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Abstract

Clinical machine learning is increasingly mul-
timodal, collected in both structured tabular
formats and unstructured forms such as free
text. We propose a novel task of exploring fair-
ness on a multimodal clinical dataset, adopt-
ing equalized odds for the downstream med-
ical prediction tasks. To this end, we inves-
tigate a modality-agnostic fairness algorithm -
equalized odds post processing - and compare
it to a text-specific fairness algorithm: debi-
ased clinical word embeddings. Despite the
fact that debiased word embeddings do not
explicitly address equalized odds of protected
groups, we show that a text-specific approach
to fairness may simultaneously achieve a good
balance of performance and classical notions
of fairness. We hope that our paper inspires
future contributions at the critical intersection
of clinical NLP and fairness. The full source
code is available here: https://github.
com/johntigerl/multimodal_fairness

1 Introduction

Natural language processing is increasingly lever-
aged in sensitive domains like healthcare. For such
critical tasks, the need to prevent discrimination
and bias is imperative. Indeed, ensuring equal-
ity of health outcomes across different groups has
long been a guiding principle of modern health
care systems (Culyer and Wagstaff, 1993). More-
over, medical data presents a unique opportunity
to work with different modalities, specifically fext
(e.g., patient narratives, admission notes, and dis-
charge summaries) and numerical or categorical
data (often denoted tabular data, e.g., clinical mea-
surements such as blood pressure, weight, or demo-
graphic information like ethnicity). Multi-modal
data is not only reflective of many real-world set-
tings, but machine learning models which lever-
age both structured and unstructured data often
achieve greater performance than their individual
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constituents (Horng et al., 2017). While prior work
studied fairness in the text and tabular modalities
in isolation, there is little work on applying notions
of algorithmic fairness in the broader multimodal
setting (Zhang et al., 2020; Chen et al., 2018).

Our work brings a novel perspective towards
studying fairness algorithms for models which op-
erate on both text and tabular data, in this case ap-
plied to the MIMIC-III clinical dataset (MIMIC-III)
(Johnson et al., 2016). We evaluate two fairness al-
gorithms: equalized-odds through post-processing,
which is agnostic to the underlying classifier, and
word embedding debiasing which is a text-specific
technique. We show that ensembling classifiers
trained on structured and unstructured data, along
with the aforementioned fairness algorithms, can
both improve performance and mitigate unfairness
relative to their constituent components. We also
achieve strong results on several MIMIC-III clini-
cal benchmark prediction tasks using a dual modal-
ity ensemble; these results may be of broader in-
terest in clinical machine learning (Harutyunyan
et al., 2019; Khadanga et al., 2019).

2 Background

2.1 Combining Text and Tabular Data in
Clinical Machine Learning

Prior work has shown that combining unstruc-
tured text with vital sign time series data improves
performance on clinical prediction tasks. Horng
et al. (2017) showed that augmenting an SVM with
text information in addition to vital signs data im-
proved retrospective sepsis detection. Akbilgic
et al. (2019) showed that using a text-based risk
score improves performance on prediction of death
after surgery for a pediatric dataset. Closest to our
work, Khadanga et al. (2019) introduced a joint-
modality neural network which outperforms single-
modality neural networks on several benchmark
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prediction tasks for MIMIC-III.

2.2 Classical fairness metrics

Many algorithmic fairness notions fall into one of
two broad categories: individual fairness enforcing
fairness across individual samples, and group fair-
ness seeking fairness across protected groups (e.g.
race or gender). We focus on a popular group-level
fairness metric: Equalized Odds (EO) (Hardt et al.,
2016). Instead of arguing that average classifica-
tion probability should be equal across all groups
(also known as Demographic Parity) — which may
be unfair if the underlying group-specific base rates
are unequal — EO allows for classification proba-
bilities to differ across groups only through the
underlying ground truth. Formally, a binary clas-
sifier Y satisfies EO for a set of groups S if, for
ground truth Y and group membership A:

Pr(Y =1|Y =y, A=a)=Pr(Y =1|Y =y, A=4d)
vy € {0,1},Va,a’ € S

In short, the true positive (TP) and true negative
(TN) rates should be equal across groups.

2.3 Equalized Odds Post Processing

Hardt et al. (2016) proposed a model-agnostic post-
processing algorithm that minimizes this group
specific error discrepancy while considering per-
formance. Briefly, the post-processing algorithm
determines group-specific random thresholds based
on the intersection of group-specific ROC curves.
The multi-modality of our underlying data and the
importance of privacy concerns in the clinical set-
ting make post-processing especially attractive as it
allows fairness to be achieved agnostic to the inner
workings of the base classifier.

