Network Lexical Translation
Model (Zbib et al., 2019) to produce probability of transla-
tion needed by a probabilistic CLIR model.
The rest of this paper is organized as follows: we intro-
duce the task and data in section 2, including a high level
overview of the technical approach. Subsequent sections
describe each individual component of the system in more
detail. Section 3 and 4 cover Automatic Speech Recogni-

1https://www.iarpa.gov/index.php/research-programs/material

tion and Machine translation, two of the key pre-processing
components. The CLIR component is presented in sec-
tion 5 while Summarization is described in section 6. We
present the result in section 7 and discuss the application
of the system to low resource languages in section 8. We
conclude this paper in section 9.

2. Task and Data
The task of MATERIAL evaluation is given a set of for-
eign language documents and English queries, retrieve doc-
uments that are relevant to each query and generate a sum-
mary in English for each document the system deems rele-
vant to the query. Note that the MATERIAL summaries are
query-biased, i.e. the purpose of a summary is to allow an
English speaker to judge whether the original foreign lan-
guage document might have been relevant to the query. It
is query-biased summary of thoughts not general document
summary.

2.1. The AQWV Metric
The main evaluation metric is the Average Query Weighted
Value score, a numerical score for every query-document
pair, and is defined as a linear combination of the miss and
false alarm rates:

AQWV = 1−
(
pMiss + β pFA

)
(1)

pMiss is the average per-query miss rate and is defined as
follows

pMiss =
1

|Qr|
∑
q∈Qr

# misses of q
# refs of q

(2)

where Qr is the set of queries with references in the data
(i.e., each query has at least one relevant document). The
number of references and the number of misses of query
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q is computed based on the whole document collection C
under consideration.
pFA is the average per-query false alarm rate and is defined
as follows

pFA =
1

|Q|
∑
q∈Q

# FAs of q
|C| - # refs of q

(3)

The constant β in Equation (1) reflects the relative impor-
tance of the two types of error.
One can also compute a per-query performance measure,
the Query Weighted Value (QWV), defined for query q as

QWV = 1− pMiss(q)− β pFA(q) (4)

The AQWV metric has several important properties. The
range is (−β, 1], where a system that returns no detec-
tions would obtain a score of 0. It is possible for a sys-
tem with a large number of false alarms to give a nega-
tive score. A correct detection for different queries is not
weighted equally—the gain is related to the rarity of the
query, as queries with fewer relevant documents gain more
from each correct detection (e.g., think of the case where
a query has only one truly relevant document, and, assum-
ing no false alarms, accepting/rejecting that document will
result in a QWV of one/zero). If we ignore the number
of true references for a query in Equation 3—often this is
reasonable as the number of documents dwarfs the number
of true references—then there is a constant penalty for ev-
ery false alarm. The constant β controls the strength of the
penalty. All results in this paper use a β of 40, required
by the evaluation task. This means the system has to be
tuned to produce a very low false alarm rate: a single false
alarm is penalized 40 times more than a single true miss.
The general idea behind a high value of β is to minimize
the amount of non-relevant documents the end user has to
look through when using a CLIR system. The evaluation
plan also suggests an effective CLIR system should reach
an AQWV value of 0.5 or higher.
In the rest of the paper, we will denote by MQWV the max-
imum value that AQWV can attain by sweeping over all
possible decision thresholds.

2.2. Data
The training dataset (Build set) consists of approximately
50 hours of audio (conversational telephone speech) for
ASR and 800k words of bitext for MT. There are additional
Dev and Analysis datasets drawn from the same data pool
as the Evaluation dataset for internal testing and error anal-
ysis purpose.
Our system will be evaluated on the blind Evaluation
dataset, which is not guaranteed to have the same query
relevance probability as that of the Dev or Analysis dataset.
Table 1 gives the size of each dataset we received. We also
used existing additional speech and parallel text for build-
ing multilingual ASR and MT models. The detailed data
used by each component will be covered in individual sec-
tions below.

