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Abstract
Multiple Sclerosis (MS) is a chronic, inflam-
matory and degenerative neurological disease,
which is monitored by a specialist using the
Expanded Disability Status Scale (EDSS) and
recorded in unstructured text in the form of a
neurology consult note. An EDSS measure-
ment contains an overall ‘EDSS’ score and
several functional subscores. Typically, ex-
pert knowledge is required to interpret consult
notes and generate these scores. Previous ap-
proaches used limited context length Word2Vec
embeddings and keyword searches to predict
scores given a consult note, but often failed
when scores were not explicitly stated. In this
work, we present MS-BERT, the first publicly
available transformer model trained on real clin-
ical data other than MIMIC. Next, we present
MSBC, a classifier that applies MS-BERT to
generate embeddings and predict EDSS and
functional subscores. Lastly, we explore com-
bining MSBC with other models through the
use of Snorkel to generate scores for unlabelled
consult notes. MSBC achieves state-of-the-art
performance on all metrics and prediction tasks
and outperforms the models generated from the
Snorkel ensemble. We improve Macro-F1 by
0.12 (to 0.88) for predicting EDSS and on aver-
age by 0.29 (to 0.63) for predicting functional
subscores over previous Word2Vec CNN and
rule-based approaches.

1 Introduction

Recent advancements of deep learning models with
electronic health records (EHR) have shown a
great deal of success in many clinical applications
(Shickel et al., 2017), such as disease detection
(Choi et al., 2016b), diagnostics (Choi et al., 2017),
risk predictions (Futoma et al., 2015) and patient
subtyping (Che et al., 2017a; Baytas et al., 2017).
However, when the data within the EHR is pre-
sented in the form of narrative, unstructured clin-
ical notes, extensive work is required by a profes-

sional to diagnose and generate labels for a patient
(PRATT, 1973).

The development of pre-trained language mod-
els, namely Bidirectional Encoder Representations
from Transformers (BERT), have significantly im-
proved natural language processing (NLP) tasks
within the general language domain (Devlin et al.,
2018). However, in specialized domains such as
the clinical one, the vocabulary, syntax and seman-
tics differ significantly from general language (Liu
et al., 2012) and thus pretraining a language model
on domain-specific texts is critical to improving
performance. This is supported by the observed
increase in performance on domain-specific NLP
tasks when pretraining a BERT model on domain-
specific texts (Lee et al., 2019; Peng et al., 2019;
Alsentzer et al., 2019; Beltagy et al., 2019). Take
for example BlueBERT (Peng et al., 2019), which
has been further pretrained on over 4 billion words
from PubMed abstracts and 500 million words from
MIMIC-III (Johnson et al., 2016) and has been
shown to outperform BERT on multilabel classifi-
cation from the Hallmarks of Cancers corpus (Peng
et al., 2019).

Domain-specific language models, such as Blue-
BERT, still face several challenges for clinical NLP
tasks. First, clinical texts must be de-identified
of sensitive information, with the replacement
of key tokens reducing the model’s ability to
interpret the text (Meystre et al., 2014). Second,
texts from a specific clinical application may
contain unique sub-language that the model was
not trained on, hindering the model’s performance.
Third, transformer models have a fixed context
length of 512 tokens that is significantly shorter
than the average length of clinical texts (Devlin
et al., 2018). As a result of truncating the text
to fit the context length, the model is unable to
analyze the entire text and may miss important
information. These are the challenges of applying
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existing BERT models to specific clinical NLP
tasks, which we have addressed through our contri-
butions applied to a multiple sclerosis (MS) dataset.

Our contributions are as follows:

[1] A publicly available BERT based model
pre-trained on over 70,000 MS consult notes,
which we call MS-BERT.

[2] A comprehensive pipeline for target pre-
dictions that integrates MS-BERT into a classifier,
which we call MSBC. We apply MSBC to two
tasks: (I) prediction of EDSS and functional
subscores from neurological consult notes of
MS patients and (II) generation of labels for an
unlabelled consult note cohort.

[3] Methods for data de-identification that
preserves contextual information, optimized for
fixed-context length models.

[4] A novel approach to generate encounter
level embeddings for documents larger than the
BERT context window.