2.4 Debiasing word embeddings

Pretrained word embeddings encode the societal
biases of the underlying text on which they are
trained, including gender roles and racial stereo-
types (Bolukbasi et al., 2016; Zhao et al., 2018;
Mangzini et al., 2019). Recent work has attempted to
mitigate this bias in context-free embeddings while
preserving the utility of the embeddings. Bolukbasi
et al. (2016) analyzed gender subspaces by compar-
ing distances between word vectors with pairs of
gender-specific words to remove bias from gender-
neutral words. Manzini et al. (2019) extended this
work to the multi-class setting, enabling debias-
ing in race and religion. Concurrent to their work,
(Ravfogel et al., 2020) propose iterative null space
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Figure 1: Experimental setup and ensemble architec-
ture. Fairness approaches are indicated in dotted boxes.

projection as a technique to hide information about
protected attributes by casting it into the null space
of the classifier. Following the recent popularity of
BERT and ELMo, Liang et al. (2020) consider ex-
tending debiasing to sentence-level, contextualized
representations.

3 Experimental Setup

3.1 Clinical Prediction Tasks

MIMIC-III contains deidentified health data asso-
ciated with 60,000 intensive care unit (ICU) ad-
missions (Johnson et al., 2016). It contains both
unstructured textual data (in the form of clinical
notes) and structured data (in the form of clini-
cal time series data and demographic, insurance,
and other related meta-data). We focus on two
benchmark binary prediction tasks for ICU stays
previously proposed by Harutyunyan et al. (2019):
in-hospital mortality prediction (IHM), which aims
to predict mortality based on the first 48 hours of
a patient’s ICU stay, and phenotyping, which aims
to retrospectively predict the acute-care conditions
that impacted the patient. Following Khadanga
et al. (2019) we extend the prediction tasks to lever-
age clinical text linked to their ICU stay. For both
tasks the classes are higly imbalanced: in the IHM
task only 13.1% of training examples are positive,
and the relative imbalance of the labels in the phe-
notyping class can be seen in Figure 2. To account
for the label imbalance we evaluate performance
using AUC ROC and AUC PRC. More details can
be found in Appendix A.

3.2 Fairness Definition

Next, we consider how we can extend a defini-
tion of fairness to this multimodal task. Following
work by Zhang et al. (2020) in the single-modality
setting, we examine True Positive and True Nega-
tive rates on our clinical prediction task between
different protected groups. Attempting to equal-
ize these rates corresponds to satisfying Equalized
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Figure 2: Percentage of positive train cases for each of
the 25 phenotyping tasks. The critical care conditions
corresponding to the task codes can be found in Table
3 of the Appendix

Odds. EO satisfies many desiderata within clini-
cal settings, and has been used in previous clini-
cal fairness work (Pfohl et al., 2019a; Garb, 1997;
Pfohl et al., 2019b). While EO does not explic-
itly incorporate the multimodality of our data, it
accurately emphasizes the importance of the down-
stream clinical prediction task on the protected
groups. Nonetheless, we acknowledge that EO
alone is insufficient for practical deployment; naive
application can result in unacceptable performance
losses and thus consultations with physicians and
stakeholders must be held (Rajkomar et al., 2018).

3.3 Classification Models

We provide brief descriptions below with details
available in Appendix B.

* Structured Data Model: Following Haru-
tyunyan et al. (2019), we use a channel-wise
bidirectional Long Short Term Memory net-
work (bi-LSTM).

* Unstructured Textual Data: We use a CNN
encoder to extract the semantic features from
clinical notes. Importantly, we experiment
with training word embeddings from scratch
and utilizing pre-trained BioWordVec embed-
dings (Zhang et al., 2019).

* Ensemble: We perform logistic regression on
the output binary classification probabilities
from the previous models.

Sensitive Train Test % of Test
Group Count | Count

F 7940 | 1415 44.0 %
M 9708 | 1778 56.0 %
ASIAN 408 60 1.9 %
BLACK 1658 285 8.9 %
HISPANIC 521 107 33 %
OTHER 2655 459 14.4 %
WHITE 12406 | 2282 71.5 %
Government 356 74 2.3 %
Medicaid 1362 205 6.4 %
Medicare 9857 1757 55.0 %
Private 4946 932 29.2 %
Self Pay 133 33 1.0 %
UNKNOWN | 994 192 6.1 %

Table 1: Distribution of sensitive-attributes over train
and test data for the In-Hospital Mortality task

4 Fairness Setup

4.1 Sensitive groups

Recall that EO explicitly ensures fairness with re-
spect to sensitive groups while debiasing implic-
itly depends upon it. Leveraging the demographic
data in MIMIC-III, we consider ethnicity (divided
into Asian, Black, Hispanic, White and other), bi-
ological sex (divided into male and female), and
insurance type (divided into government, medicare,
medicaid, self-pay, private, and unknown). With
the exception of biological sex, the sensitive groups
are highly imbalanced (see Table 1). Note that
insurance-type has been shown to be a proxy for
socioeconomic status (SES) (Chen et al., 2019).

4.2 Equalized Odds Post-Processing

We apply our equalized-odds post processing al-
gorithm on the predictions of the trained single-
modality classifiers (physiological signal LSTM
model as well as text-only CNN model) as well
as the trained ensemble classifier. Note that we
apply EO postprocessing only once for each exper-
iment: either on the outputs of the single-modality
model, or on the ensemble predictions. The fair-
ness approaches are mutually exclusive: we do not
consider applying EO postprocessing together with
debiased word embeddings. We consider using
both soft prediction scores (interpretable as prob-
abilities) as well as thresholded hard predictions
as input to the post-processing algorithm. These
choices impact the fairness performance trade-off
as discussed further in Section 5.

