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Abstract

Automated Medication Regimen (MR) extraction
from medical conversations can not only improve
recall and help patients follow through with their
care plan, but also reduce the documentation bur-
den for doctors. In this paper, we focus on extract-
ing spans for frequency, route and change, corre-
sponding to medications discussed in the conver-
sation. We first describe a unique dataset of anno-
tated doctor-patient conversations and then present
a weakly supervised model architecture that can
perform span extraction using noisy classification
data. The model utilizes an attention bottleneck
inside a classification model to perform the ex-
traction. We experiment with several variants of
attention scoring and projection functions and pro-
pose a novel transformer-based attention scoring
function (TAScore). The proposed combination of
TAScore and Fusedmax projection achieves a 10
point increase in Longest Common Substring F1
compared to the baseline of additive scoring plus
softmax projection.

1 Introduction

Patients forget 40-80% of the medical information
provided by healthcare practitioners immediately
(Mcguire, 1996) and misconstrue 48% of what they
think they remembered (Anderson et al., 1979), and
this adversely affects patient adherence. Automat-
ically extracting information from doctor-patient
conversations can help patients correctly recall doc-
tor’s instructions and improve compliance with the
care plan (Tsulukidze et al., 2014). On the other
hand, clinicians spend up to 49.2% of their overall
time on EHR and desk work, and only 27.0% of
their total time on direct clinical face time with

∗Work done as an intern at Abridge AI Inc.

DR: Limiting your alcohol consumption
is important, so, and, um, so, you
know, I would recommend vitamin D1

to be taken1 . Have you had Fosamax2

before?
PT: I think my mum did.
DR: Okay, Fosamax2 , you take2

one pill2 on Monday and one on Thursday2 .
DR: Do you use much caffine?
PT: No, none.
DR: Okay, this is3 Actonel3 and it’s

one tablet3 once a month3 .
DR: Do you get a one month or a three

months supply in your prescriptions?

Figure 1: An example excerpt from a doctor-
patient conversation transcript. Here, there are three
medications mentioned indicated by the superscript.
The extracted attributes, change, route and frequency,
for each medications are also shown.

patients (Sinsky et al., 2016). Increased data man-
agement work is also correlated with increased doc-
tor burnout (Kumar, 2016). Information extracted
from medical conversations can also aid doctors in
their documentation work (Rajkomar et al., 2019;
Schloss and Konam, 2020), allow them to spend
more face time with the patients, and build better
relationships.

In this work, we focus on extracting Medication
Regimen (MR) information (Du et al., 2019; Sel-
varaj and Konam, 2019) from the doctor-patient
conversations. Specifically, we extract three at-
tributes, i.e., frequency, route and change, corre-
sponding to medications discussed in the conversa-
tion (Figure 1). Medication Regimen information
can help doctors with medication orders cum re-
newals, medication reconciliation, verification of
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reconciliations for errors, and other medication-
centered EHR documentation tasks. It can also
improve patient engagement, transparency and bet-
ter compliance with the care plan (Tsulukidze et al.,
2014; Grande et al., 2017).

MR attribute information present in a conversa-
tion can be obtained as spans in text (Figure 1) or
can be categorized into classification labels (Table
2). While the classification labels are easy to obtain
at scale in an automated manner – for instance, by
pairing conversations with billing codes or medi-
cation orders – they can be noisy and can result
in a prohibitively large number of classes. Classi-
fication labels go through normalization and dis-
ambiguation, often resulting in label names which
are very different from the phrases used in the con-
versation. This process leads to a loss of granular
information present in the text (see, for example,
row 2 in Table 2). Span extraction, on the other
hand, alleviates this issue as the outputs are actual
spans in the conversation. However, span extrac-
tion annotations are relatively hard to come by and
are time-consuming to annotate manually. Hence,
in this work, we look at the task of MR attribute
span extraction from doctor-patient conversation
using weak supervision provided by the noisy clas-
sification labels.

The main contributions of this work are as fol-
lows. We present a way of setting up an MR
attribute extraction task from noisy classification
data (Section 2). We propose a weakly supervised
model architecture which utilizes attention bottle-
neck inside a classification model to perform span
extraction (Section 3 & 4). In order to favor sparse
and contiguous extractions, we experiment with
two variants of attention projection functions (Sec-
tion 3.1.2), namely, softmax and Fusedmax (Nicu-
lae and Blondel, 2017). Further, we propose a novel
transformer-based attention scoring function TAS-
core (Section 3.1.1). The combination of TAScore
and Fusedmax achieves significant improvements
in extraction performance over a phrase-based (22
LCSF1 points) and additive softmax attention (10
LCSF1 points) baselines.