2.3. Technical Approach
Figure 1 is a top-level block diagram of our CLIR and Sum-
marization system. More details about the various compo-

Lithuanian Bulgarian
Dataset Text Speech Text Speech
Build 610K 66 hr 735K 41 hr
Dev 174K 10 hr 202K 15 hr
Analysis 234K 10 hr 276K 18 hr
Evaluation 4.3M 172 hr 4.5M 183 hr

Table 1: Size of text (number of source tokens) and speech
data provided in each language pack.
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Figure 1: Block diagram of our CLIR and Summarization
system

nents appear in Sections 5 and 6. At top right is an ex-
isting corpus of foreign audio and text documents, which
go through ASR, translation and indexing steps. At top
left, a user issues a query in English, which is then ex-
panded through query expansion. Note term translations
for CLIR can happen either after query expansion (from
English to the foreign language) or in document precom-
putation (from the foreign language to English). Our pre-
ferred mode is to efficiently translate all terms in the foreign
documents in all possible ways using the context of nearby
words. Note that, given that documents have a longer con-
text than queries, translation of documents to English is
more precise than translation of short (nominally one-two
words) English queries to the foreign language. The pre-
processed data in the form of weighted search terms (from
query expansion) and indexed documents serves as input to
the CLIR query module, where each document receives a
query relevance score. This is followed by score normaliza-
tion, combination, and thresholding to maximize AQWV
scores on the Dev or Analysis set. Finally, the retrieved
documents, together with translation models and target in-
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formation (where the CLIR evidence is from in the MT tar-
get), go through the Translation and Summarization module
to produce final summary snippets in English.

3. Automatic Speech Recognition

3.1. Training Data
Our acoustic model is pretrained on approximately 1500
hours of narrowband conversational data from 11 languages
(Keith et al., 2018). This pretrained multilingual model is
then fine tuned to the target language. The fine tuning data
consisted of the build train and build dev portions of the
MATERIAL data. Note that, although the provided tran-
scribed training speech is conversational telephone speech,
the majority of the evaluation speech is wideband broad-
cast speech. So we also collected approximately 700 hours
of untranscribed wideband data from YouTube in both Bul-
garian and Lithuanian for semi-supervised training. We ex-
pand the acoustic training data by creating two additional
copies that are augmented by noise, compression, and re-
verberation (Hartmann et al., 2016).
The language models are trained using four data sources:
1) acoustic transcripts, 2) build bitext, 3) paracrawl (Esplà
et al., 2019), 4) automatically collected web data. The pro-
cedure used to collect web data is described in (Zhang et
al., 2015). A separate trigram language model is created
for each data source and then interpolated to create a single
language model.

3.2. Pronunciation Lexicon
We start with the original pronunciation lexicon provided
with the build data. These pronunciations are also used to
train a model using SequiturG2P (Bisani and Ney, 2008) in
order to generate pronunciations for any additional words.
Our final lexicon contains all words from the original build
lexicon, the build bitext, and the paracrawl data. We also
include the most frequent 300k words in the web data.
Combined, this brings the total number of words in the lex-
icon to approximately 400k.

3.3. Acoustic Model
We use a CNN-LSTM acoustic model. This model is simi-
lar to the TDNN-LSTM acoustic model, but with 8 convo-
lutional layers prepended. In addition to the standard mel-
filterbank features, we also include i-vectors for speaker
adaptation. The Sage toolkit (Hsiao et al., 2016) is used for
training and decoding with acoustic model training based
on the Kaldi Chain model. Training consists of a single
epoch using the LF-MMI criterion followed by an addi-
tional epoch using sMBR. After the supervised model is
trained, we perform semi-supervised training. The original
model is used to transcribe the collected YouTube data. We
combine this automatically transcribed data with the orig-
inal labeled data and retrain the model. Note that while
both the supervised and unsupervised data are used during
LF-MMI training, only the supervised data is used during
sMBR training in order to limit the effects of errors in the
unsupervised transcripts.

3.4. Language Model
We build both n-gram and RNN-based language models
(LM). A trigram LM is constructed from each of the four
sources of text data. The LMs are then interpolated with
weights that minimize perplexity on the Analysis data. The
RNN-LM is trained on the same set of data as described in
(Xu et al., 2018). The neural model consists of two LSTM
layers and three fully connected layers.

3.5. Decoding
All audio data is first decoded using the above described
acoustic model with a trigram language model to gener-
ate initial lattices. The lattices are then rescored using the
RNN-LM. The final step is to convert the rescored lattices
into confusion networks (CNets).

