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Abstract 
We describe an approach to cross lingual information retrieval that does not rely on explicit translation of either document or query 
terms. Instead, both queries and documents are mapped into a shared embedding space where retrieval is performed. We discuss potential 
advantages of the approach in handling polysemy and synonymy. We present a method for training the model, and give details of the 
model implementation. We present experimental results for two cases: Somali-English and Bulgarian-English CLIR. 
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1. Introduction 
A fundamental design decision in cross-lingual information 
retrieval is whether to translate the queries, the documents, 
or both. In this paper, we discuss a substantially different 
alternative where neither the query nor the document is 
translated. Instead, both the queries and documents are 
projected into a shared embedding space and retrieval is 
performed there. The approach offers potential advantages 
in handling synonymy, i.e. where synonymous query terms 
can match a single document term (or vice-versa), as well 
as for document-language polysemy, i.e. where a particular 
document term can have one of several meanings 
depending on context. In tests on two languages, Somali 
and Bulgarian, we observed a level of performance that is 
competitive with the “document translation” approach, 
including when translation is performed using a state-of-
the-art tensor-to-tensor model. For one of the languages, 
Somali, the shared embedding approach was also able to 
outperform a hybrid strategy involving both query and 
document translation. All experimental results were from 
IARPA’s MATERIAL evaluation task. 

2. Initial Experiments 
Methods for constructing cross-lingual (and multilingual) 
word embeddings have been extensively investigated for 
the past several years (Hermann and Blunsom, 2014; 
Luong, Pham, and Manning, 2015; Gouws, Bengio, and 
Corrado, 2015) and several pre-trained resources are 
publicly available. To begin exploring the possibility of 
applying shared embeddings for CLIR, we constructed a 
baseline system and tested a few state-of-the-art publicly-
available variants, including MUSE (Conneau et al., 2017). 
The baseline system architecture is shown in Figure 1. 

In this system, document relevancy is determined based on 
cosine distance between query and document terms. More 

specifically, a document is considered responsive to a 
query if at least one of the document words is within a fixed 
threshold (in embedding space) of the query. Despite 
basing our experiments on state-of-the-art embeddings, 
initial performance was low. The AQWV score (Actual 
Query Weighted Value) for MATERIAL’s Swahili-
English analysis set was 0.03; for Tagalog-English it was 
0.07. 

2.1 Limitations of the Baseline Approach  
Three factors seemed to account for the low AQWV scores. 
First, embedding spaces are not uniform; some regions are 
densely packed with words while other regions are only 
sparsely populated. Thus, no consistent interpretation of 
distance exists, making the selection of a single matching 
threshold problematic. Second, although simple linear 
transformations are capable of aligning semantically-
related words across languages, the alignments are not 
sufficiently precise to identify exact term translations – 
particularly for MATERIAL’s lexical queries. Finally, our 
retrieval mechanism was massively under-parameterized; 
initial experiments attempted to optimize a complex CLIR 
task by adjusting only a single scalar threshold parameter. 

3. Training Data and Objective Function 
Overcoming these limitations would require a sufficiently 
parameterized model that could be trained for the CLIR 
task. Implicit in this approach is the need for training data 
and for a well-defined training objective. In principle, data 
provided by the MATERIAL program could provide the 
training examples and AQWV could serve as the objective 
function. However, MATERIAL’s rules explicitly prohibit 
directly training on this data and, in any case, the relatively 
small number of queries and relevance judgements is 
insufficient to train an adequate model (e.g., embedding 
parameters alone require estimating millions of floating-
point values). 

Instead, we defined a simplified sentence-retrieval task for 
which training data is readily available. Specifically, given 
an English query term (q) and a foreign language sentence 
(S): 

• Sentence S is relevant to query q if there exists at 
least one plausible translation of S containing q. 

For this proxy task, large numbers of training examples can 
be extracted from a parallel corpus such as used to train 
machine translation systems. Specifically, any English 
term that occurs anywhere in a bitext sentence can be 
treated as a query and its corresponding foreign-language 
sentence treated as a positive example. Negative examples 

Figure 1: Baseline architecture 
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can be randomly drawn from foreign-language bitext 
sentences (any randomly selected sentence is probably not 
relevant, but we can additionally verify that its 
corresponding English sentence does not contain the query 
term). 

Figure 2 shows examples of training instances from a 
Swahili/English parallel corpus. The sentence in the first 
row translates to “The fine for passing another vehicle 
improperly is 400 shillings.” Similarly, the sentence in the 
third row translates to “Think about people with phones 
since in Tanzania so many people are using phones.” The 
sentences in rows 2 and 4 are randomly selected Swahili 
sentences that do not contain the query term. 