[5] Semi-supervised labelling pipeline using
the Snorkel framework (Ratner et al., 2017) that
increased the training data available for EDSS
prediction and provided a quantitative analysis
of silver-labelling strategies on real clinical
applications.

2 Methods

De-identification of clinical text. The consult
notes used in this study contained sensitive infor-
mation such as patient’s name, phone numbers,
physician’s name and address. We de-identified the
data using a curated database of patient and doc-
tor information and regular expression matching.
We replaced identifying pieces of information with
specific tokens that met the following criteria: (1)
the token was within the current BERT vocabulary,
(2) the token had a similar semantic meaning to
the word it replaced, and (3) the token was not
found in the original data set. For example, all last
names were replaced with "Salamanca". In doing
so, we aimed to limit the loss of contextual infor-
mation that results from de-identification. We also
overcame challenges with sub-optimal placeholder
replacements often present in clinical datasets, like

MIMIC-III (Johnson et al., 2016). As an example,
MIMIC-III may replace a patient’s last name with
"[**LAST NAME PLACEHOLDER**]", which is
tokenized by BERT into at least 7 tokens (one for
each square bracket, one for each star and at least
one for the place holder within the brackets). A list
of our de-identification replacements can be found
within the appendices (contribution [3]).

MS-BERT. We used the de-identified consult
notes to pre-train a language model optimized for
NLP tasks related to MS, namely MS-BERT. MS-
BERT is a BERT model that uses BlueBERT (Peng
et al., 2019) as its starting point, where BlueBERT
is a BERT model pre-trained on PubMed abstracts
& MIMIC III note cohorts (Johnson et al., 2016).
We used a masked language modeling (MLM)
pre-training task (Devlin et al., 2018) over all de-
identified consult notes. The task used the bi-
directional nature of the BERT model to predict
a series of randomly selected masked tokens in a
piece of text, allowing the model to learn the con-
textual meaning of the words in a sentence. This
resulted in a language model that is optimized for
understanding MS consult notes. The MS-BERT
language model has been made available for use
and is publicly accessible. The pretrained MS-
BERT model can be found here (contribution [1]).

Encounter Level Embedding. We generated
encounter level embeddings for each consult note
to address issues related to the limited context
length of transformer models. Most transformer
models have a context length limited to a number
of sub-word tokens (512 in case of BERT (De-
vlin et al., 2018)); however, the consult notes are
often significantly longer. We separated consult
notes longer than the context length into chunks
of the maximum context length (in our case the
length was 512 tokens). We then used MS-BERT
to embed each chunk, resulting in a variable length
output sequence of 768 dimensional vectors.

We explored 3 methods of converting the se-
quence of chunk level embeddings into a singular
encounter level embedding: (1) taking the average
across the sequence; (2) taking the max across the
sequence; and (3) using a convolutional neural net-
work (CNN) encoder based on Zhang and Wallace
(2015) included in the AllenNLP library. For more
details see Figure 1.

In preliminary testing, the first two options
under-performed the CNN encoder by a large mar-
gin (∼60%), thus we proceeded with the third op-

https://huggingface.co/NLP4H/ms_bert
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tion. Our final CNN encoder consists of six 1D
convolutions with kernels of size [2, 3, 4, 5, 6, 10]
and 128 filters each for a total of 768 dimensions in
the output. This output is our final note embedding.
We compared these full-length encounter level em-
beddings to embeddings that were generated using
only a single context window (i.e. 512 tokens) and
found that encounter level summaries were critical
to model performance.

1 MSBC. Finally, we developed a custom classi-
fier named MSBC (Multiple Sclerosis BERT CNN)
to predict MS severity labels (EDSS or a functional
subscore) using MS-BERT. MSBC is built using
the AllenNLP (Gardner et al., 2017) framework.
A breakdown of MSBC is as follows. MSBC first
reads in a consult note, tokenizes the text using the
BERT vocabulary and then splits the tokens into
chunks of size 512. MS-BERT weights are applied
to each token chunk and all chunks for a note are
then passed into the CNN based sequence to vec-
tor (Seq2Vec) encoder described above to pool the
chunks and generate an encounter level embedding
(i.e. a 1D vector of 768). This encounter level
embedding is passed through 2 linear feed forward
layers, acting as a dimension reduction step, before
finally being passed to a linear classification layer
to predict a label for the note. Figure 1 shows an
overview of MSBC’s architecture.