4. Machine Translation
4.1. Training Data
The primary data source for constructing MT models is par-
allel data from the build language pack, augmented with
a variety of web data, such as CommonCrawl2 and open
parallel corpus (Tiedemann, 2012). We used the PanLex
dictionary (Kamholz et al., 2014) for the languages, sim-
ply by treating each translation as a (very short) parallel
sentence. We also used parallel data from Russian and
Ukrainian for building multilingual neural MT models. We
employed an oversampling technique to ensure that the tar-
get languages (Lithuanian and Bulgarian) are well repre-
sented in the training. More specifically, we oversample
data from each language with different oversampling fac-
tors so that the target language has a proportion of 70% in
the final training data, while the other three languages have
an equal proportion of 10% each. Table 2 summarizes the
amount of training data used:

Language Source Tokens (millions)
Lithuanian 13.1
Bulgarian 20.5
Russian 14.0
Ukrainian 9.7

Table 2: Amount of parallel data used in training multilin-
gual MT models.

Our system needs to translate both the text data and the
transcript from the ASR sub-system for use with summa-
rization (Section 6). Because there is no casing informa-
tion in the ASR transcript, we augmented the MT training
data with the lower-cased version of the source data with
punctuation marks removed to mimic the condition of ASR
output. The neural MT models were trained on both ver-
sions of the data together, in a single “multi-style” fashion,
to handle both text and ASR transcript as input. This was
however not done for the phrase-based model described be-
low.

2http://commoncrawl.org
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4.2. MT Models
The machine translation component consists of two multi-
lingual neural MT models and one phrase-based statistical
MT (SMT) model:

1. Transformer NMT: a 6-layer transfomer-based model
(Vaswani et al., 2017) jointly trained over Lithuanian,
Bulgarian, Russian and Ukrainian data. We applied
data oversampling and used 21k subword units in the
vocabulary. We trained the model over the training
data using 600k training steps with a batch size of
2048. We averaged the last 3 checkpoints to produce
the final model.

2. DynamicConv NMT: a 6-layer dynamic convolution
model (Wu et al., 2019) trained over the same data
with 50k subword units. 1200k updates were used for
the training. The final model was produced by model
averaging of the last 3 checkpoints.

3. Moses Phrase-based SMT: a phrase-based statistical
MT system trained over the Lithuanian or Bulgarian
bilingual data.

All MT models produce N-best (N=20) hypotheses as out-
put for downstream summarization processing. We used the
tensor2tensor toolkit (Vaswani et al., 2018) for the trans-
former implementation and the fairseq toolkit (Ott et al.,
2019) for the dynamic convolution model. We also used
Moses (Koehn et al., 2007) for training the phrase-based
model. Our own tokenizer was used instead of the tokenizer
from Moses to match the tokenization scheme used by other
system components. Subword tokenization was done using
the sentencepiece toolkit (Kudo and Richardson, 2018), an
unsupervised text tokenization method that is independent
of the language being processed.

5. CLIR
The CLIR system consists of a number of components for
performing indexing, query processing, retrieval, score nor-
malization, system combination, and thresholding. These
components are described in more detail below.

5.1. Query Processing
We treat queries in two distinct ways: (i) as flat strings,
where the query words are used as a “bag of words”, com-
pletely ignoring the context-free nature of the queries; this
is the mode used in the paper (Zbib et al., 2019); (ii)
as hierarchical, expressed using a parse tree, where the
MATERIAL-provided context-free grammar (CFG) is used
for this purpose. The leaves of the tree correspond to in-
dividual terms, while internal nodes of the tree correspond
to various query types such as LEXICAL PHRASE, PLUS,
EXAMPLE OF, etc.
In the case of the flat query treatment, we consider query
translation (to the foreign language) as well as document
translation (to English) as two distinct modes of retrieval.
In the case of the parse tree, PLUS and EXAMPLE OF
(CONCEPTUAL) query components are further expanded
to include additional query terms that are used in the
search. Specifically, the terms of the PLUS components

are expanded using nearest-neighbor words of English pre-
trained Wikipedia-derived word embeddings (Bojanowski
et al., 2017) (with a minimum cosine similarity cosmin, typ-
ically between 0.3-0.4). The weight of each expansion is
an exponential function of the cosine similarity, as follows

w = exp{−α(1− cos)/(1− cosmin)} (5)

where α is a tunable coefficient (typically equal to 3.0 in
our experiments). This weight is multiplied with the proba-
bility of occurrence of the term in the document. The terms
of the EXAMPLE OF components are expanded using both
WordNet and pre-trained monolingual embeddings as fol-
lows:

• Pre-Processing: Find all senses of the EXAMPLE OF
argument phrase in WordNet as NLTK Synset objects.