303



4.3 Socially Debiased Clinical Word
Embeddings

While clinically pre-trained word embeddings may
improve downstream task performance, they are
not immune from societal bias (Khattak et al.,
2019). We socially debias these clinical word em-
beddings following Manzini et al. (2019). We man-
ually select sets of social-specific words (see Ap-
pendix C) to identify the fairness-relevant social
bias subspace. Formally, having identified the basis
vectors {by, ba, ..., b, } of the social bias subspace
B, we can find the projection wp of a word embed-
ding w:
n

wn — Z(w, bl>bl

i=1

Next we apply hard debiasing, which will re-
move bias from existing word embeddings by sub-
tracting wpg, their component in this fairness sub-
space. This yields w’, our socially debiased word
embedding:

’ w—wp
W =g—7
lw — wgl|

We consider debiasing with respect to race and
gender. The race debiased embeddings are re-used
for insurance tasks as empiric research has indi-
cated that the use of proxy groups in fairness can
be effective (Gupta et al., 2018) and SES is strongly
related to race (Williams et al., 2016).

5 Results and Analysis

IHM Phenotyping
AUC | AUC Macro Overall
PRC | ROC | AUCROC | AUCROC
Harutyunyan et. al
(2019) — No Text 0.515 | 0.862 0.776 0.825
Khadanga et. al
(2019) — Ensemble 0.525 | 0.865 B B
Ours — Text Only | 0.472 | 0.815 0.766 0.829
Ours — Text Only
+ BioWordVec 0.489 | 0.841 0.771 0.837
Ours — Ensemble | 0.582 | 0.880 0.822 0.861
Ours — Ensemble
+ BioWordVec 0.582 | 0.886 0.829 0.870

Table 2: Leveraging clinical pretrained word em-
beddings improves performance compared to training
word embeddings from scratch in the text-only model.
Ensembling the text-only model with the clinical time
series classifier improves performance further.
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5.1 Ensembling clinical word embeddings
with structured data improves
performance

Empirically, we observe superior performance to
prior literature on a suite of clinical prediction tasks
in Table 2; more tasks are evaluated in Appendix
Table A. Full hyperparameter settings and code for
reproducibility can be found here !. The ensem-
ble model outperforms both constituent classifiers
(AUC plot on Figure 3). This holds even when fair-
ness/debiasing techniques are applied, emphasizing
the overall effectiveness of leveraging multi-modal
data. However, the ensemble’s improvements in
performance do not directly translate to improve-
ments in fairness; see the True Positive (TP) graph
in Figure 3, where the maximum TP gap remains
consistent under the ensemble.

5.2 Debiased word embeddings and the
fairness performance trade-off

Improving fairness usually comes at the cost of re-
duced performance (Menon and Williamson, 2018).
Indeed, across all tasks, fairness groups and classi-
fiers, we observe the group-specific disparities of
TP and TN rates generally diminish when equalized
odds post-processing is used (see Appendix F for
additional results). However, this post-processing
also leads to a degradation in the AUC. Note that
we apply EO-post processing on hard (thresholded)
predictions of the classifiers. If instead soft predic-
tion scores are used as inputs to the post-processing
step, both the performance degradation and the fair-
ness improvement are softened (Hardt et al., 2016).

Generally, word embedding debiasing (WED)
also helps reduce TP/TN discrepancies, although
not to the same extent as EO postprocessing. Re-
markably, in certain tasks, WED also yields a
performance improvement, even compared to the
fairness-free, unconstrained ensemble classifier. In
particular, for the AUC graph in Figure 3, leverag-
ing debiased word embeddings improves the per-
formance of the ensemble; at the same time, the
TP and TN group discrepancy ranges are improved.
However, we stress that this outcome was not con-
sistently observed and further investigation is war-
ranted.

We emphasize that EO and WED serve differ-
ent purposes with different motivations. While
EO explicitly seeks to minimize the TP/TN range

"https://github.com/johntigerl/
multimodal_fairness/clinicalnlp
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Figure 3: Plots of TP Rate, TN Rate, and AUC on phenotyping task M for groups defined by sensitive attribute of
race. Each vertical black line represents a classifier (line style indicating modality); the length of the line represents
the range of scores over fairness groups. In the TP/TN graphs, a shorter line represents better fairness; there is
less discrepancy between the maximum and minimum group-specific TP/TN rates. In the AUC graph (far right),
the higher the vertical position of the line, the better the performance. EO is effective at reducing the spread in
TP/TN rates for the ensemble classifier (first two graphs) at the cost of performance (far right) graph. Meanwhile,
debiased word embeddings both improves fairness, reducing the length of the line in the first two graphs, while

achieving superior performance in AUC graph

between sensitive groups (reflected in its perfor-
mance on the first two plots in Figure 3), WED
seeks to neutralize text-specific bias in the word-
embeddings. Despite the difference in goals, and
despite operating only on the text-modality of the
dataset, WED is still able to reduce the group-
specific TP/TN range; recent work on proxy fair-
ness in text has shown that indirect correlation be-
tween bias in text and protected attributes may be
useful in achieving parity (Romanov et al., 2019).