Given a training corpus of such examples, the probability 
that a sentence S is relevant to a query q, i.e. 𝑃(𝑟𝑒𝑙|𝑆, 𝑞), 
can be optimized using the standard cross-entropy 
objective function H 

𝐻(𝑋) =.𝑧 ∗	−log	(𝑝(𝑟𝑒𝑙|𝑆, 𝑞) + (1 − 𝑧)
!

∗ − log91 − 𝑝(𝑟𝑒𝑙|𝑆, 𝑞):) 

where X is the set of training examples and z are the true 
labels (1 for relevant, 0 for irrelevant). 

For the actual MATERIAL task, the relevance of a 
document to a query phrase is taken as the maximum 
relevance over sentences in the document. 

4. Model Architecture 
Now that we have identified suitable training data and an 
objective function, we next consider the challenge of model 
design.  

Here we introduce the following elements: 

• Query encoder: maps English terms into the shared 
embedding space 

• Sentence encoder: maps foreign-language terms into 
the shared embedding space 

• Attention mechanism: selects regions of the sentence 
based on the query 

• Matching mechanism: determines how closely the 
selected region matches the query 

• Activation function: maps matching scores to 
probability values 

An overview of the generic SEARCHER architecture is 
shown in Figure 3. The retrieval process proceeds as 
follows. First, each foreign-language word is mapped into 
the shared embedding space. These embeddings are 
contextualized, as described in Sections 5 and 6. Next, the 
English query term is mapped into the common embedding 
space. An attention mechanism then selects the region of 
the foreign-language sentence that appears most relevant to 
the query and outputs its embedding. The selected region’s 
embedding is compared to the query by a matching 
function which outputs a matching score. Finally, the 
matching score is passed through an activation function 
that produces the probability of relevance. Importantly, this 
activation function also receives a separate query-specific 
bias value. This bias value helps overcome non-uniformity 
in the embedding space by requiring some terms to match 
more closely than others depending on the density of their 
surrounding neighborhoods. In all of our experiments, we 
use a sigmoidal activation function. 

5. Contextualized Embedding Spaces 
Beginning with models such as BERT (Devlin et al., 2018) 
and ELMO (Peters et al., 2018), contextualized 
embeddings have proven useful for a wide range of tasks. 
While MATERIAL’s queries typically contain only one or 
a few words, and therefore offer little opportunity for query 
contextualization, our proxy CLIR task evaluates relevance 
over complete sentences, offering the possibility of 
contextualizing document embeddings. A potential 
advantage of such contextualization is the resolution of 
polysemous terms. Specifically, a contextualized model 
can learn to situate polysemous terms in different regions 
of the embedding space depending on context. For example 
the Swahili term “nyanya” can be translated alternatively 
as “grandmother” or “tomatoes,” as shown in Figure 4. 
Ideally, a contextualized model will place the different 
senses of a polysemous term in different locations in the 
embedding space, thereby reducing the possibility of 
spurious matches (e.g. retrieving grandmothers when 
searching for tomatoes). 
 
We note that in SEARCHER, contextualized embeddings 
are used only for document terms; non-contextual 
embeddings are used for query terms. 
 

Figure 4: Polysemy in shared embedding space 

Figure 2: Examples of training instances 

Figure 3, Generic SEARCHER Architecture 
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Performing retrieval in a shared embedding space is also 
potentially useful for resolving synonymous terms. For 
example, the Swahili term ‘gari’ can be translated 
equivalently as “car” or “vehicle,” as shown in Figure 5. 
Ideally, the model will place synonymous terms in similar 
positions in the embedding space, thereby increasing the 
possibility of matching any of the alternatives (e.g. 
retrieving a document containing “gari” whether the query 
term is “car” or “vehicle”). 

6. Convolutional Encoder 
In this section, we consider details of the sentence encoder 
mentioned in Section 4. Specifically, SEARCHER’s 
sentence encoder produces contextualized embeddings 
using a deep convolutional model consisting of 15 
convolution layers, each of diameter 3. This architecture 
yields a receptive field of 31 words, providing 15 words of 
context on each side of a term. The encoder is similar to 
that described in (Gehring et al., 2018).  

In detail, each convolution block consists of a dropout 
layer, a convolution layer, a GLU layer (gated linear units), 
and residual connections. A fixed embedding size of 512 is 
maintained throughout the network.  

We use an identical encoder in our convolutional machine 
translation system. In fact, we have found that pretraining 
the encoder in an MT setting, then transferring the encoder 
to SEARCHER, and continuing to train the remaining 
CLIR elements is an effective method for speeding 
convergence. 

7. Simplifications 
Our generic SEARCHER architecture leaves room for 
various alternatives at the level of individual components. 
For instance, while we use a convolutional sentence 
encoder, it would be perfectly reasonable to substitute a 
transformer architecture. 