We trained and optimized MSBC for variables
of interest, namely EDSS and functional subscores.
Each note in the training set was passed through
MSBC as described above. The resulting label was
compared to the target label and a loss was com-
puted. We used an AdamW optimizer to propagate
errors back through the model, with a learning rate
of 0.0005, weight decay of 0.01 and bias correc-
tion on a binary cross entropy loss function. We
treat this as a classification problem instead of re-
gression because EDSS is not uniform i.e. the
difference between 3 and 4 is not the same as 4 and
5. We trained each model over 50 epochs using a
batch size of 5 with 4 gradient accumulation steps.
The model was saved at the end of each epoch if
it had the best value for the validation metric. If
during training the best validation metric was not
beaten within 5 epochs, the trainer stopped early. A
model for each prediction task was generated using
MSBC and the train and validation sets described
above. Once trained, we evaluated performance on

1Code for our pipeline and experiments are available here
(contributions [2,4,5])

the held out test set.
Semi-Supervised Labelling. Due to the costs

of manually reviewing and labelling clinical texts,
a significant majority of clinical texts in EHRs
remain unlabelled (Garla et al., 2013). To lever-
age the full potential of all clinical text available
and generate pseudo-labels for unlabelled data,
we explored semi-supervised labelling using the
Snorkel framework (v 0.9.3) (Ratner et al., 2017).
Snorkel facilitates weak supervision of unlabelled
data given weak heuristics and classifiers (i.e. la-
belling functions or LFs) (Ratner et al., 2016, 2017).
Snorkel’s Label Model, a generative model, com-
bines the predictions and generates a single confi-
dence weighted label per data point. Snorkel does
this by using the LFs’ observed agreement and dis-
agreement rates to estimate the unknown accuracy
of the LF’s. Snorkel then learns and models the
accuracies of the LFs to combine the labels and
generate the final label per data point (Ratner et al.,
2019). To identify the optimal combination of LFs
to label the unlabelled notes, we evaluated the per-
formance of task predictions on various Snorkel
ensembles. The model that yielded the highest per-
formance on our validation-set was chosen to be
used to label the unlabelled notes.

We created two additional models using the
MSBC architecture: MSBC+, trained on a com-
bination of labelled and pseudo-labelled data and
MSBC-silver, which is a model trained on only
pseudo-labelled data. We pursued the development
of MSBC-silver as an attempt to see if we could re-
construct our model without access to the original
labelled data, similarly to Krishna et al. (2020).

3 Experiments

Multiple sclerosis (MS) is one of the most com-
mon non-traumatic disabling neurological condi-
tion among young adults worldwide (Ploughman
et al., 2014; Wade, 2014). Onset of MS typically
occurs between the ages of 20 to 40 years, with
women more often affected than men (Ploughman
et al., 2014). MS is a disease that impacts the
central nervous system (CNS) (Goldenberg, 2012),
leading to the degradation of myelin sheathing and
axons within the nervous system. This degradation
is highly varied and unpredictable in both location
and intensity within the body. Resulting symptoms
include but are not limited to: visual impairment,
loss of balance, numbness, bladder dysfunction and
fatigue (Calabresi, 2004).

https://github.com/NLP4H/MSBC
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Figure 1: The MSBC architecture. We used a CNN described by Zhang and Wallace (2015) to generate encounter
level embeddings.

MS is typically monitored by the Expanded Dis-
ability Status Scale (EDSS) (Kurtzke, 1983). EDSS
is used to evaluate the degree of CNS impairment
on a scale from 0 to 10. EDSS also includes eight
functional subscores (Kurtzke, 1983) such as an
ambulation score and a visual score. A full list of
functional subscores is found within Table 2 and
their respective descriptions can be found in the
appendices.

EDSS and functional subscores are discussed in
a patient’s consult note, dictated by a physician and
manually transcribed. EDSS is determined by a
combination of functional subscores and is typi-
cally stated within consult notes. However, func-
tional subscores are not typically stated within a
consult note and need to be derived from contex-
tual information about the patient’s health. Tradi-
tionally, both EDSS and functional subscores are
manually derived by an expert within the field and
logged into the patient’s health record. Minute
differences in patient descriptions can correspond
to different EDSS and functional subscore values.
Through consultation with MS healthcare profes-
sionals we expect the qualitative descriptions of
MS symptoms contained within the clinical notes
to remain uniform across healthcare systems.