• WordNet Hyponym Traversal: For each Synset, re-
cursively traverse its hyponym tree and record all hy-
ponyms found during the process.

• Post-Processing: Filter out any hyponyms that have
a vector cosine distance relative to the original
EXAMPLE OF phrase greater than 0.35. As above,
we use the word embeddings from (Bojanowski et al.,
2017).

For instance, the expansions for the query
EXAMPLE OF(footwear) include: “baby shoe”, “bowling
shoe”, “sneaker”, “wooden shoe”, “rubber boot”, “congress
shoe”, “ghillie”, “combat boot”, “footgear”, “huarache”,
etc.

5.2. Indexing
We construct inverted indexes for both the source language
and the target language. For text documents, we index
words and n-grams. For speech documents, we index both
the 1-best output (which is treated as regular text) and the
confusion network, saving the ASR posterior score. The
index contains the location of the words and the n-grams
as well as the probability of translation to the target (query)
language, scaled by the ASR posterior in the case of speech.
The probability of translation is obtained from the GIZA
translation table (generating GIZA alignments is usually
one of the first steps run in a MT system), interpolated with
the Neural Network Lexical Translation Model (NNLTM)
score. More details about NNLTM can be found in (Zbib et
al., 2019). Note that the indexing is done with both original
and stemmed English words.

5.3. Retrieval Models
The individual retrieval models are as follows:

• For “flat” queries, four retrievals are performed: with
original/stemmed words and with document/query
translation. (Obviously, the appropriate index is used
in each case.) For the case of document translation,
two confidence score computations are also done: us-
ing the simple probabilistic model and with the proba-
bility of occurrence (see (Zbib et al., 2019) for details).
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• For “hierarchical” queries, the parse tree is used as a
“processing tree”, akin to an abstract syntax tree used
in computer language compilers. Then, the process
of retrieval can be accomplished using a depth-first
traversal of the tree. Terminal nodes compute the lo-
cations where individual query words (original or ex-
panded) are matched in a document, based on what is
in the inverted index. Internal (non-terminal) nodes
of the tree perform an operation corresponding to the
query type: e.g., for PLUS or EXAMPLE OF queries,
the individual retrievals of the “children” nodes (query
terms or expanded terms) are combined using a prob-
ability of occurrence operation. Similarly, an internal
node that corresponds to a LEXICAL PHRASE only
keeps retrievals that are “close” to each other and pe-
nalizes for missing phrase words.

• Whole-phrase matching, where, if a phrase query
component existed in the phrase translation table, and
if the source phrase translation existed in the docu-
ment, the corresponding probability was used in the
retrieval.

• In all cases above, two retrievals are done in the case
of Speech: using ASR 1-best and ASR confusion net-
works (cnets). While the cnets provide better perfor-
mance, the 1-best helps in combination.

5.4. Normalization, Combination, and
Thresholding

The detection scores of each of the individual systems are
normalized using a learned model. The model computes a
linear combination of the following features:

1. Original retrieval score(q, d) for query q and docu-
ment d

2. The QST-transformed score scoreqst(q, d), where QST
is a technique similar to KST, described in (Karakos et
al., 2013)

3. The normalized sum
∑

d∈C score(q, d)/|C|

4. The three features:

min
w∈q
{score(w, d)}, max

w∈q
{score(w, d)}, avg

w∈q
{score(w, d)},

where avgw is just the average over all words w in
query q (esp. for multi-word queries).

5. The three features:

min
w∈q
{count(w)}, max

w∈q
{count(w)}, avg

w∈q
{count(w)},

where count(w) is the count of w in the IR training
data (e.g., parallel data used to train the bilingual dic-
tionary for CLIR).

The weights in the linear combination are computed using
Powell’s method (Karakos et al., 2013), with the objective
to maximize MQWV.
Combination of a subset of the individual systems (deter-
mined through performance on Analysis and Dev) is done

by interpolating the log probabilities from the different sys-
tems, with weights determined using Powell’s method, as
mentioned above.
The final output on the test set is thresholded by tuning the
overall proportion of accepted documents according to per-
formance of the query set on the Analysis document set.