One alternative involving the attention and matching 
mechanisms leads to a particularly attractive simplification. 
Specifically, if the attention mechanism is the commonly 
used form: 

𝐴𝑇𝑇(𝑆, 𝑞) = . 𝛼"𝑠"
"∈|%|

 

𝛼" =
exp	(𝑒")

∑ exp	(𝑒")"∈|%|
 

𝑒" = 𝑞 ∙ 𝑠" 

and the matcher is a simple dot product, then the resulting 
architecture (after some algebra) reduces to that shown in 
Figure 6. 

We have found this simplified architecture to be effective, 
producing results at least as good as more complex 
variations. A further simplification is obtainable by 
replacing the softmax pooling layer with a hard max-
pooling layer.  Both simplified variations produce similar 
results. The softmax variation requires fewer training 
cycles (because max-pooling updates just the single best-
matching term on each training cycle, whereas softmax 
pooling updates all words in proportion to their distance 
from the query). On the other hand, max pooling appears to 
yield slightly sharper probability distributions. 

8. Relation to the Baseline Model 
The SEARCHER model shown in Figure 6 bears a striking 
resemblance to the baseline model described in Section 2. 
The most important difference is that the SEARCHER 
model is specifically trained to perform CLIR whereas the 
baseline model relies on pretrained embeddings. Other 
differences are: 

• Contextualized embeddings replace individual word 
embeddings  

• Dot products replace cosine distances (which are 
simply normalized dot products) 

• Softmax pooling (essentially, a soft OR function) 
replaces the logical OR 

• A sigmoidal activation function (essentially, a soft 
threshold) replaces hard thresholding 

• The positions of the combining function 
(softmax/logical OR) and the activation function 
(sigmoid/hard threshold) are exchanged 

• A bias term is introduced for each query term 

9. Experimental Results 
We tested SEARCHER in two MATERIAL languages, 
Somali and Bulgarian. For each language, we also 
evaluated traditional translation-based CLIR.  

For the Somali case, we compare performance with several 
different machine translation models. These include 
syntax-based statistical machine translation and two types 
of neural machine translation: tensor-to-tensor (Vaswani et 
al., 2017) and convolutional (Gehring et al., 2018). For the 
neural models, we follow best practices in training, 
including the use of substantial back-translated data. 

Figure 6: Simplified SEARCHER Architecture 

Figure 5: Synonymy in shared embedding space 
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In all cases, the MT system is applied to translate the 
foreign language documents into English. We also evaluate 
alternatives where, in addition to translating the documents, 
we translate the English queries into the foreign language 
using translation tables obtained by a statistical alignment 
process. This strategy improves the probability of matching 
queries to documents by translating in both directions. 

Results for Somali, as shown in Table 1, are encouraging. 
Entries in the table that are designated (+source) indicate 
the combined strategy where queries are also translated. 
Evaluating on two different MATERIAL data sets 
(designated analysis and dev), SEARCHER outperformed 
the “document translation” strategy for all translation 
models as well as the combined strategy where both the 
documents and the queries are translated. 
 

System AQWV 
analysis1/q1 

AQWV 
dev1/q1 

syntax-based MT 0.1537 0.2110 
syntax-based MT 
+ source 

0.1643 0.2257 

tensor-to-tensor 
MT 

0.1753 0.1852 

tensor-to-tensor 
+ source 

0.1904 0.2251 

convolutional 
MT 

0.1611 0.1965 

convolutional 
MT + source 

0.1814 0.2361 

SEARCHER 0.2290 0.2502 
Table 1: AQWV of various systems on Somali 

For the Bulgarian case, we compare SEARCHER with only 
our best machine translation model, a tensor-to-tensor 
model, and evaluate only on MATERIAL analysis 
documents. Once again, the MT system is applied to 
translate the foreign-language documents into English. As 
before, we also evaluate the combined strategy, translating 
both documents and queries. 

Results for Bulgarian are shown in Table 2. In this case, 
results are somewhat different. In general, performance is 
much better. SEARCHER’s performance matches the 
“document translation” strategy alone. However, when 
query translation is added, the combined translation 
strategy noticeably outperforms SEARCHER. We suspect 
that part of the explanation for the differences in relative 
performance is the amount of training data available. 
Specifically, large quantities of paracrawl data for 
Bulgarian provide a significant boost in MT accuracy. 

System AQWV analysis1/q1 

tensor-to-tensor MT 0.6527 
 

tensor-to-tensor + source 0.6998 
 

SEARCHER 0.6546 
Table 2: AQWV for Bulgarian 

10. Summary 
We have conducted numerous experiments with 
SEARCHER models. We have identified an effective 
general architecture and derived simplified variations that 

perform well. We found that training for a proxy task 
(sentence retrieval) is a useful strategy and that adequate 
training examples can be derived from bitexts. While much 
work remains to be done, we have demonstrated that shared 
embedding space models can be an effective method for 
CLIR, providing a competitive alternative to document 
translation models, including those based on state-of-the-
art neural MT. In one language, Somali, we found that 
SEARCHER outperformed all the translation-based 
alternatives that we evaluated. 
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