3.1 Data

The dataset, compiled by a leading MS research
hospital, contains approximately 70,000 MS con-
sult notes for about 5,000 patients, totaling over
35.7 millon words. These notes were collected
from patients who visited this hospital’s MS clinic
between 2015 to 2019. Of the 70,000 notes approx-
imately 16,000 are manually labeled by a research
assistant for EDSS and functional subscores. The
gender split within the dataset was observed to be
72% female and 28% male as shown in Figure 2
and reflecting the natural discrepancy in MS (Harbo
et al., 2013).

Once de-identified, data was separated into la-
belled and unlabelled sets. The labelled set was
further separated into test (∼30%), train (∼50%)
and validation (∼20%) subsets. When designing
the splits for our data, we wanted to ensure that
we could accurately predict EDSS and functional
subscores on new notes for both current and new
patients and to reduce any gender bias that may
occur from population discrepancy. First we strat-
ified by gender. Then we either fully contained
the notes of one patient within a subset or divided
the patients notes across subsets chronologically.
This allowed for earlier notes to be used for train-
ing, and later notes for validation and test. Due to
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Figure 2: Distribution of EDSS scores varied by age and gender.

de-identification of notes the risk of information
leakage between subsets is minimized.

3.2 Experiment 1: EDSS and Functional
Subscore Prediction

Previous Work. Previous approaches to extract in-
formation from MS consult notes have typically re-
lied on keyword searches (Davis and Haines, 2015;
Damotte et al., 2019). We refer to the collection
of these searches as the rule-based (RB) approach.
Word2Vec embeddings used with a convolutional
neural network (CNN), have been shown to be suc-
cessful in clinical tasks such as creating explain-
able predictions of medical codes from clinical text
(Mullenbach et al., 2018). Previous work done at
our affiliated MS hospital used Word2Vec embed-
dings and a CNN model to generate EDSS predic-
tions. Best results were achieved by incorporating
the RB approach with the Word2Vec CNN. This
method first used the RB approach to extract key-
words and phrases that infer EDSS scores. If the
RB approach was unable to predict a score, then
the prediction from the Word2Vec CNN model was
used. More information on the development of the
CNN model can be found in the appendices. In this
work, we compared the performance on predicting
EDSS and functional subscores between the: (1)
Word2Vec CNN, (2) a sequential approach using
RB plus Word2Vec CNN, (3) MSBC, and (4) a
sequential approach using RB plus MSBC.

Additional baselines were established with term
frequency-inverse document frequency (tf-idf) fea-
tures. These features have been successful in var-

ious clinical NLP tasks (Bhattarai et al., 2009;
Narayan Shukla and Marlin, 2020; Boag et al.,
2018). A number of baseline models were devel-
oped on top tf-idf features such as: support vector
machines (SVM), logistic regression (LR) and lin-
ear discriminant analysis (LDA). Due to a lack of
performance on the easier task of predicting EDSS
scores (see Table 1), they were not evaluated for
the prediction of functional subscores.

Results. Our results for EDSS prediction are
summarized in Table 1 and functional scores in
Table 2. MSBC achieves top performance in both
tasks in all metrics. For EDSS prediction, Macro-
F1 and Micro-F1 are improved upon by 0.11 and
0.043 respectively. For functional subscore predic-
tion, we see a significant improvement of over 0.35
in Macro-F1 and almost 0.15 in Micro-F1.

Discussion. The significant improvement of
MSBC, especially in Macro-F1, indicates that MS-
BERT is better able to distinguish nuances within
text that characterize different EDSS and functional
subscores. Interestingly, the Word2Vec CNN out-
performed BlueBERT, which is likely attributed
to the fact that Word2Vec was pre-trained on our
corpus of text. Also, our different method of
de-identifying data from MIMIC-III (which Blue-
BERT was pre-trained on), may have reduced Blue-
BERT’s effectiveness. However, the contextually
similar token replacement should limit this impact.

We see a strong improvement in functional sub-
score predictions over the baselines. While EDSS
is stated directly in notes, functional subscores are
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Table 1: EDSS prediction performance for all models. Higher values indicate stronger performance and highest
values are bolded.