2 Medication Regimen (MR) using Weak
Supervision

Medication Regimen (MR) consists of information
about a prescribed medication akin to attributes of
an entity. In this work, we specifically focus on fre-
quency, route of the medication and any change in

Attribute Normalized Classes

frequency

Daily | Every morning | At Bedtime |
Twice a day | Three times a day | Every six hours |
Every week | Twice a week | Three times a week |
Every month | Other | None

route
Pill | Injection | Topical cream | Nasal spray |
Medicated patch | Ophthalmic solution | Inhaler |
Oral solution | Other | None

change Take | Stop | Increase | Decrease | None | Other

Table 1: The normalized labels in the classification
data.

the medication’s dosage or frequency as shown
in Figure 1. For example, given the conversation
excerpt and the medication “Fosamax” as shown
in Figure 1, the model needs to extract the spans
“one pill on Monday and one on Thursday”, “pill”
and “you take” for attributes frequency, route and
change, respectively. The major challenge, how-
ever, is to perform the attribute span extraction us-
ing noisy classification labels with very few or no
span-level labels. The rest of this section describes
the dataset used for this task.

2.1 Data

The data used in this paper comes from a collection
of human transcriptions of 63000 fully-consented
and de-identified doctor-patient conversations. A
total of 57000 conversations were randomly se-
lected to construct the training (and dev) conver-
sation pool and the remaining 6000 conversations
were reserved as the test pool.

The classification dataset: All the conversations
are annotated with MR tags by expert human an-
notators. Each set of MR tags consists of the med-
ication name and its corresponding attributes fre-
quency, route and change, which are normalized
free-form instructions in natural language phrases
corresponding to each of the three attributes (see
Table 8 in A.4). Each set of MR tags is grounded to
a contiguous window of utterances’ text,1 around a
medication mention as evidence for that set. Hence,
each set of grounded MR tags can be written
as <medication, text, frequency, route, change>,
where the last three entries correspond to the three
MR attributes.

The free-form instructions for each attribute in
the MR tags are normalized and categorized into
manageable number of classification labels to avoid
long tail and overlapping classes. This process re-

1The text includes both the spoken words and the speaker
information.



180

text medication
Classification labels

frequency route change

. . . I would recommend vitamin D to be taken.
Have you had Fosamax before?. . . vitamin D none none take

. . . I think my mum did. Okay, Fosamax, you take one pill on Monday
and one on Thursday. Do you have much caffine? No, none. . . Fosamax Twice a week pill take

Do you have much caffine? No, none. Okay, this is Actonel and it’s,
one tablet once a month.. . . Actonel Once a month pill take

Table 2: Classification examples resulting from the conversation shown in Figure 1.

sults in classes shown in Table 1.2 As an illustra-
tion, this annotation process when applied to the
conversation piece shown in Figure 1 would result
in the three data points shown in Table 2. Using
this procedure on both the training and test con-
versation pools, we obtain 45,059 training, 11,212
validation and 5,458 test classification data points.3

The extraction dataset: Since the goal is to ex-
tract spans related to MR attributes, we would ide-
ally need a dataset with span annotations to perform
this task in a fully supervised manner. However,
span annotation is laborious and expensive. Hence,
we re-purpose the classification dataset (along with
its classification labels) to perform the task of span
extraction using weak supervision. We also man-
ually annotate a small fraction of the train, vali-
dation and test sets (150, 150 and 500 data-points
respectively) for attribute spans to see the effect of
supplying a small number of strongly supervised
instances on the performance of the model. In or-
der to have a good representation of all the classes
in the test set, we increase the sampling weight of
data-points which have rare classes. Hence, our test
set is relatively more difficult compared to a ran-
dom sample of 500 data-points. All the results are
reported on our test set of 500 difficult data-points
annotated for attribute spans.

For annotating attribute spans, the annotators
were given instructions to mark spans which pro-
vide minimally sufficient and natural evidence for
the already annotated attribute class as described
below.

Sufficiency: Given only the annotated span for a
particular attribute, one should be able to predict
the correct classification label. This aims to encour-
age the attribute spans to cover all distinguishing
information for that attribute.

2The detailed explanation for each of the classes can be
found in Table 7 in Appendix A.1.

3The dataset statistics are given in Appendix A.1.

Minimality: Peripheral words which can be re-
placed with other words without changing the at-
tribute’s classification label should not be included
in the extracted span. This aims to discourage mark-
ing entire utterances as attribute spans.
Naturalness: The marked span(s) if presented to a
human should sound like complete English phrases
(if it has multiple tokens) or a meaningful word if it
has only a single token. In essence, this means that
the extractions should not drop stop words from
within phrases. This requirement aims to reduce the
cognitive load on the human who uses the model’s
extraction output.

2.2 Challenges

Using medical conversations for information ex-
traction is more challenging compared to written
doctor notes because the spontaneity of conver-
sation gives rise to a variety of speech patterns
with disfluencies and interruptions. Moreover, the
vocabulary can range from colloquial to medical
jargon.