Although WED demonstrate some good proper-
ties with respect to both fairness and performance
for our specific dataset and task, we caution that
they represent only one approach to fairness in NLP
(Blodgett et al., 2020). Indeed, WED suffers from
shortcomings related to intersectional fairness (Go-
nen and Goldberg, 2019), and we encourage further
discussion into concretely defining fair, real-world
NLP tasks and developing novel algorithms.

Our results highlight the important role practi-
tioners and stakeholders play in algorithmic fair-
ness on clinical applications. The trade-off between
performance and fairness, whether between the soft
and hard labels used for EO, or between EO and de-
biased word embeddings, must be balanced based
on numerous real world factors.

6 Discussion

In this paper, we propose a novel multimodal fair-
ness task for the MIMIC-III dataset, based on equal-

305

ized odds. We provide two baselines: a classifier-
agnostic fairness algorithm (equalized odds post-
processing) and a text-specific fairness algorithm
(debiased word embeddings). We observe that
both methods generally follow the fairness per-
formance tradeoff seen in single-modality tasks.
EO is more effective at reducing the disparities in
group-specific error rates while word-embedding
debiasing has better performance. Future work
can consider more generalized notions of fairness
such as preferences-based frameworks, or extend
text-specific fairness to contextualized word em-
beddings (Hossain et al., 2020; Zhang et al., 2020).
Further analysis of the fairness performance trade-
off, especially in multimodal settings, will facilitate
equitable decision making in the clinical domain.

7 Acknowledgements

We would like to acknowledge Vector Institute
for office and compute resources. We would also
like to thank Matt Gardner for his help with an-
swering questions when using AllenNLP (Gard-
ner et al., 2017). John Chen and Safwan Hos-
sain are funded by an Ontario Graduate Scholar-
ship and a Vector Institute Research Grant. lan
Berlot-Attwell is funded by a Canada Graduate
Scholarships-Master’s, and a Vector Institute Re-
search Grant. Frank Rudzicz is supported by a
CIFAR Chair in AL



References

Oguz Akbilgic, Ramin Homayouni, Kevin Heinrich,
Max Raymond Langham, and Robert Lowell Davis.
2019. Unstructured text in EMR improves predic-
tion of death after surgery in children. In Informat-
ics, volume 6, page 4. Multidisciplinary Digital Pub-
lishing Institute.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is

power: A critical survey of” bias” in nlp. arXiv
preprint arXiv:2005.14050.
Tolga Bolukbasi, Kai-Wei Chang, James Zou,

Venkatesh Saligrama, and Adam Tauman Kalai.
2016. Man is to computer programmer as woman
is to homemaker? Debiasing word embeddings. In
NIPS.

1. Y. Chen, P. Szolovits, and M. Ghassemi. 2019. Can
Al Help Reduce Disparities in General Medical and
Mental Health Care? AMA J Ethics, 21(2):167-179.

Irene Chen, Fredrik D Johansson, and David Sontag.
2018. Why is my classifier discriminatory? In Ad-
vances in Neural Information Processing Systems,
pages 3539-3550.

AJ Culyer and A Wagstaff. 1993. Equity and equal-
ity in health and health care. Journal of health eco-
nomics, 12(4):431-457.

Howard N. Garb. 1997. Race bias, social class bias,
and gender bias in clinical judgment. Clinical Psy-
chology: Science and Practice, 4(2):99-120.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a
pig: Debiasing methods cover up systematic gender
biases in word embeddings but do not remove them.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 609-614.

Maya R. Gupta, Andrew Cotter, Mahdi Milani Fard,
and Serena Wang. 2018. Proxy fairness. CoRR,
abs/1806.11212.

Moritz Hardt, Eric Price, Eric Price, and Nati Srebro.
2016. Equality of opportunity in supervised learn-
ing. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 29, pages 3315—
3323. Curran Associates, Inc.

Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale,
Greg Ver Steeg, and Aram Galstyan. 2019. Multi-
task learning and benchmarking with clinical time
series data. Scientific Data, 6(1):96.

306

Steven Horng, David A Sontag, Yoni Halpern, Yacine
Jernite, Nathan I Shapiro, and Larry A Nathanson.
2017. Creating an automated trigger for sepsis clini-
cal decision support at emergency department triage
using machine learning. PloS one, 12(4).

Safwan Hossain, Andjela Mladenovic, and Nisarg
Shah. 2020. Designing fairly fair classifiers via eco-
nomic fairness notions. In Proceedings of The Web
Conference 2020, pages 1559—-1569.

Alistair Johnson, Tom Pollard, Lu Shen, Li-wei
Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Celi, and
Roger Mark. 2016. MIMIC-III, a freely accessible
critical care database. Scientific Data, 3:160035.