Model Macro-F1 Micro-F1

Multiple Sclerosis Bert Classifier (MSBC) 0.88296 0.94177
MSBC Truncated (only first 512 tokens) 0.74680 0.90086
Rule-Based (RB) + Word2Vec CNN 0.76817 0.89668

RB + MSBC 0.86625 0.92987
Word2Vec CNN 0.66475 0.88144
RB 0.76694 0.83761
BlueBERT CNN 0.51000 0.81000
Linear SVC 0.48503 0.74452
LDA 0.50122 0.74390
SVC RBF 0.45877 0.72428
Log Reg 0.45763 0.71175

Table 2: Sub-score prediction performance differences between baseline and MSBC. Higher values indicate stronger
performance. Highest values are bolded. It should be noted that low to no support for the highest levels of sub-scores
impacted Macro-F1.

Models MSBC RB RB + Word2Vec

Subscore Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Ambulation 0.6980 0.88797 0.2710 0.5627 0.2674 0.5155
Bowel Bladder 0.6039 0.86619 0.2773 0.5525 0.2027 0.5209
Brain Stem 0.5842 0.90356 0.4174 0.5694 0.3712 0.6598
Cerebellar 0.6437 0.85707 0.4927 0.6120 0.4188 0.5908
Mental 0.5496 0.79470 0.3643 0.5586 0.3003 0.5499
Pyramidal 0.7192 0.87755 0.4173 0.5128 0.4028 0.5598
Sensory 0.5570 0.87518 0.4082 0.4173 0.3485 0.5603
Visual 0.7153 0.93855 0.5020 0.4082 0.4207 0.6986

Mean 0.6339 0.8751 0.3937 0.5737 0.3416 0.5820

typically referenced indirectly. This makes it more
difficult for a rule based approach and simple mod-
els to learn the contextual information required to
assess scores. Furthermore, EDSS and functional
subscores also suffer from a high level of disagree-
ment among clinicians, particularly for the sen-
sory and mental categories (Piri Cinar and Guven
Yorgun, 2018). The level of disagreement typical
is lower for EDSS scores greater than 5.5 and in
general does not exceed 1. At two clinics, exam-
ined EDSS scores differed by 0.5 for up to 29% of
patients and by 1 for up to 50% of patients. This
level of subjectivity and variability within the true
labels may make it difficult for the model to pre-
dict accurately. That said, due to the contextual
awareness brought by MS-BERT, MSBC shows
strong improvement from previous work when pre-
dicting functional subscores. Additionally, the la-
bels for functional subscores were generated post-
examination by trained clinicians based on the con-
tents of notes. Therefore, missing information from

notes led to missing labels for certain functional
subscores, resulting in varying levels of support for
different scores.

MSBC under-performed on classes with low sup-
port. The bottom 25% of classes in terms of support
averaged an F1 score of 0.78, which was 0.1 lower
than the mean for all classes. However, classes with
low support are typical of EDSS due to its bi-modal
distribution (Meyer-Moock et al., 2014). This is
a result of the non-linear method of determining
EDSS based on certain heuristics and conditions
(i.e. the difference between an EDSS score of 3 to
4, is not the same as 4 to 5).

To help understand why and when rule based
approaches failed, we looked at performance of the
models only on notes that rule based approaches
were not able to label EDSS scores (see appen-
dices). This accounted for around 12% of the notes
and we see very poor performance for all other
models with F1 scores below 0.36 (and very high
F1-scores for those rule based were able to label),
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while MSBC is still able to achieve an F1 score
above 0.6. This may indicate that a certain portion
of notes that contain poor quality information and
may be “trickier" to label. These “tricky" notes
could be notes that state “no change" or “similar"
results to past notes, without restating those scores
for example. However, it is predicted that MSBC
was still able to outperform other models through
its ability to understand contextual information em-
bedded in the text.

3.3 Experiment 2: Semi-Supervised
Labelling of EDSS

We evaluated the effectiveness of the Snorkel en-
sembles and compared the performance of: (1)
MSBC (which has been observed in Experiment 1),
(2) MSBC+, and (3) MSBC-silver.