In addition, we also have noise in our classifica-
tion dataset with its main source being annotators’
use of information outside the grounded text win-
dow to produce the free-form tags. This happens
in two ways. First, when the free-form MR instruc-
tions are written using evidence that was discussed
elsewhere in the conversation but is not present in
the grounded text window. Second, when the anno-
tator uses their domain knowledge instead of using
just the information in the grounded text window
– for instance, when the route of a medication is
not explicitly mentioned, the annotator might use
the medication‘s common route in their free-form
instructions. Using manual analysis of the 800 data-
points across the train, dev and test sets, we find
that 22% of frequency, 36% of route and 15% of
change classification labels, have this noise.

In this work, our approach to extraction depends
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on the size of the auxiliary task’s (classification)
dataset to overcome above mentioned challenges.

3 Background

There have been several successful attempts to use
neural attention (Bahdanau et al., 2015) to extract
information from text in an unsupervised manner
(He et al., 2017; Lin et al., 2016; Yu et al., 2019).
Attention scores provide a good proxy for impor-
tance of a particular token in a model. However,
when there are multiple layers of attention, or if the
encoder is too complex and trainable, the model no
longer provides a way to produce reliable and faith-
ful importance scores (Jain and Wallace, 2019).

We argue that, in order to bring in the faithful-
ness, we need to create an attention bottleneck in
our classification + extraction model. The attention
bottleneck is achieved by employing an attention
function which generates a set of attention weights
over the encoded input tokens. Attention bottle-
neck forces the classifier to only see the portions
of input that pass through it, thereby enabling us to
trade the classification performance for extraction
performance and getting span extraction with weak
supervision from classification labels.

In the rest of this section, we provide general
background on neural attention and present its vari-
ants employed in this work. This is followed by the
presentation of our complete model architecture in
the subsequent sections.

3.1 Neural Attention
Given a query q ∈ Rm and keys K ∈ Rl×n,
the attention function α : Rm × Rl×n → ∆l is
composed of two functions: a scoring function
S : Rm × Rl×n → Rl which produces unnormal-
ized importance scores, and a projection function
Π: Rl → ∆l which normalizes these scores by pro-
jecting them to an (l − 1)-dimensional probability
simplex.4

3.1.1 Scoring Function
The purpose of the scoring function is to produce
importance scores for each entry in the key K w.r.t
the query q for the task at hand, which in our case
is classification. We experiment with two scoring
functions: additive and transformer-based.
Additive: This is same as the scoring function
used in Bahdanau et al. (2015), where the scores

4Throughout this work l represents the sequence length
dimension and ∆l = {x ∈ Rl | x > 0, ‖x‖1 = 1} represents
a probability simplex.

Multi-layer Transformer

Linear

Linear + Positional
EmbeddingsSeparator

Emb.

Feedforward

Figure 2: Architecture of TAScore. q and K are in-
put query and keys, respectively, and s are the output
scores.

are produced as follows:

sj = vT tanh(Wq q + Wk kj) ,

where, v ∈ Rm, Wq ∈ Rm×m and Wk ∈ Rm×n
are trainable weights.

Transformer-based Attention Score (TAScore):
While the additive scoring function is simple and
easy to train, it suffers from one major drawback
in our setting: since we freeze the weights of our
embedder and do not use multiple layers of train-
able attention (Section 4.4), the additive attention
can struggle to resolve references – finding the
correct attribute when there are multiple entities
of interest, especially when there are multiple dis-
tinct medications (Section 6.4). For this reason,
we propose a novel multi-layer transformer-based
attention scoring function (TAScore) which can
perform this reference resolution while also pre-
serving the attention bottleneck. Figure 2 shows
the architecture of TAScore. The query and key
vectors are projected to the same space using two
separate linear layers while also adding sinusoidal
positional embeddings to the key vectors. A spe-
cial trainable separator vector is added between the
query and key vectors and the entire sequence is
passed through a multi-layer transformer (Vaswani
et al., 2017). Finally, scalar scores (one correspond-
ing to each vector in the key) are produced from the
outputs of the transformer by passing them through
a feed-forward layer with dropout.

3.1.2 Projection Function
A projection function Π: Rl → ∆l in the context
of attention distribution, normalizes the real valued
importance scores by projecting them to an (l −
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1)-dimensional probability simplex ∆l. Niculae
and Blondel (2017) provide a unified view of the
projection function as follows:

ΠΩ(s) = arg max
a∈∆l

aT s− γΩ(a) .

Here, a ∈ ∆l, γ is a hyperparameter and Ω is a
regularization penalty which allows us to introduce
problem specific inductive bias into our attention
distribution. When Ω is strongly convex, we have
a closed form solution to the projection operation
as well as its gradient (Niculae and Blondel, 2017;
Blondel et al., 2020). Since we use the attention
distribution to perform extraction, we experiment
with the following instances of projection functions
in this work.