5.5. Evidence for Summarization
Besides outputting scores and decisions for all documents
that have been accepted, the CLIR system outputs an evi-
dence “object” for each sentence that has a nonzero score
for a query. The evidence object specifies the source seg-
ment, source word, query word found, and the probability
for that query word. These evidence objects are just re-
ferred to as “evidence” in the summarization section below.

6. Summarization
6.1. Overview
The task of the summarization component is to create
English-language summaries for the documents that are re-
trieved by the CLIR component. The summarization com-
ponent makes use of query “evidence” provided by CLIR
component and English translations provided by the MT
component to rank and select appropriate sentences (or
fixed-length snippets) in order to form a summary that can
be presented to human users. Below we describe in more
detail, the mechanism to use output from CLIR and MT
components, our extractive selection algorithm, and some
presentation aspects of the summarization component.

6.2. Combining Output from Multiple CLIR
Systems

As explained above, the CLIR component is comprised of
multiple systems that each produce their individual output.
While the system combination step in CLIR takes care of
combining the relevance decision and document-level rel-
evance scores output by these systems, the word-level evi-
dence information is combined by the summarization com-
ponent. This combined information is then used in the sen-
tence selection process (described below). The word-level
evidence provides, for every query word likely to appear in
a sentence, the probability of its occurrence. This probabil-
ity is derived by interpolation of GIZA and NNLTM trans-
lation probabilities. The summarization component uses a
weighted sum of these probabilities to form an aggregate
score for a query word appearing in a sentence.

6.3. Combining Output from Multiple MT
Systems

The summarization component uses top-K English sen-
tences from the nbest output of each of the three MT
systems–Transformer, DynamicConv, and Moses. For the
evaluation, the value of K was set to 4. Summarization
component looks for specific query words within these sen-
tences based on the evidence provided by CLIR and also a
direct string match. It then creates fix-sized snippets around
these query words. These snippets are then used for ranking
and selection to form the final summary.
Note that the summarization component has the ability to
extract either full sentences or fix-sized snippets in order



49

Language Text Speech All
AQWV pMiss pFA AQWV pMiss pFA AQWV

Lithuanian 0.617 0.287 0.002 0.609 0.306 0.002 0.613
Bulgarian 0.695 0.186 0.003 0.654 0.210 0.003 0.675

Table 3: Official AQWV scores for Text and Speech data on the evaluation set with a β of 40. The All column reports a
single AQWV system score computed as the mean of the Text and Speech AQWV scores.

to create the summary. For the evaluation, we chose to use
fix-sized snippets that extend up to 7 words before and after
the query word.

6.4. Snippet Selection Algorithm
Our extractive snippet selection algorithm is a submodu-
lar selection algorithm that uses both query-evidence and
tf-idf scores in its coverage and diversity objectives (Lin
and Bilmes, 2011). The query words that are discovered
by direct string match, and that for some reason were not
captured in interpolated GIZA-NNLTM translation tables,
are assigned a fixed score. It is also worth mentioning that
we do some special handling for expanded queries. For
expanded queries, we use a cutoff on the list of expanded
query terms, so as to reduce possible noise in summary out-
put and also lower the computation time needed for snippet-
selection itself. We experimented with various cutoffs and
found that a cutoff of 3 worked best for text summaries,
while a cutoff of 0 (no expanded terms) worked best for
audio summaries.
We select the top two snippets ranked by the submodular
algorithm to form the final summary, which in part is moti-
vated by (Maxwell et al., 2017), who show that for a sum-
marization system for IR, longer summaries are not nec-
essarily beneficial for human-in-the-loop relevance judg-
ments. Since we use nbest English sentences from multi-
ple MT systems, there is a possibility (although bleak) that
some adjacently ranked snippets can have a large informa-
tion overlap. To address that, after selecting a snippet from
a given unique sentence (based on the mapping sentence ID
from the foreign language side), we preclude other snippets
from that sentence from the selection process.