We hereon refer to two types of labels: (1) gold
labels (n∼16,000), which were manually obtained
by a professional at our MS clinic and are consid-
ered truth in our experiments, and (2) silver labels
(n∼54,000), which were generated from the model
chosen for EDSS labelling.

Results. Various Snorkel ensembles were eval-
uated as presented in Table 3. Only the LF com-
binations that included MSBC were evaluated as
MSBC had the best EDSS prediction performance.
From the F1 scores, we observe that MSBC alone
outperforms all ensembles that contain MSBC by
at least 0.02 on Macro-F1. The addition of weaker
classifiers consistently decreased the ensemble’s
performance. Furthermore, we observe that the
amount of conflict for MSBC (i.e. fraction of data
MSBC disagrees with for at least one other LF)
increases as weaker classifiers are added to the en-
semble.

From the above analysis, we concluded that
MSBC alone, out of all Snorkel ensembles, per-
forms the best and therefore was chosen to gener-
ate silver-labels for the unlabelled neurology notes.
Various models were trained using the MSBC ar-
chitecture and are presented in Table 4. The best
version of MSBC was the model trained solely on
gold label data (our original MSBC). Macro-F1
score and Micro-F1 score are observed to drop in
MSBC+. MSBC-silver was the worst out of the 3
variations with a Macro-F1 of 0.83 and Micro-F1
of 0.91 but is still observed to outperform the previ-
ous best baseline (RB+Word2Vec CNN presented
in Table 1) by an approximate Macro and Micro-F1
of 0.06 and 0.02 respectively.

Discussion. MSBC alone performs better than
all Snorkel ensembles. The performance of the
ensembles consistently decreased as more weak
classifiers and heuristics were added. We hypoth-
esize that the drop in performance is due to the
fact that the Snorkel’s Label Model learns to pre-
dict the accuracy of the LFs based on observed
agreements and disagreements. It also assumes
conditional independence among the LFs (Ratner
et al., 2019). This result is not surprising given
that the qualitative analysis of errors showed that
MSBC was almost strictly an improvement over
the Rule-Based approach. MSBC only struggled
with notes that had EDSS indicated in the roman
numeral ‘iv’ (which could be misconstrued to be
the lower-case acronym for intravenous) and notes
where patient complaints of their symptoms were
contained in a different note chunk than the physi-
cian findings which contradicted those symptoms.
In all other cases, the model made no significant
(off by no more than 0.5-1 on the EDSS scale) er-
rors compared to the weak heuristics. Therefore
in the presence of a strong LF, such as MSBC, we
suspect that the addition of weaker LFs introduce
disagreements with MSBC and thus decreased pre-
dictive performance. Furthermore, all LFs were
developed based on the same labelled training data
(for example, tf-idf models were trained on the
same training set). Hence, it is likely that the LFs
were correlated, which violated the conditional in-
dependence assumption made by Snorkel and com-
promised prediction accuracy.

Our model trained on silver labeled data, MSBC-
silver, performs worse than MSBC by 0.03-0.06.
This small decrease in performance indicates that
our model is able to relearn its own distribution
and helps validate its performance. MSBC-silver
outperformed all previous baselines on the EDSS
prediction task. The strong results of MSBC-silver
helps show the effectiveness of using MSBC as a
labelling function. This work shows potential to
reduce tedious hours required by a professional to
read through a patient’s consult note and manually
generate an EDSS score.

4 Concluding Thoughts

In this work we present methods to overcome
the challenges that arise when applying a mod-
ern transformer model on a specific clinical NLP
task, specifically MS severity prediction. We did
this through: (1) de-identifying clinical texts in a
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Table 3: EDSS predictions results for Snorkel ensembles containing MSBC. Conflicts reflect the fraction of data
that MSBC disagrees with at least one other LF. Highest values are bolded.

Ensemble combinations Macro-F1 Micro-F1 Conflicts
MSBC 0.88296 0.94177 N/A
MSBC + Rule Based LFs (RB LFs) 0.86617 0.93363 0.23471
MSBC + RB LFs + Word2Vec 0.78582 0.91901 0.33229
MSBC + RB LFs + Word2Vec + LDA 0.77004 0.88917 0.46796
MSBC + RB LFs + Word2Vec + TFIDFs 0.55728 0.82592 0.55145

Table 4: Performance of MSBC predicting EDSS using different label types. Gold labels (n=16,000) were manually
obtained by a professional at our MS clinic and are considered truth in our experiments. Silver labels (n=54,000) were
generated from MSBC predictions which was trained on gold labels. Higher values indicate stronger performance.
Highest values are bolded.