Softmax: Ω(a) =
∑l

i=1 ai log ai
Using the negative entropy as the regularizer, re-
sults in the usual softmax projection operator
ΠΩ(s) = exp(s/γ)∑l

i=1 exp(si/γ)
.

Fusedmax: Ω(a) = 1
2‖a‖

2
2 +

∑l
i=1 |ai+1 − ai|

Using squared loss with fused-lasso penalty (Nic-
ulae and Blondel, 2017), results in a projection
operator which produces sparse as well as con-
tiguous attention weights5. The fusedmax pro-
jection operator can be written as ΠΩ(s) =
P∆l (PTV (s)) , where

PTV (s) = arg min
y∈Rl

‖y − s‖22 +
l−1∑
d=1

|yd+1 − yd|

is the proximal operator for 1d Total Variation De-
noising problem, and P∆l is the euclidean projec-
tion operator. Both these operators can be com-
puted non-iteratively as described in Condat (2013)
and Duchi et al. (2008), respectively. The gradient
of Fusedmax operator can be efficiently computed
as described in Niculae and Blondel (2017).6

Fusedmax*: We observe that while softmax learns
to focus on the right region of text, it tends to
assign very low attention weights to some to-
kens of phrases resulting in multiple discontinuous
spans per attribute, while Fusedmax on the other
hand, almost always generates contiguous attention
weights. However, Fusedmax makes more mis-
takes in identifying the overall region that contains

5Some example outputs of softmax and fusedmax on ran-
dom inputs are shown in Appendix A.3

6The pytorch implementation to compute fusedmax used
in this work is available at https://github.com/
dhruvdcoder/sparse-structured-attention.
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Figure 3: Complete model for weakly supervised MR
attribute extraction.

the target span (Section 6.3). In order to combine
the advantages of softmax and Fusedmax, we first
train a model using softmax as the projector and
then swap the softmax with Fusedmax in the final
few epochs. We call this approach Fusedmax*.

4 Model

Our classification + extraction model uses MR
attributes classification labels to extract MR at-
tributes. The model can be divided into three
phases: identify, classify and extract (Figure 3).
The identify phases encodes the input text and med-
ication name and uses the attention bottleneck to
produce attention over the text. Classify phase com-
putes the context vector using the attention from the
identify phases and classifies the context vectors.
Finally, the extract phase uses the attention from
the identify phase to extract spans corresponding
to MR attributes.

Notation: Let the dataset D be
{(x(1),y(1)), . . . (x(N),y(N))}. Each x con-
sists of a medication m and conversation text t,
and each y consists of classification labels for
frequency, route and change, i.e, y = (fy,r y,c y),
respectively. The number of classes for each
attribute is denoted by (·)n. As seen from Table
1, fn = 12, rn = 10 and cn = 8. The length of a
text excerpt is denoted by l. The extracted span for
attribute k ∈ {f, r, c} is denoted by a binary vector
ke of length l, such that kej = 1, if jth token is in
the extracted span for attribute k.

https://github.com/dhruvdcoder/sparse-structured-attention
https://github.com/dhruvdcoder/sparse-structured-attention
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4.1 Identify

As shown in the Figure 3, the identify phase finds
the most relevant parts of the text w.r.t each of
the three attributes. For this, we first encode the
text as well as the given medication using a con-
textualized token embedder E . In our case, this
is 1024 dimensional BERT (Devlin et al., 2019)7.
Since BERT uses WordPiece representations (Wu
et al., 2016), we average these wordpiece repre-
sentations to form the word embeddings. In order
to supply the speaker information, we concatenate
a 2-dimensional fixed vocabulary speaker embed-
ding to every token embedding in the text to obtain
speaker-aware word representations.

We then perform average pooling of the med-
ication representations to get a single vector rep-
resentation for the medication8. Finally, with the
given medication representation as the query and
the speaker-aware token representations as the key,
we use three separate attention functions (attention
bottleneck), one for each attribute (no weight shar-
ing), to produce three sets of normalized attention
distributions f â, râ and câ over the tokens of the
text. The identify phase can be succinctly described
as follows:

ka = kα(E(m), E(t)) , where k ∈ {f, r, c}

Here, each kâ is an element of the probability sim-
plex ∆l and is used to perform attribute extraction
(Section 4.3).

4.2 Classify

We obtain the attribute-wise context vectors kc, as
the weighted sum of the encoded tokens (K in Fig-
ure 3) where the weights are given by the attribute-
wise attention distributions ka. To perform the
classification for each attribute, the attribute-wise
context vectors are used as input to feed-forward
neural networks Fk (one per attribute), as shown
below:9

kp = softmax
(
Fk(kc)

)
kŷ = arg max

j∈{1,2,...,kn}

kpj , where k ∈ {f, r, c}.