6.5. Presentation Aspects of Summaries
Based on the presentation scheme used by (Boschee et al.,
2019b), our summaries have the query words (or any word
that is likely to be an alternative translation for the query
word) highlighted in blue. A footnote is also attached to
each highlighted word, which is composed of the alterna-
tive translations that the highlighted word could have in the
context. These alternative translations are the top 5 words
appearing in a combined GIZA-NNLTM interpolated trans-
lation table, where the combined table is created by apply-
ing Borda ranking3 to multiple GIZA-NNLTM interpola-
tion tables used by various CLIR systems. See figure 2 for
a sample summary from the Lithuanian system.

7. Results
Table 3 gives the official AQWV scores for Lithuanian and
Bulgarian on Text and Speech conditions of the evaluation

3http://en.wikipedia.org/wiki/Borda count

SYSTEM CONFIDENCE: 99%

women who died in an accident** during a car* and train in Estonia

*car, ir, train, accident, technical

**accident, crash, accidents, wreck, clash

both victims* were Finnish national.

*sacrifice, offerings, sacrifices, victims, offering

query10134_MATERIAL_OP1-2B_76300083 file:///home/lzhang/Downloads/sum/FLAIR.BB...

1 of 1 2/21/20, 2:34 PM

Figure 2: Sample summary snippet returned from the
Lithuanian system for a plus query “car accident victim”+

data. A β of 40 is used to penalize false alarms when com-
puting AQWV scores. Consequently our system is tuned
to produce a very low probability of the average per-query
false alarm (pFA) at the cost of relatively high probability
of miss (pMiss).
In addition to the AQWV results on the evaluation set, we
also present results from our ASR and MT components
on the Analysis set where we have references. In table 4
we give the word error rate (WER) and BLEU scores our
system produced on the Analysis sets. The BLEU scores
are obtained using the mteval-v11b scoring script from
NIST.4 For the MT result, the two neural MT models, trans-
former (NMT-T) and dynamic convolution (NMT-D), have
similar performance, and are much better than that from
the SMT Moses system. The gain of the NMT over SMT
model is largely due to multilingual training, which is not
possible with the phrase based SMT. Because sometimes
our Summarization component will choose the rendering of
a snippet from the SMT instead of that from the neural MT
system, we decide to include SMT as part of the translation
pipeline.

Language WER BLEU
MT Model NMT-T NMT-D SMT
Lithuanian 18.7 30.4 30.5 20.0
Bulgarian 17.6 43.8 43.5 34.7

Table 4: WER and BLEU scores for Lithuanian and Bul-
garian on the Analysis set.

8. Low-Resource Languages
In this paper, we only reported experimental results from
two medium-resource languages as part of the October
2019 MATERIAL evaluation. However, all the techniques
discussed in this paper are applicable to low-resource lan-
guages. Since such languages have very limited training
data, techniques such as semi-supervised training, can be

4https://www.nist.gov/itl/iad/mig/tools
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employed to leverage large amounts of existing or web col-
lected data to further improve system performance. This
can be done for speech recognition or machine translation
via back translation (Sennrich et al., 2016). Previously, we
had applied our system to low-resource languages such as
Somali, Swahili, and Tagalog. More recently, we applied
our system to Pashto as part of the MATERIAL Surprise
language Sprint in early 2020 and achieved very good per-
formance.

9. Summary
In this paper, we presented a CLIR system that can perform
information retrieval over audio and text documents from
a foreign language and present summaries in English. Key
features of our system include an appropriate probabilistic
CLIR model that uses a neural network lexical translation
model, strong multilingual neural speech recognition and
neural translation models, plus advanced score normaliza-
tion, combination, and thresholding schemes. Furthermore,
our system is language agnostic and can be quickly brought
up for a new low-resource language in a few days. In the
future, we plan to explore better ways of using harvested
data to enhance CLIR, ASR, and MT in the form of semi-
supervised training.
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V. B. (2013). Score normalization and system combina-
tion for improved keyword spotting. In 2013 IEEE Work-
shop on Automatic Speech Recognition and Understand-
ing, Olomouc, Czech Republic, December 8-12, 2013,
pages 210–215. IEEE.

