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Abstract

De-identification is the task of identifying pro-
tected health information (PHI) in the clinical
text. Existing neural de-identification models
often fail to generalize to a new dataset. We
propose a simple yet effective data augmenta-
tion method PHICON to alleviate the general-
ization issue. PHICON consists of PHI aug-
mentation and Context augmentation, which
creates augmented training corpora by replac-
ing PHI entities with named-entities sampled
from external sources, and by changing back-
ground context with synonym replacement or
random word insertion, respectively. Experi-
mental results on the i2b2 2006 and 2014 de-
identification challenge datasets show that PH-
ICON can help three selected de-identification
models boost F1-score (by at most 8.6%) on
cross-dataset test. We also discuss how much
augmentation to use and how each augmenta-
tion method influences the performance.1

1 Introduction

Clinical text in electronic health records (EHRs)
often contain sensitive information. In the United
States, Health Insurance Portability and Account-
ability Act (HIPPA)2 requires that protected health
information (PHI) (e.g., name, street address,
phone number) must be removed before EHRs are
shared for secondary uses such as clinical research
(Meystre et al., 2014).

The task of identifying and removing PHI from
clinical texts is referred as de-identification. Al-
though many neural de-idenfication models such as
LSTM-based (Dernoncourt et al., 2017; Liu et al.,
2017; Jiang et al., 2017; Khin et al., 2018) and
BERT-based (Alsentzer et al., 2019; Tang et al.,
2019) have achieved very promising performance,
identifying PHI still remains challenging in the

1Our code is available at: https://github.com/
betterzhou/PHICON

2http://www.hhs.gov/hipaa

real-world scenario: even well-trained models of-
ten fail to generalize to a new dataset. For exam-
ple, we conduct cross-dataset test on i2b2 2006 and
i2b2 2014 de-identification challenge datasets3 (i.e.,
train a widely-used de-identification model Neu-
roNER (Dernoncourt et al., 2017) on one dataset
and test it on the other one). The result in Figure 1
shows that model’s performance (F1-score) on the
new dataset decreases up to 33% compared to the
original test set. The poor generalization issue on
de-identification is also reported in previous stud-
ies (Stubbs et al., 2017; Yang et al., 2019; Johnson
et al., 2020; Hartman et al., 2020).

To explore what factors lead to poor generaliza-
tion, we sample some error examples and find that
the model might focus too much on specific entities
and does not really learn language patterns well.
For example, in Figure 2, given a sentence “She
met Washington in the Ohio Hospital”, the model
tends to recognize the entity “Washington” as the
“Location” instead of the “Name” if “Washington”
appears as “Location” in the training many times.
Such cases appear more frequently in a new testing
set, thus leading to poor generalization.

To prevent the model overfitting on specific cases
and encourage it to learn general language patterns,
one possible way is to enlarge training data (Yang
et al., 2019). However, clinical texts are usually dif-
ficult to obtain, not to mention the requirement of
tremendous expert effort for annotations (Yue et al.,
2020). To solve this, we introduce our data augmen-
tation method PHICON, which consists of PHI aug-
mentation and Context augmentation. Specifically,
PHI augmentation replaces the original PHI entity
in the training set with a same type named-entity
sampled from external sources (such as Wikipedia).
For example, in Figure 2, “Ohio Hospital” is re-
placed by an randomly-sampled “Hospital” entity

“Alaska Health Center”. In terms of context aug-

3https://portal.dbmi.hms.harvard.edu/
projects/n2c2-nlp/

https://github.com/betterzhou/PHICON
https://github.com/betterzhou/PHICON
http://www.hhs.gov/hipaa
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/


210

Trained on
i2b2 2006

Trained on
i2b2 2014

60

80

100

F1
 sc

or
e Tested on

i2b2 2006
Tested on
i2b2 2014

Figure 1: The result of cross-dataset test based on a
base model (Dernoncourt et al., 2017). Performance
on the new dataset drops up to 33% compared to the
original test set, showing the model suffers from gener-
alizability issue.

mentation, we randomly replace or insert some
non-stop words (e.g., verb, adverb) in sentences
to create new sentences as an example shown in
Figure 2. The augmented data does not change
the meaning of original sentences but increase the
diversity of the data. It can better help the model
to learn contextual patterns and prevent the model
focusing on specific PHI entities. Data augmenta-
tion is widely used in many NLP tasks (Xie et al.,
2017; Ratner et al., 2017; Kobayashi, 2018; Yu
et al., 2018; Bodapati et al., 2019; Wei and Zou,
2019) to improve model’s robustness and general-
izability. However, to the best of our knowledge,
no work explores its potential in the clinical text
de-identification task.