7The pre-trained weight for BERT is from the Hugging-
Face library(Wolf et al., 2019)

8Most medication names are single word, however a few
medicines have names which are upto 4-5 words.

9Complete set of hyperparameters used is given in Ap-
pendix A.2

4.3 Extract

The spans are extracted from the attention distri-
bution using a fixed extraction function X : ∆l →
{0, 1}l, defined as:

kêj = Xk(ka)j =

{
1 if kaj > kγ

0 if kaj ≤ kγ ,

where kγ is the extraction threshold for attribute
k. For softmax projection function, it is important
to tune the attribute-wise extraction thresholds γ.
We tune these using extraction performance on the
extraction validation set. For fusedmax projection
function which produces spare weights, the thresh-
olds need not be tuned, and hence are set to 0.

4.4 Training

We train the model end-to-end using gradient de-
scent, except the extract module (Figure 3), which
does not have any trainable weights, and the em-
bedder E . Freezing the embedder is vital for the
performance, since not doing so results in exces-
sive dispersion of token information to other nearby
tokens, resulting in poor extractions.

The total loss for the training is divided into two
parts as described below.
(1) Classification Loss Lc: In order to perform
classification with highly class imbalanced data
(see Table 1), we use weighted cross-entropy:

Lc =
∑

k∈{f,r,c}

− kwky log
(
kpky

)
,

where the class weights kwky are obtained by in-
verting each class’ relative proportion.

(2) Identification Loss Li: If span labels e are
present for some subset A of training examples,
we first normalize these into ground truth attention
probabilities a:

kaj =
kej∑l
j=1

kej
for k ∈ {f, r, c}

We then use KL-Divergence between the ground
truth attention probabilities and the ones generated
by the model (â) to compute identification loss
Li =

∑
k∈{f,r,c} KL

(
ka
∥∥∥kâ). Note that Li is

zero for data-points that do not have span labels.
Using these two loss functions, the overall loss
L = Lc + λLi.
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Model Span
labels

Token-wise extraction F1 LCSF1 Classification F1

Encoder Scorer Projector freq. route change Avg. freq. route change Avg. freq. route change Avg.

Phrase-based baseline - 41.03 48.57 10.75 33.45 36.26 50.41 11.54 32.73 - - - -

BERT Additive Softmax 0 51.22 46.27 22.81 40.10 39.87 46.40 18.92 35.06 51.51 54.06 51.65 52.40
BERT Additive Fusedmax 0 47.55 51.31 5.10 34.65 46.39 59.10 4.82 36.77 43.54 42.91 9.19 31.88
BERT TAScore Softmax 0 66.53 48.96 27.61 47.70 61.49 47.34 22.49 43.77 44.93 51.34 46.49 47.58
BERT TAScore Fusedmax 0 56.35 44.04 22.07 40.82 61.96 50.27 25.25 45.82 51.95 48.37 43.00 47.77

BERT Additive Softmax 150 61.56 45.08 33.54 46.73 57.90 48.14 28.28 44.77 55.62 52.42 50.40 52.81
BERT Additive Fusedmax 150 47.05 52.49 27.69 42.41 42.37 57.50 30.63 43.50 54.04 48.40 52.28 51.57
BERT Additive Fusedmax* 150 65.90 47.30 34.77 49.32 67.15 51.12 36.04 51.30 56.46 42.63 50.68 49.93
BERT TAScore Softmax 150 66.53 54.35 34.27 51.72 62.90 53.05 28.33 48.09 50.13 45.86 47.16 47.72
BERT TAScore Fusedmax 150 58.24 58.09 25.09 47.32 57.93 64.05 26.70 49.56 51.61 53.95 43.51 49.69
BERT TAScore Fusedmax* 150 66.90 54.85 33.28 51.67 70.10 60.05 35.92 55.36 64.26 44.50 51.21 53.32

Table 3: Attribute extraction performance for various combinations of scoring and projection functions. The avg.
columns represent the macro average of the corresponding metric across the attributes.

Training Type Model
Tokenwise Extraction F1 Classification F1

freq. route change avg. freq. route change avg.

Classification only BERT Classifiers - - - - 74.72 40.82 55.76 58.48
Classification only BERT+TAScore+Fusedmax* 58.55 45.00 24.43 42.66 52.45 46.37 43.00 47.27
Extraction only BERT+TAScore+Fusedmax* 53.79 44.44 14.32 37.18 - - - -
Classification +Extraction BERT+TAScore+Fusedmax* 66.90 54.85 33.28 51.67 64.26 44.50 51.21 53.32

Table 4: Effect of performing extraction+classification jointly in our proposed model. While the Extraction Only
training only uses the 150 examples which are explicitly annotated with span labels, the Classification only training
uses the complete training dataset with classification labels.