Model Trained on Macro-F1 Micro-F1

MSBC Gold Labels 0.88296 0.94177
MSBC+ Silver + Gold Labels 0.86238 0.92569
MSBC-silver Silver Labels 0.82922 0.91442

way that preserves contextual meaning; (2) gener-
ating encounter level embeddings to eliminate loss
of information resulting from the limited context
length of transformer models; (3) further pretrain-
ing a BERT model on MS consult notes to build
a language model (MS-BERT) with better under-
standing of MS clinical notes; (4) developing a
classifier (MSBC) that uses MS-BERT to achieve
state of the art performance on predicting EDSS
and functional subscores; and (5) using our clas-
sifier to generate labels for previously unlabelled
data, showing its effectiveness as a labelling model.

We believe that the MS-BERT language model
and its improved ability to understand MS consult
notes will aid clinicians in the diagnosis and treat-
ment of MS. Furthermore, we believe that being
trained on more clinical text, MS-BERT has the
potential to improve other NLP tasks within the
clinical domain.

4.1 Future Work

First, we are in the process of implementing an
interpretability module that would provide per-
word attentions instead of the per-sub-word-token
attentions available out-of-the-box. Second, we
want to evaluate MS-BERT’s performance on other
language tasks such as relation extraction, sentence
similarity, inference tasks, and question answering
within the clinical space. Third, we would like to
experiment with other note-level embeddings and
model architectures, such as the CNN presented

by Kim 2014 (Kim, 2014). While we are pleased
with the performance of MSBC, we would like to
demonstrate that our approach (the methods for
de-identifying data, fine-tuning a language model,
the generation of encounter level embeddings and
our custom classifier) can be applied on other
clinical datasets. Also, we would like to pre-train
longer context transformer models such as the
Reformer (Kitaev et al., 2020) which targets longer
context windows and compare it to Clinical BERT
which is tailored for the clinical domain (Alsentzer
et al., 2019). Finally, we would like to see if
using token level embeddings as inputs to our
CNN encoder, along with replacing some tokens
with more clinically relevant ones in the base
BERT vocabulary could improve encounter level
embedding quality.
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A De-identification of Clinical Text

Table 5: Full breakdown of word and category replacements for note de-identification.

Value Replacement

Last / Family Names Salamanca

Female First Names Lucie

Male First Names Ezekiel

Phone/Fax 1718

MRN/PID 999

Dates / DOB 2010s

Time 1610

Addresses Silesia

Location/Hospital/Clinics Troy

B Functional Subscores for EDSS

Table 6: Functional subscores for EDSS.

Functional Scores Description

Visual Function Ability to read of eye chart at 20 feet

Brainstems Eye movement, balance, hearing, numbness, swallowing, speech

Pyramidal Reflexes, limb strength, motor performance

Cerebellar Muscle coordination and control (ataxia)

Sensory Ability to detect light touch or vibration

Bowl and Bladder Control and correct function of bladder and bowl functions

Cerebral Depression, mental alertness (mentation)

Ambulation Ability to walk unimpaired

C Baseline Models

Term Frequency-Inverse Document Frequency
We trained a number of baseline models on top of our tf-idf features, finding that our max feature space
was optimal at 1500 tokens. After hyper-parameter tuning our tf-idf baseline models, we observed that the
following performed best for predicting EDSS scores:

• Support vector classification (SVC) with tuned regularization parameter ‘C’ equal to 1. Both linear
and radial basis function (RBF) kernels were generated based on their strong performance in this
classification task.

• Linear discriminate analysis (LDA) with a singular value decomposition solver.

• Logistic regression (LR) using a limited-memory BFGS (lbfgs) solver with ‘l2’ regularization and
inverse regularization strength, ‘C’, equal to 100. This model also considered class weights within
the training set.
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Word2Vec and Convolution Neural Networks
Word2Vec models (Mikolov et al., 2013; Choi et al., 2016a) take a corpus of text and learn vector
representations, called embeddings, for each word (Che et al., 2017b). Words with similar context have
been observed to have close embeddings in the vector space.