We test two LSTM-based models: NeuroNER
(Dernoncourt et al., 2017), DeepAffix (Yadav et al.,
2018) and one BERT-based (Devlin et al., 2019)
model: ClinicalBERT (Alsentzer et al., 2019) with
our PHICON. Cross-dataset evaluations on i2b2
2006 dataset and i2b2 2014 dataset show that PH-
ICON can boost the models’ generalization per-
formance up to 8.6% in terms of F1-score. We
also discuss how much augmentation we need and
conduct the ablation study to explore the effect of
PHI augmentation and context augmentation. To
summarize, our PHICON is simple yet effective
and can be used together with any existing ma-
chine learning-based de-identification systems to
improve their generalizability on new datasets.

2 PHICON

To understand what factors lead to the poor gener-
alization, we check some error examples and find
that most of the PHI entities in these error examples
do not appear in training set or appear as a different
PHI type (e.g., Washington [Name v.s. Location]).
We argue that neural models might focus on too

SR

PHI Aug

Context 
Aug

She met Washington [NAME] in the Ohio Hospital [HOSPITAL]
Original Sentence

She met William [NAME] in the Alaska
Health Center [HOSPITAL]

RI

She saw Washington [NAME] in the Ohio
Hospital [HOSPITAL]

She happily met Washington [NAME] 
 in the Ohio Hospital [HOSPITAL]
.

Figure 2: Toy examples of our PHICON data augmenta-
tion. SR: synonym replacement. RI: random insertion.

much on specific entities (e.g., recognizing “Wash-
ington” as “Location”) but fail to learn general lan-
guage patterns (e.g., “met” is not usually followed
by a “Location” entity but a “Name” entity instead).
Consequently, such unseen or Out-Of-Vocabulary
PHI entities might be hard to be identified correctly,
thus leading to lower performance. To help models
better identify these unseen PHI entities, we may
encourage models to learn contextual patterns or
linguistic characteristics and prevent models focus-
ing too much on specific PHI tokens.
PHI Augmentation. To achieve this goal, we first
introduce PHI augmentation: create more training
corpora by replacing original PHI entities in the
sentence with other named-entities of the same
PHI type. For example, in Figure 2, “Washington”
is replaced by a randomly-sampled Name entity

“William” and “Ohio Hospital” is replaced by an
randomly-sampled Hospital entity “Alaska Health
Center”.

We construct 11 candidate lists for sampling dif-
ferent PHI types. The lists are either obtained by
scraping the online web sources (e.g., Wikipedia
Lists) or by randomly generating based on pre-
defined regular expressions (the number and the
source of each candidate list is shown in Table 1).
Context Augmentation. To further help models
focus on contextual patterns and reduce overfitting,
inspired by previous work (Wei and Zou, 2019), we
leverage two text editing techniques: synonym re-
placement (SR) and random insertion (RI) to mod-
ify background context for data augmentation (ex-
amples are shown in Figure 2). Specifically, SR is
implemented by finding four types of non-stopping
words (adjectives, verbs, adverbs and nouns) in
sentences, and then replacing them with synonyms
from WordNet (Fellbaum and Miller, 1998). RI is
implemented by inserting random adverbs in front
of verbs and adjectives in sentences, as well as
inserting random adjectives in front of nouns in
sentences.
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Scraped from the Web
PHI Type Number Source

Organization 1,300 https://en.wikipedia.org/wiki/Category:Lists of organizations

Hospital 5,400
https://en.wikipedia.org/wiki/Lists of hospitals in the United States
https://www.hospitalsafetygrade.org/all-hospitals

Location 27,500
https://en.wikipedia.org/wiki/List of Main Street Programs in the United States
https://en.wikipedia.org/wiki/List of United States cities by area
https://en.wikipedia.org/wiki/List of United States cities by population

Patient 14,900 https://en.wikipedia.org/wiki/List of most popular given names
Doctor 18,000 https://en.wikipedia.org/wiki/List of most common surnames in North America

Randomly Generated by Python scripts based on Regular Expressions
ID 20,000 Username 3,000 Zip 4,000

Date 32,900 Phone 21,000 Medical Record 4,900

Table 1: The named-entity lists used for PHI augmentation, which are scraped from the Web or randomly generated.

i2b2 2006 i2b2 2014 # PHI of
each type

i2b2 2006 i2b2 2014
Train Dev Test Train Dev Test

#notes

Train 622 912 CONTACT 159 32 41 394 31 96
Dev 90 132 DATE 4887 649 1562 9102 974 2268
Test 177 260 ID 3399 527 883 1000 166 312
Total 889 1304 LOCATION 1761 252 648 3161 433 919

#avg tokens / note 631.7 810.8 NAME 3163 452 1064 5156 745 1439
#avg PHI / note 21.9 20.1 Total 13369 1912 4198 18813 2349 5034

Table 2: Statistics of the i2b2 2006 and 2014 datasets.