5 Metrics

Token-wise F1 (TF1): Each token in text is either
part of the extracted span (positive class) for an at-
tribute or not (negative class). Token-wise F1 score
is the F1 score of the positive class obtained by
considering all the tokens in the dataset as separate
binary classification data points. TF1 is calculated
separately for each attribute.

Longest Common Substring F1 (LCSF1):
LCSF1 measures if the extracted spans, along with
being part of the gold spans, are contiguous or not.
Longest Common Substring (LCS) is the longest
overlapping contiguous span of tokens between the
predicted and gold spans. LCSF1 is defined as the
harmonic mean of LCS-Recall and LCS-Precision
which are defined per extraction as:

LCS-Recall =
#tokens in LCS

#tokens in gold span

LCS-Precision =
#tokens in LCS

#tokens in predicted span

6 Results and Analysis

Table 3 shows the results obtained by various com-
binations of attention scoring and projection func-
tions on the task of MR attribute extraction in terms
of the metrics defined in Section 5. It also shows

the classification F1 score to emphasize how the
attention bottleneck affects classification perfor-
mance. The first row shows how a simple phrase
based extraction system would perform on the
task.10

6.1 Effect of Span labels

In order to see if having a small number of extrac-
tion training data-points (containing explicit span
labels) helps the extraction performance, we anno-
tate 150 (see Section 2 for how we sampled the
datapoints) of the training data-points with span
labels. As seen from Table 3, even a small number
of examples with span labels (≈ 0.3%) help a lot
with the extraction performance for all models. We
think this trend might continue if we add more train-
ing span labels. We leave the finding of the right
balance between annotation effort and extraction
performance as a future direction to explore.

6.2 Effect of classification labels

In order to quantify the effect of performing the
auxiliary task of classification along with the main
task of extraction, we train the proposed model
in three different settings. (1) The Classification

10The details about the phrase based baseline are presented
in Appendix A.4
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Only uses the complete dataset (~45k) but only
with the classification labels. (2) The Extraction
Only setting only uses the 150 training examples
that have span labels. (3) Finally, the Classifica-
tion+Extraction setting uses the 45k examples with
classification labels along with the 150 examples
with the span labels to train the model. Table 4
(rows 2, 3 and 4) shows the effect of having classi-
fication labels and performing extraction and clas-
sification jointly using the proposed model. The
model structure and the volume of the classification
data (~45k examples) makes the auxiliary task of
classification extremely helpful for the main task
of extraction, even with the presence of label noise.

It is worth noting that the classification perfor-
mance of the proposed method is also improved
by explicit supervision to the extraction portion of
the model (row 2 vs 4, Table 4). In order to set a
reference for classification performance, we train
strong classification only models, one for each at-
tribute, using pretrained BERT. These BERT Clas-
sifiers, are implemented as described in Devlin
et al. (2019) with input consisting of the text and
medication name separated by a [SEP] token (row
1). Based on the improvements achieved in the
classification performance using span annotations,
we believe that having more span labels can fur-
ther close the gap between the classification perfor-
mance of the proposed model and the BERT Clas-
sifiers. However, this work focuses on extraction
performance, hence improving the classification
performance is left to future work.

6.3 Effect of projection function

While softmax with post-hoc threshold tuning
achieves consistently higher TF1 compared to
fusedmax (which does not require threshold tun-
ing), the later achieves better LCSF1. We observe
that while the attention function using softmax pro-
jection focuses on the correct portion of the text,
it drops intermediate words, resulting in multiple
discontinuous spans. Fusedmax on the other hand
almost always produces contiguous spans. Figure
4 further illustrates this point using a test example.
The training trick which we call fusedmax* swaps
the softmax projection function with fusedmax dur-
ing the final few epochs to combine the strengths
of both softmax and fusedmax. This achieves high
LCSF1 as well as TF1.

(a) BERT+TAScore+Fusedmax*

(b) BERT+TAScore+Softmax

Figure 4: Difference in extracted spans for MR at-
tributes with models that uses Fusedmax* and Soft-
max, for the medication Actonel. Blue: change, green:
route and yellow: frequency. Refer Figure 1 for ground-
truth annotations.

6.4 Effect of scoring function
Table 5 shows the percent change in the extraction
F1 if we use TAScore instead of additive scoring
(everything else being the same). As seen, there
is a significant improvement irrespective of the
projection function being used.