Swaraj Khadanga, Karan Aggarwal, Shafiq Joty, and
Jaideep Srivastava. 2019. Using clinical notes with
time series data for icu management. arXiv preprint
arXiv:1909.09702.

Faiza Khan Khattak, Serena Jeblee, Chloé Pou-Prom,
Mohamed Abdalla, Christopher Meaney, and Frank
Rudzicz. 2019. A survey of word embeddings for
clinical text. Journal of Biomedical Informatics: X,
page 100057.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Paul Pu Liang, Irene Mengze Li, Emily Zheng,
Yao Chong Lim, Ruslan Salakhutdinov, and
Louis-Philippe Morency. 2020.  Towards debi-
asing sentence representations.  arXiv preprint
arXiv:2007.08100.

Thomas Manzini, Lim Yao Chong, Alan W Black,
and Yulia Tsvetkov. 2019. Black is to criminal
as caucasian is to police: Detecting and removing
multiclass bias in word embeddings. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 615-621, Minneapo-
lis, Minnesota. Association for Computational Lin-
guistics.

Aditya Krishna Menon and Robert C Williamson. 2018.
The cost of fairness in binary classification. In Pro-
ceedings of the 1st Conference on Fairness, Account-
ability and Transparency, volume 81 of Proceed-
ings of Machine Learning Research, pages 107-118,
New York, NY, USA. PMLR.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.


https://www.microsoft.com/en-us/research/publication/quantifying-reducing-stereotypes-word-embeddings/
https://www.microsoft.com/en-us/research/publication/quantifying-reducing-stereotypes-word-embeddings/
https://doi.org/10.1111/j.1468-2850.1997.tb00104.x
https://doi.org/10.1111/j.1468-2850.1997.tb00104.x
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/1806.11212
http://papers.nips.cc/paper/6374-equality-of-opportunity-in-supervised-learning.pdf
http://papers.nips.cc/paper/6374-equality-of-opportunity-in-supervised-learning.pdf
https://doi.org/10.1038/s41597-019-0103-9
https://doi.org/10.1038/s41597-019-0103-9
https://doi.org/10.1038/s41597-019-0103-9
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
http://proceedings.mlr.press/v81/menon18a.html

Stephen Pfohl, Ben Marafino, Adrien Coulet, Fatima
Rodriguez, Latha Palaniappan, and Nigam H. Shah.
2019a. Creating fair models of atherosclerotic car-
diovascular disease risk. In Proceedings of the 2019
AAAI/ACM Conference on Al, Ethics, and Society,
AIES 19, page 271-278, New York, NY, USA. As-
sociation for Computing Machinery.

Stephen R. Pfohl, Tony Duan, Daisy Yi Ding, and
Nigam H. Shah. 2019b. Counterfactual reasoning
for fair clinical risk prediction. In Proceedings of
the 4th Machine Learning for Healthcare Confer-
ence, volume 106 of Proceedings of Machine Learn-
ing Research, pages 325-358, Ann Arbor, Michigan.
PMLR.

Alvin Rajkomar, Michaela Hardt, Michael D. Howell,
Greg Corrado, and Marshall H. Chin. 2018. Ensur-
ing fairness in machine learning to advance health
equity. Annals of Internal Medicine, 169(12):866—
872.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out:
Guarding protected attributes by iterative nullspace
projection. arXiv preprint arXiv:2004.07667.

Alexey Romanov, Maria De-Arteaga, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexan-
dra Chouldechova, Sahin Geyik, Krishnaram Ken-
thapadi, Anna Rumshisky, and Adam Kalai. 2019.
What’s in a name? reducing bias in bios without ac-
cess to protected attributes. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 4187—4195.

David R. Williams, Naomi Priest, and Norman B. An-
derson. 2016. Understanding associations among
race, socioeconomic status, and health: Patterns
and prospects. Health psychology : official
journal of the Division of Health Psychology,
American Psychological Association, 35(4):407—
411. 27018733[pmid].

Haoran Zhang, Amy X. Lu, Mohamed Abdalla,
Matthew McDermott, and Marzyeh Ghassemi. 2020.
Hurtful words: Quantifying biases in clinical con-
textual word embeddings. In Proceedings of the
ACM Conference on Health, Inference, and Learn-
ing, CHIL °20, page 110-120, New York, NY, USA.
Association for Computing Machinery.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin,
and Zhiyong Lu. 2019. Biowordvec, improving
biomedical word embeddings with subword infor-
mation and mesh. Scientific data, 6(1):1-9.