CNNs have been observed to work well in a variety of clinical tasks. For example, CNN architectures
have proved successful in relation extraction (Sahu et al., 2016), risk prediction (Che et al., 2017b),
the extraction of medical events from clinical notes (Li and Huang, 2016), and clinical named entity
recognition (Wu et al., 2017).

Previous work done at our collaborating hospital used a 200-dimensional Word2Vec embedding trained
on all MS consult notes (n=75,009) with a window size of 10 and a minimum count of 2. Next, they
converted all tokenized notes into their word vector representations. While doing so, they set a maximum
note length of 1,000 tokens and zero padded notes as necessary. They then designed a 3-dimensional
input sequence (batch size x 1000 x 200). This input sequence was fed into a Keras (Chollet et al., 2015)
implementation of the CNN architecture described by Kim 2014 (Kim, 2014). Finally, using convolutional
layers (with max pooling), and fully connected layers (with softmax output), they trained their CNN
model using the RMSProp optimizer with early stopping.

D Detailed Breakdown of MSBC prediction on EDSS

Figure 3: Heat map showing the distribution of predictions from our model compared to true values. Tight grouping
is noticed in high levels of support, and less grouping where there is less support.

E Performance of MSBC on ’Tricky’ Notes
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Table 7: Performance of MSBC across all values for EDSS.

MSBC’s Breakdown

EDSS Precision Recall F1 Support

0 0.9764 0.9805 0.9784 717

1.0 0.9605 0.9679 0.9642 779

1.5 0.9751 0.9333 0.9534 420

2.0 0.9365 0.9708 0.9533 926

2.5 0.9410 0.9280 0.9344 361

3.0 0.9413 0.9436 0.9425 408

3.5 0.9362 0.8980 0.9167 196

4.0 0.9632 0.9562 0.9597 137

4.5 0.8605 0.7400 0.7957 50

5.0 0.9157 0.8837 0.8994 86

5.5 0.8889 0.8889 0.8889 81

6.0 0.8689 0.9339 0.9002 227

6.5 0.9247 0.8984 0.9113 246

7.0 0.7761 0.7647 0.7704 68

7.5 0.9286 0.6842 0.7879 38

8.0 0.8889 0.8000 0.8421 30

8.5 0.7500 0.9231 0.8276 13

9.0 0.7143 0.6250 0.6667 8

Mean 0.8970 0.8734 0.8830 4791

Weighted Mean 0.9420 0.9417 0.9414 4791

Table 8: EDSS prediction across notes that were not found via a key word search. Bolded scores represent best
model performance.

EDSS Prediction on Samples that Rules were Unable to Label

Model Macro-F1 Micro-F1 Weighted-F1

MSBC 0.49942 0.61268 0.60340
RB + Word2Vec (Bench Mark) 0.19297 0.33275 0.32934
Word2Vec CNN 0.19297 0.33275 0.32934
SVC RBF 0.26748 0.40493 0.36611
Log Reg Baseline 0.24783 0.35916 0.34876
LDA 0.23374 0.33627 0.32295
Linear SVC 0.18703 0.30634 0.29474
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Table 9: EDSS prediction across notes that were found via a key word search. Bolded scores represent best model
performance.

EDSS Predictions on Samples that Rules were Able to Label

Model Macro-F1 Micro-F1 Weighted-F1

MSBC 0.95363 0.98603 0.98599
RB + Word2Vec CNN (Bench Mark) 0.93298 0.97253 0.97259
Word2Vec CNN 0.79170 0.95525 0.95393
LDA 0.53302 0.79872 0.80062
Linear SVC 0.52528 0.80346 0.80861
SVC RBF 0.48367 0.76723 0.75366
Log Reg Baseline 0.48057 0.75918 0.75845

F Exploratory Data Analysis

Figure 4: Distribution of age within the data set.
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Figure 5: Histogram showing the number of notes per patient.

Figure 6: Plot of mean EDSS score vs age.

Figure 7: Change of EDSS score in subsequent visits.
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Figure 8: Change of functional subscores with age.

Figure 9: Distribution of functional subscores across gender.
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Figure 10: Correlation matrix between functional subscores and EDSS. Strong correlations between EDSS and
ambulatory and pyramidal subscores as expected.