Scorer
TF1 (∆%) LCSF1 (∆%)

MM
(77.3)

SM
(22.7)

All
(100)

MM
(77.3)

SM
(22.7)

All
(100)

softmax +11.1 +10.6 +10.6 +6.5 +6.6 +6.3
fusedmax +12.1 +8.3 +11.5 +16.4 +15.5 +13.9
fusedmax* +5.4 +1.9 +4.7 +9.25 +1.1 +7.9

Table 5: MR extraction improvement (%) brought
by TAScore over additive scorer in the full test set
(All=100%), and test subset with single medication
(SM=22.7%) and multiple medications (MM=77.3%)
in the text.

The need for TAScore stems from the difficulty
of the additive scoring function to resolve refer-
ences between spans when there are multiple med-
ications present. In order to measure the efficacy
of TAScore for this problem, we divide the test set
into two subsets: data-points which have multiple
distinct medications in their text (MM) and data-
points that have single medication only. As seen
from the first two columns for both the metrics in
Table 5, using TAScore instead of additive results
in more improvement in the MM-subset compared
to the SM-subset, showing that using transformer
scorer does help with resolving references when
multiple medications are present in the text.



186

Figure 5: Distribution of the Avg. LCSF1 for the best
performing model (BERT+TAScore+Fusedmax*). A
significant number (≈ 10%) of datapoints with multi-
ple medication in their text get LCSF1 of zero (1st bar).

Figure 5 shows the distribution of Avg. LCSF1
(average across all three attributes). It can be seen
that there are a significant number of datapoints in
the MM subset which get LCSF1 of zero, show-
ing that even when the transformer scorer achieves
improvement on MM subset, it gets quite a lot of
these data-points completely wrong. This shows
that the there is still room for improvement.

6.5 Discussion
In summary, our analysis reveals that Fused-
max/Fusedmax* favors contiguous extraction
spans which is a necessity for our task. Irrespective
of the projection function used, the proposed scor-
ing function TAScore improves the extraction per-
formance when compared to the popular additive
scoring function. The proposed model architecture
is able to establish a synergy between the classifica-
tion and span extraction tasks where one improves
the performance of the other. Overall, the proposed
combination of TAScore and Fusedmax* achieves
a 22 LCSF1 points improvement over the phrase-
based baseline and 10 LCSF1 points improvement
over the naive additive and softmax combination.

7 Related Work

Existing literature directly related to our work can
be bucketed into two categories – related methods
and related tasks.

Methods: The recent work on generating ratio-
nales/explanations for deep neural network based
classification models (Lei et al., 2016; Bastings
et al., 2020; Paranjape et al., 2020) is closely related
to ours in terms of the methods used. Most of these
works use binary latent variables to perform extrac-
tion as an intermediate step before classification.
Our work is closely related to (Jain et al., 2020;
Zhong et al., 2019), who use attention scores to

generate rationales for classification models. These
works, however, focus on generating faithful and
plausible explanation for classification as opposed
to extracting the spans for attributes of an entity,
which is the focus of our work. Moreover, our
method can be generalized to any number of at-
tributes while all these methods would require a
separate model for each attribute.

Tasks: Understanding doctor-patient conversations
is starting to receive attention recently (Rajkomar
et al., 2019; Schloss and Konam, 2020). Selvaraj
and Konam (2019) performs MR extraction by
framing the problem as a generative question an-
swering task. This approach is not efficient at infer-
ence time – it requires one forward pass for each
attribute. Moreover, unlike a span extraction model,
the generative model might produce hallucinated
facts. Du et al. (2019) obtain MR attributes as
spans in text; however, they use a fully supervised
approach which requires a large dataset with span-
level labels.

8 Conclusion and Future work

We provide a framework to perform MR attribute
extraction from medical conversations with weak
supervision using noisy classification labels. This
is done by creating an attention bottleneck in the
classification model and performing extraction us-
ing the attention weights. After experimenting with
several variants of attention scoring and projection
functions, we show that the combination of our
transformer-based attention scoring function (TAS-
core) combined with Fusedmax* achieves signif-
icantly higher extraction performance compared
to the other attention variants and a phrase-based
baseline.

While our proposed method achieves good per-
formance, there is still room for improvement, es-
pecially for text with multiple medications. Data
augmentation by swapping or masking medication
names is worth exploring. An alternate direction
of future work involves improving the naturalness
of extracted spans. Auxiliary supervision using a
language modeling objective would be a promising
approach for this.
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A Appendices

A.1 Data
The complete set of normalized classification labels
for all three medication attributes and their meaning
is shown in Table 7.

Average statistics about the dataset are shown in
Table 6.

min max mean σ

#utterances in text 3 20 7.8 2.3
#words in text 12 565 80.8 41.0
#words in freq span 1 21 4.4 2.6
#words in route span 1 9 1.5 1.0
#words in change span 1 34 6.8 4.9

Table 6: Statistics of extraction labels (#words) and the
corresponding text

A.2 Hyperparameters
We use AllenNLP (Gardner et al., 2017) to imple-
ment our models and Weights&Biases (Biewald,
2020) to manage our experiments. Following is the
list of hyperparameters used in our experiments:

1. Contextualized Token Embedder:
We use 1024-dimensional 24-layer
bert-large-cased obtained as a
pre-trained model from HuggingFace11. We
freeze the weights of the embedder in our
training. The max sequence length is set to
256.