For each sentence containing PHI entities in the
corpus, we can apply both PHI augmentation and
Context augmentation to obtain the augmented data
Daug. We can run α times (by setting different ran-
dom seeds) to obtain different sizes of augmented
data (e.g., α = 2 means augmenting the original
dataset twice). Though with the α increases, we
can obtain larger augmented training corpora, it
may also bring much noise. We recommend a
small value for α (See more discussions in Sec-
tion 4.2). Then we merge the Daug with the orig-
inal dataset D to form the final dataset Dnew for
training: Dnew = D ∪ α Daug.

In summary, PHICON can significantly increase
the diversity of training data without involving
more labeling efforts. The augmented data can
increase data diversity and enrich contextual pat-
terns, which could prevent the model focusing too
much on specific PHI entities and encourage it to
learn general language patterns.

3 Experimental Setup

3.1 Datasets

We adopt two widely-used de-identification
datasets: i2b2 2006 dataset and i2b2 2014 dataset,

and split them into training, validation and testing
set with proportion of 7:1:2, based on notes num-
ber. We remove low frequency (occur less than 20
times) PHI types from the datasets. To avoid PHI
inconsistency between the two datasets, we map
and merge some fine-grained level PHI types into a
coarse-grained level type, and finally preserve five
PHI categories: Name (Doctor, Patient, Username),
Location (Hospital, Location, Zip, Organization),
Date, ID (ID, Medical Record), Contact (Phone).
The statistics of the datasets are shown in Table 2.

3.2 Setup

Base Models. We select two LSTM-based models:
NeuroNER (Dernoncourt et al., 2017)4, DeepAf-
fix (Yadav et al., 2018)5 and one BERT model:
ClinicalBERT (Alsentzer et al., 2019)6. All hyper-
parameters are kept the same as the original papers.
Evaluation. To evaluate models’ generalizabil-
ity, we use the cross-dataset test on the two i2b2
challenge datasets: (1) Train the model on i2b2
2006 training set, and test on the whole i2b2
2014 dataset (Train + Dev + Test) (abbreviated

4https://github.com/Franck-Dernoncourt/NeuroNER
5https://github.com/vikas95/Pref Suff Span NN
6https://github.com/EmilyAlsentzer/clinicalBERT

https://en.wikipedia.org/wiki/Category:Lists_of_organizations
https://en.wikipedia.org/wiki/Lists_of_hospitals_in_the_United_States
https://www.hospitalsafetygrade.org/all-hospitals
https://en.wikipedia.org/wiki/List_of_Main_Street_Programs_in_the_United_States
https://en.wikipedia.org/wiki/List_of_United_States_cities_by_area
https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
https://en.wikipedia.org/wiki/List_of_most_popular_given_names
https://en.wikipedia.org/wiki/List_of_most_common_surnames_in_North_America
https://github.com/Franck-Dernoncourt/NeuroNER
https://github.com/vikas95/Pref_Suff_Span_NN
https://github.com/EmilyAlsentzer/clinicalBERT
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as “2006→2014”) (2) Train the model on i2b2
2014 training set, and test on the whole i2b2
2006 dataset (Train + Dev + Test) (abbreviated as
“2014→2006”). For all experiments, we average
results from five runs. We follow Dernoncourt et al.
(2017) and report the micro-F1 score on binary
token level.

4 Results

4.1 Does PHICON improve generalization?

In our preliminary experiments, we find that
poor generalization tends to be more severe when
the training set size is small. Thus, we con-
sider the following training set fractions (%):
{20, 40, 60, 80, 100} and we set the augmentation
factor α = 2 considering both effectiveness and
time-efficiency (See the influence of α in Section
4.2). Table 3 shows the overall results, and interest-
ing findings include:

(1) PHICON improves the generalizability of
each de-identification model under different train-
ing sizes consistently. The results are not surprising
as both PHI augmentation and context augmenta-
tion increase linguistic richness and enable models
to focus more on language patterns, so as to help
to train more generalized models.

(2) In general, the performance boost is large
when the training data size is relatively small. This
is because PHICON plays larger role at the low-
resource case as it can significantly increase data
diversity, language patterns, and linguistic richness.

(3) The performance boost on the BERT-based
model is less obvious than that on LSTM-based
models. Since ClinicalBERT has already been pre-
trained on large-scale corpus: MIMIC-III clinical
notes (Johnson et al., 2016). It is reasonable that
the augmented data does not lead to large boost on
ClinicalBERT. But there is still significant boost
when training data size is relatively small.