Keith, F., Hartmann, W., Siu, M., Ma, J. Z., and Kimball,
O. (2018). Optimizing multilingual knowledge transfer
for time-delay neural networks with low-rank factoriza-
tion. In 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2018, Cal-
gary, AB, Canada, April 15-20, 2018, pages 4924–4928.
IEEE.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
erico, M., Bertoldi, N., Cowan, B., Shen, W., Moran,
C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and
Herbst, E. (2007). Moses: Open source toolkit for sta-
tistical machine translation. In ACL 2007, Proceedings
of the 45th Annual Meeting of the Association for Com-
putational Linguistics, June 23-30, 2007, Prague, Czech
Republic.

Kudo, T. and Richardson, J. (2018). Sentencepiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2018: System Demon-
strations, Brussels, Belgium, October 31 - November 4,
2018, pages 66–71.

Lin, H. and Bilmes, J. (2011). A class of submodular func-
tions for document summarization. In Proceedings of



51

the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies,
pages 510–520.

Maxwell, D., Azzopardi, L., and Moshfeghi, Y. (2017). A
study of snippet length and informativeness: Behaviour,
performance and user experience. In Proceedings of the
40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’17,
pages 135–144, New York, NY, USA. Association for
Computing Machinery.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N.,
Grangier, D., and Auli, M. (2019). fairseq: A fast, ex-
tensible toolkit for sequence modeling. In Proceedings
of NAACL-HLT 2019: Demonstrations.

Sennrich, R., Haddow, B., and Birch, A. (2016). Improv-
ing neural machine translation models with monolingual
data. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers. The Association for Computer Linguistics.

Tiedemann, J. (2012). Parallel data, tools and interfaces in
OPUS. In Proceedings of the Eighth International Con-
ference on Language Resources and Evaluation, LREC
2012, Istanbul, Turkey, May 23-25, 2012, pages 2214–
2218.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 De-
cember 2017, Long Beach, CA, USA, pages 5998–6008.

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez,
A. N., Gouws, S., Jones, L., Kaiser, L., Kalchbrenner,
N., Parmar, N., Sepassi, R., Shazeer, N., and Uszkoreit,
J. (2018). Tensor2tensor for neural machine translation.
In Proceedings of the 13th Conference of the Association
for Machine Translation in the Americas, AMTA 2018,
Boston, MA, USA, March 17-21, 2018 - Volume 1: Re-
search Papers, pages 193–199.

Wu, F., Fan, A., Baevski, A., Dauphin, Y., and Auli, M.
(2019). Pay less attention with lightweight and dynamic
convolutions. In International Conference on Learning
Representations.

Xu, H., Chen, T., Gao, D., Wang, Y., Li, K., Goel, N.,
Carmiel, Y., Povey, D., and Khudanpur, S. (2018). A
pruned rnnlm lattice-rescoring algorithm for automatic
speech recognition. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
ICASSP 2018, Calgary, AB, Canada, April 15-20, 2018,
pages 5929–5933. IEEE.

Zbib, R., Zhao, L., Karakos, D., Hartmann, W., DeYoung,
J., Huang, Z., Jiang, Z., Rivkin, N., Zhang, L., Schwartz,
R. M., and Makhoul, J. (2019). Neural-network lexical
translation for cross-lingual IR from text and speech. In
Benjamin Piwowarski, et al., editors, Proceedings of the
42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2019,
Paris, France, July 21-25, 2019, pages 645–654. ACM.

Zhang, L., Karakos, D., Hartmann, W., Hsiao, R.,

Schwartz, R. M., and Tsakalidis, S. (2015). Enhanc-
ing low resource keyword spotting with automatically
retrieved web documents. In INTERSPEECH 2015, 16th
Annual Conference of the International Speech Commu-
nication Association, Dresden, Germany, September 6-
10, 2015, pages 839–843. ISCA.


	Introduction
	Task and Data
	The AQWV Metric
	Data
	Technical Approach

	Automatic Speech Recognition
	Training Data
	Pronunciation Lexicon
	Acoustic Model
	Language Model
	Decoding

	Machine Translation
	Training Data
	MT Models

	CLIR
	Query Processing
	Indexing
	Retrieval Models
	Normalization, Combination, and Thresholding
	Evidence for Summarization

	Summarization
	Overview
	Combining Output from Multiple CLIR Systems
	Combining Output from Multiple MT Systems
	Snippet Selection Algorithm
	Presentation Aspects of Summaries

	Results
	Low-Resource Languages
	Summary
	Acknowledgements
	Bibliographical References