307

Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-
Wei Chang. 2018. Learning gender-neutral word
embeddings. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 4847-4853, Brussels, Belgium. Associa-
tion for Computational Linguistics.


https://doi.org/10.1145/3306618.3314278
https://doi.org/10.1145/3306618.3314278
http://proceedings.mlr.press/v106/pfohl19a.html
http://proceedings.mlr.press/v106/pfohl19a.html
https://doi.org/10.7326/M18-1990
https://doi.org/10.7326/M18-1990
https://doi.org/10.7326/M18-1990
https://doi.org/10.1037/hea0000242
https://doi.org/10.1037/hea0000242
https://doi.org/10.1037/hea0000242
https://doi.org/10.1145/3368555.3384448
https://doi.org/10.1145/3368555.3384448
https://doi.org/10.18653/v1/D18-1521
https://doi.org/10.18653/v1/D18-1521

A Details on Clinical Prediction Tasks

A.1 Defining the Multimodal MIMIC-III
Benchmark Prediction Tasks

Existing work by (Harutyunyan et al., 2019) previ-
ously defined four benchmark clinical prediction
tasks on ICU stays information from the large
MIMIC-III database. They produce a derived
dataset, focusing on 17 timeseries clinical features,
without text. The goal is predict the task specific
outcome (mortality, phenotyping, decompensation,
length-of-stay) for the given ICU stay. We utilize
their derived dataset directly, which provides train-
ing and test examples for all four tasks, but join
the derived dataset back with the original to obtain
linked clinical text. We make the key choice that
we drop examples without relevant (i.e. no causal
leakage) extracted clinical notes, as in (Khadanga
et al., 2019). Thus, we concretely define the Com-
bined Modality MIMIC-III Benchmark Prediction
Task as extending the benchmark clinical predic-
tion task by (Harutyunyan et al., 2019) to include
linked clinical text. If there are no notes associated
with an example, then we remove this instance from
the task. Note that we also drop ICU stays which
only have unusable notes due to causal leakage; for
instance death reports for mortality prediction.

A.2 Note extraction

To extract relevant notes, we build a mapping from
the derived dataset provided by (Harutyunyan et al.,
2019) and the MIMIC-III database. For each train-
ing and test instance in each task, we find the clini-
cal notes in the MIMIC-III database. For the [IHM
task, if we do not find any notes within the first
48 hours of their stay, we drop the patient, since
there is no relevant textual information. Note that
this is consistent with the original task formulation
by (Harutyunyan et al., 2019) of in-hospital mor-
tality prediction using at most the first 48 hours of
clinical data. Furthermore, this follows (Khadanga
et al., 2019).

For the phenotyping task, which is not covered
by (Khadanga et al., 2019), we relax this time con-
dition. In the original formulation of the task, phe-
notyping is a retrospective multilabel multiclass
classification task, meaning that all vital signs data
associated with the ICU stay is provided and can
be used by the model. Therefore, we only drop the
patient if there are no notes for the entire ICU stay.
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A.3 Preprocessing

We use the same preprocessing as in (Khadanga
et al., 2019), finding it to be mildly beneficial for
performance.

A.4 Cohort statistics

In the medical literature, cohort selection is the
process of selecting the population of patients for
inclusion in a study. These patients will then pro-
vide the training instances for the clinical predic-
tion task. We report the cohort statistics for our
binary clinical prediction multimodal tasks.

A.4.1 In-Hospital Mortality

Sensitive Train Test % of Test
Group Count | Count
F 7940 1415 44.0 %
M 9708 1778 56.0 %
ASIAN 408 60 1.9 %
BLACK 1658 285 8.9 %
HISPANIC 521 107 33 %
OTHER 2655 459 14.4 %
WHITE 12406 | 2282 71.5 %
Government 356 74 2.3 %
Medicaid 1362 205 6.4 %
Medicare 9857 1757 55.0 %
Private 4946 932 29.2 %
Self Pay 133 33 1.0 %
UNKNOWN | 994 192 6.1 %
A.4.2 Phenotyping
Sensitive Train Test
Group Count | Count % of Test
F 15638 | 2750 44%
M 19803 | 3504 56%
ASIAN 826 133 2.1 %
BLACK 3378 575 9.1 %
HISPANIC 1158 206 3.3%
OTHER 5004 854 13.7 %
WHITE 25075 | 4486 71.7 %
Government 845 150 2.4 %
Medicaid 2850 433 6.9 %
Medicare 18702 | 3298 52.7 %
Private 10784 | 1923 30.7 %
Self Pay 380 73 1.2 %
UNKNOWN | 1880 377 6.0 %

A.5 Task Statistics
A.5.1 In-Hospital Mortality

Label | Train Set Count | Test Set Count
0 15337 2829
1 2311 364




A.5.2 Phenotyping

Plots of the prevalance of the 25 critical care con-
ditions can be found in Figures 4 and 2 for the test
and train sets respectively, a legend that doubles
as the full list of phenotyping tasks is available in
Table 3.

Percentage of Positive Cases
e o o
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Task Code

Figure 4: Percentage of positive test cases for each of
the 25 phenotyping tasks

B Model Details

B.1 Structured Data Model

We use the baseline developed by Harutyunyan
et al. (2019). The structured data model takes as in-
put a time-series of 17 clinical variables, which
are extracted features for the benchmark tasks
introduced in the same paper. The model is a
channel-wise LSTM where each clinical variable is
transcoded by a bidirectional LSTM, concatenated
with the other transcoded sequences and passed to
a final LSTM for prediction.