(4) The boost on the setting “2006→2014” is
larger than that in the setting “2014→2006”. Be-
cause i2b2 2014 dataset has more data and more
comprehensive PHI patterns than i2b2 2006 dataset.
Data augmentation is usually more effective when
the training set size is smaller (Wei and Zou, 2019).
Improvement for each PHI category. To further
understand PHICON, we show the performance
( “2014→2006”) of the base model NeuroNER
and NeuroNER + PHICON on each category of
PHI in Figure 3. Firstly, we can see that when
the training data is relatively small (e.g., 20%), the
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Figure 3: Performance of NeuroNER w/o and w/ PH-
ICON on each PHI type (setting: 2014→2006)
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Figure 4: Data augmentation under different augmen-
tation factors can boost model generalization. The left
picture indicates that the model is trained on i2b2 2006
dataset and evaluated on i2b2 2014 validation set.

improvement on each PHI category is generally
significant. With the training set size increases,
the contribution of the augmented data becomes
small. However, for the PHI categories that have
less training data in the dataset (e.g., Location and
ID; See Table 2), PHICON still contributes much
improvement. Thus, we conclude that PHICON

may be more helpful in the low-resource training
data case.

4.2 How much augmentation?

In this section, we discuss the influence of the aug-
mentation factor, α, on the cross-dataset test per-
formance. In Figure 4, we report the performance
on dev set based on the model NeuroNER for α =
{1, 2, 3, 4}. In the first setting (“2006→2014”), we
can see the performance is steadily boosted with
the increase of the factor α; while in the second
setting (“2014→2006”), the performance first goes
up and then drops down. This difference might be
caused by the data size of the two datasets (2014
dataset is larger). When the corpus is large, en-
larging the augmentation factor might not lead to
better performance, as the real data may have al-
ready covered very diverse language patterns. In
addition, more augmented data might bring some
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Trained on i2b2 2006, Tested on i2b2 2014
Training Data Size

Model
20% 40% 60% 80% 100%

NeuroNER (Dernoncourt et al., 2017) 0.5990 0.6021 0.6364 0.6436 0.6482
+ PHICON 0.6670 0.6979 0.7025 0.7063 0.7166

DeepAffix (Yadav et al., 2018) 0.5590 0.5875 0.6069 0.5976 0.6118
+ PHICON 0.6699 0.6543 0.6905 0.7170 0.6982

ClinicalBERT (Alsentzer et al., 2019) 0.7055 0.7149 0.7351 0.7454 0.7519
+ PHICON 0.7310 0.7412 0.7500 0.7586 0.7569

Trained on i2b2 2014, Tested on i2b2 2006
Training Data Size

Model
20% 40% 60% 80% 100%

NeuroNER (Dernoncourt et al., 2017) 0.7303 0.7513 0.7864 0.7891 0.7936
+ PHICON 0.7911 0.7944 0.8135 0.8175 0.8051

DeepAffix (Yadav et al., 2018) 0.6950 0.7467 0.7852 0.7774 0.7736
+ PHICON 0.7523 0.7706 0.7919 0.7827 0.8085

ClinicalBERT (Alsentzer et al., 2019) 0.8989 0.9043 0.9030 0.9069 0.9123
+ PHICON 0.9004 0.9076 0.9059 0.9078 0.9145

Table 3: Cross-dataset test performance (micro-F1 score on binary token level) on two experiment settings for
models with and without PHICON on different training set sizes. All the numbers are the average from 5 runs.

Model 2006 → 2014 2014 → 2006
NeuroNER 0.648 0.794
+ PHI Aug 0.670 0.804
+ Context Aug 0.659 0.803
+ PHICON 0.717 0.805

Table 4: Ablation study on PHICON. PHI augmenta-
tion and context augmentation contribute to the overall
generalization boost.

noise, which could decrease the performance. In
terms of time efficiency, when α is increased by 1,
the training time would roughly double if we set the
same epoch number. So considering effectiveness,
efficiency and data size, we recommend to set α a
relative small value (e.g., 2) in the real application.

4.3 Ablation Study

In this section, we perform an ablation study on
PHICON based on NeuroNER to explore the ef-
fect of each component: PHI augmentation and
context augmentation. Table 4 shows that the two
components of PHICON both contribute to boost-
ing model generalization. Performance boost from
PHI augmentation is obvious than context augmen-
tation, i.e., PHI augmentation plays a major role.
When combining both, PHICON results in larger
boost than each of them.

5 Conclusion

In this paper, we explore the generalization issue
on clinical text de-identification task. We propose
a data augmentation method named PHICON that
augments both PHI and context to boost model gen-
eralization. The augmented data can increase data
diversity and enrich contextual patterns in training
data, which may prevent the model overfitting on
specific PHI entities and encourage it to focus more
on language patterns. Experimental results demon-
strate that our PHICON can help improve mod-
els’ generalizability, especially in the low-resource
training case (i.e., the size of the original training
set is small). We also discuss how much augmen-
tation to use and how each augmentation method
influences the performance. In the future research,
we will explore more advanced data augmentation
techniques for improving the de-identification mod-
els’ generalization performance.
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