2. Speaker embedding: 2-dimensional train-
able embedding with vocabulary size of 4 as
we only have 4 unique speakers in our dataset:
doctor, patient, caregiver and nurse.

3. Softmax and Fusedmax: The temperatures
of softmax and fusedmax are set to a default
value of 1. The sparsity weight of fusedmax
is also set to its default value of 1 for all at-
tributes.

4. TAScore: The transformer used in TAS-
core is a 2-layer transformer encoder where
each layer is implemented as in Vaswani et al.
(2017). Both the hidden dimensions inside the
transformer (self-attention and feedforward)
are set to 32 and all the dropout probabilities

11https://huggingface.co/
bert-large-cased

are set to 0.2. The linear layer for the query
has input and output dimensions of 1024 and
32, respectively. Due to the concatenation
of speaker embedding, the linear layer for
keys has input and output dimensions of 1026
and 32, respectively. The feedforward layer
(which generates scalar scores for each token)
on top of the transformer is 2-layered with
relu activations and hidden sizes (16, 1).

5. Classifiers: The final classifier for each at-
tribute is a 2-layer feedforward network with
hidden sizes (512, “number of classes for the
attribute”) and dropout probability of 0.2.

A.3 Examples: Projection Functions
Figures 6 and 7 show examples of outputs of pro-
jection functions softmax and fusedmax on random
input scores.

A.4 Phrase based extraction baseline
We implement a phrase based extraction system
to provide a baseline for the extraction task. A
lexicon of relevant phrases is created for each class
for each attribute as shown in Table 8. We then
look for string matches within these phrases and
the text for the data-point. If there are matches then
the longest match is considered as an extraction
span for that attribute.

https://huggingface.co/bert-large-cased
https://huggingface.co/bert-large-cased
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(a) Positive and negative scores

(b) Positive scores only

(c) More uniformly distributed positive scores

Figure 6: Sample outputs (right column) of softmax function on random input scores (left column).
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(a) Positive and negative scores

(b) Positive scores only

(c) More uniformly distributed positive scores

Figure 7: Sample outputs (right column) of fusedmax function on random input scores (left column).
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Attribute class Meaning class proportion

frequency

Daily
Every morning
At Bedtime
Twice a day
Three times a day
Every six hours
Every week
Twice a week
Three times a week
Every month
Other
None

Take the medication once a day (specific time not mentioned).
Take the medication once every morning.
At Bedtime
Twice a day
Three times a day
Every six hours
Every week
Twice a week
Three times a week
Every month
Other
None

8.0
0.9
1.7
6.5
1.6
0.2
0.9
0.2
0.3
0.3
1.5
77.9

route

Pill
Injection
Topical cream
Nasal spray
Medicated patch
Ophthalmic solution
Inhaler
Oral solution
Other
None

Pill
Injection
Topical cream
Nasal spray
Medicated patch
Ophthalmic solution
Inhaler
Oral solution
Other
None

6.8
3.5
1.0
0.5
0.2
0.2
0.2
0.1
2.1
85.5

change

Take
Stop
Increase
Decrease
None
Other

Take
Stop
Increase
Decrease
None
Other

83.1
6.5
5.2
2.0
1.6
1.4

Table 7: Complete set of normalized classification labels for all three medication attributes and their explanation
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Attribute Class Phrases

freq

Every Morning everyday in the morning | every morning | morning

At Bedtime
everyday before sleeping | everyday after dinner |
every night | after dinner |
at bedtime | before sleeping

Twice a day
twice a day | 2 times a day | two times a day |
2 times per day | two times per day

Three times a day 3 times a day | 3 times per day | 3 times every day
Every six hours every 6 hours | every six hours
Every week every week | weekly | once a week

Twice a week
twice a week | two times a week |
2 times a week | twice per week | two times per week |
2 times per week

Three times a week 3 times a week | 3 times per week
Every month every month | monthly | once a month
Other
None

route

Pill tablet | pill | capsule | mg
Injection pen | shot | injector | injection | inject
Topical cream cream | gel | ointment | lotion
Nasal spray spray | nasal conversation transcript.
Medicated patch patch
Ophthalmic solution ophthalmic | drops | drop
Oral solution oral solution
Other
None

change

Take take | start | put you on | continue
Stop stop | off
Increase increase
Decrease reduce | decrease
Other
None

Table 8: Phrases used in the phrase based baseline. These are also the most frequently occurring phrases in the
free-form annotations.