B.2 Unstructured Data Model

We implement a simple CNN-based encoder (Kim,
2014; Zhang and Wallace, 2015) to process the
clinical notes and produce a task-specific predic-
tion. We experiment with various settings including
model architecture, word embedding dimension,
preprocessing, varying the maximum number of
tokens, L2 regularization and batch size. Below,
we report the final hyperparameters and settings
used to generate all plots and reported throughout.

Our CNNEncoder is built using the AllenNLP
framework (Gardner et al., 2017). We use 1D ker-
nel (n-gram) filter sizes of 2, 3 and 5, learning
5 filters for each filter size. Convolution is done
on word embedding representations of the input,
across n-gram windows of the sequence, and are
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Code  Task

Acute and unspecified renal fail-
ure

Acute cerebrovascular disease
Acute myocardial infarction
Cardiac dysrhythmias

Chronic kidney disease

Chronic obstructive pulmonary
disease and bronchiectasis
Complications of surgical proce-
dures or medical care

H Conduction disorders
Congestive heart failure
Coronary atherosclerosis and
other heart disease

K Diabetes mellitus with complica-
tions

Diabetes mellitus without com-
plication

Disorders of lipid metabolism
Essential hypertension

Fluid and electrolyte disorders
Gastrointestinal hemorrhage
Hypertension with complications
and secondary hypertension
nonhypertensive

Other liver diseases

Other lower respiratory disease
Other upper respiratory disease
Pleurisy

Pneumonia (except that caused
by tuberculosis or sexually trans-
mitted disease)

X pneumothorax

Y pulmonary collapse

= — = Q mmg QW >

©CTOoZEZ

s<c=um

Table 3: List of critical care conditions in the phenotyp-
ing task, and their corresponding alphabetic codes.



pooled before being combined. The CNNEncoder
produces a single fixed size vector, and we use a
simple linear layer on top to perform the classifica-
tion.

For all multimodal tasks, we limit the maximum
number of tokens input to 1536, taking the most
recent notes first (taking care to avoid causal leak-
age as described in 3.1), and apply preprocessing
as in (Khadanga et al., 2019). For the decompen-
sation task, we subsample the number of training
instances due to engineering and efficiency reasons.
From 2 million possible training instances, we sam-
ple 50 000 examples, with weighting to balance
the number of positive and negatively training in-
stances in a 50/50 split.

We train for up to 50 epochs, using Adam op-
timizer with learning rate set to 0.001. When we
use pretrained word embeddings (either debiased
or not), we do not finetune or update them. We
do not use any L2 regularization or dropout, in-
stead employing early stopping with patience of 5
epochs, using validation loss as the stopping crite-
rion. We use batch size 256. Training is completed
on 1 NVIDIA Titan Xp with 12 GB of memory.

B.3 Ensemble Model
We use scikit-learn (Pedregosa et al., 2011) with
the default setting of L2 regularization with C' =1

C Sets of social-specific Words

C.1 Sets of Gender-specific Words
* {"he”, ”she”}

{”hiS”, ”hers”}

* {”son”, daughter”}

{"father”, "mother”}

{”male”, "female”}

° {”boy”, ”girl”}

99 99

{"uncle”,

aunt”}

C.2 Sets of Racial-specific Words

99 99

{”black”, “caucasian”,

asian”, “hispanics”}

 {7african”, “caucasian”, “asian”, “hispan-
ics”

{”black”, "white”, asian”, “hispanics”}

* {7 africa”, america”, “asia”, "hispanics”}
* {"africa”, "america”, ”china”, “hispanics”}
* {7africa”, “europe”, "asia”, “hispanics”}
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99 99

{"black”, "caucasian”,

asian”, ”latino”}

99 99

* {7african”, “caucasian”, “asian”, "latino” }

{black”, "white”, “asian”, "latino” }

9 9

* {7africa”,

9 9

america”, "asia”, "latino”}

9 9

* {"africa”,

% 9

america”, “china”, ”latino” }

% 9 9 9

* {7africa”, “europe”, “asia”, "latino” }

9% 9

{”black”, "caucasian”,

9 9

asian”,

spanish”}

9 9

* {7african”, “caucasian”, “asian”, “spanish”}

{”black”, "white”, “asian”, “spanish”}

* {7africa”, "america”, “asia”, ”spanish”}
* {7africa”, "america”, ”china”, ”spanish”}
* {7africa”, “europe”, "asia”, “spanish”}

D Hard Debiasing

Hard debiasing is a debiasing algorithm which in-
volves two steps: neutralize and equalize. Neutral-
ization ensures that all the social-neural words in
the social subspace do not contain bias (e.g. doc-
tors and nurses). Equalization forces that social-
specific words are equidistant to all words in each
equality set (e.g. the bias components in man and
woman are in opposite directions but with same
magnitude) (Bolukbasi et al., 2016; Manzini et al.,
2019). Following Manzini et al. (2019), hard debi-
asing is formulated as follows: given a bias social
subspace B spanned by the vectors {b1, ba, ..., by, },
the embedding of a word in this subspace is:

n

wR = Z(w, bz>bZ

i=1

To neutralize, each word w € N, where N is the
set of social-neural words, remove the bias compo-
nents from the word and the re-embedded word W@
is obtained as:

E?: w — wWR
|w—wg |

To equalize, for an equality set I, let i be the mean
embeddings of the equlity set £, which is defined

as: w
n=g 2
wekl

For each word w € F, the equalization is defined
as:

w — Wg

W= (p—ps)+V1- | p—ps P
| w—wg |



When doing racial debiasing, we divide ethnicity
into groups: White, Black, Asian, and Hispanics.
We do not contain the “other” group as it hard to
define social-specific sets and analogies for “other”.

E Phenotyping Task

In Figure 3 we plot performance and fairness for
the phenotyping task, specifically the detection of
disorders of lipid metabolism. This task was se-
lected as it is the phenotyping task with the most
balanced labels with 16855 negative instances and
12239 positive instances in the training data. Thus,
it should be more amenable to EO postprocessing.
As expected we see that EO postprocessing suc-
ceeds in reducing the TP/TN ranges at the cost of
AUC. We also again see that ensembling improves
performance both before and after postprocessing.
For this task specifically we observe that using de-
biased word embeddings improves AUC compared
to the non-debiased word embeddings.

F Full Results

Our experiment universe consisted of the cross
product between choice of protected attribute (gen-
der, ethnicity, insurance status), task (phenotyping,
in-hospital mortality prediction, decompensation),
hard vs soft EO postprocessing and word embed-
ding vs debiased word embedding.

F.1 Fairness/Performance on the In-Hospital
Mortality Task

We provide a more detailed set of graphs for an
in-hospital mortality prediction task, where we
used hard EO postprocessing on protected groups
defined by insurance status. We illustrate the
TP/TN/AUC metrics for each protected group in
Figure 5.

In this task configuration, as well as the task con-
figuration in Figure 3 EO postprocessing is applied
to hard classification of the three classifiers in the
Base Classifier column, to produce the EO Classi-
fier column. The Debiased Word Embedding (WE)
column contains an unstructured classifier using
word embeddings debiased for 4 ethnicities, and an
ensemble created by merging the aforementioned
classifier with the structured base classifier. We
utilize debiasing on ethnicity type as a proxy for
insurance status, as mentioned in the Discussion.

Note that EO post-processing sometimes wors-
ens the TP/TN spread, as in the TP graph for the
structured classifier. We therefore qualify our EO
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results by noting the limitations of our real-world
dataset, which include significant group and la-
bel imbalance and non-binary group labels, all of
which impact the results of EO post-processing
(see Appendix A.4).

Finally, on this task configuration, we observe
that debiased word embeddings are not a panacea.
We note that WED has slightly worsened the TP
gap, and does not offer a clear cut performance
improvement as on the phenotyping task M. There-
fore, further research is needed to explore when
and why debiased word embeddings may simulta-
neously improve fairness and performance. Ulti-
mately, domain expertise and focus on the down-
stream impact on the patient experience will be
critical for leveraging any of these fair machine
learning models in clinical applications.

F.2 Full table of results

The performance for all model and tasks tried can
be found in Table 4. Note that debiased word em-
beddings can improve the performance (micro and
macro AUC), even compared to an unconstrained
classifier using clinically relevant BioWord Vecem-
beddings.
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Figure 5: Plot of Fairness and Performance on the in-hospital mortality task. Note that debiased word embeddings
slightly worsen the TP gap in this task (left most graph), while improving the TN gap (middle graph). EO reduces
both gaps, at a major cost in performance (right most graph).

IHM Phenotyping Decompen.

AUC | AUC l\ﬁ‘jg’ I\ﬁg? AUC | AUC
PRC | ROC | poc | poa | PRC | ROC

Harutyunyan
et. al
(2019)

— No Text
Khadanga
et. al
(2019)

— Ensemble
Ours
— Text Only
Ours

—TextOnly | 0.489 | 0.841 | 0.771 | 0.837 | 0.225 | 0.879
+ BioWordVec
Ours
— Text Only
+ BioWordVec
+ Debiasing
Ours
— Ensemble
Ours

—Ensemble | 0.582 | 0.886 | 0.829 | 0.870 | 0.404 | 0.920
+ BioWordVec
Ours
— Ensemble
+ BioWordVec
+ Debiasing

0.515 | 0.862 | 0.776 | 0.825 | 0.344 | 0.911

0.525 | 0.865 - - 0.345 | 0.907

0.472 | 0.815 | 0.766 | 0.829 | 0.235 | 0.867

0.392 | 0.790 | 0.831 | 0.874 | 0.265 | 0.331

0.582 | 0.880 | 0.822 | 0.861 | 0.399 | 0.917

0.539 | 0.870 | 0.854 | 0.888 | 0.405 | 0.922

Table 4: Leveraging clinical pretrained word em-
beddings improves performance compared to training
word embeddings from scratch in the text-only model.
Ensembling the text-only model with the clinical time
series classifier improves performance further. As with
Khadanga et al. (2019), our results are not directly com-
parable with Harutyunyan et al. (2019) since we ignore
patients without any clinical notes.
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