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Abstract

Bidirectional Encoder Representations from
Transformers (BERT) models achieve state-of-
the-art performance on a number of Natural
Language Processing tasks. However, their
model size on disk often exceeds 1 GB and the
process of fine-tuning them and using them to
run inference consumes significant hardware
resources and runtime. This makes them hard
to deploy to production environments. This pa-
per fine-tunes DistilBERT, a lightweight deep
learning model, on medical text for the named
entity recognition task of Protected Health In-
formation (PHI) and medical concepts. This
work provides a full assessment of the per-
formance of DistilBERT in comparison with
BERT models that were pre-trained on medi-
cal text. For Named Entity Recognition task
of PHI, DistilBERT achieved almost the same
results as medical versions of BERT in terms
of F1 score at almost half the runtime and con-
suming approximately half the disk space. On
the other hand, for the detection of medical
concepts, DistilBERT’s F1 score was lower by
4 points on average than medical BERT vari-
ants.

1 Introduction

Clinical records play an important role in the dis-
covery of disease treatment and the advancement
of medical research (Jagannatha and Yu, 2016).
The clinical text corpora used for research includes
doctor’s notes, clinical study reports and medical
articles. There are several regulations that control
the use and transfer of personal information such
as General Data Protection Regulation (GDPR)
in Europe, Personal Information Protection and
Electronic Documents Act (PIPEDA) in Canada
and Health Insurance Portability and Accountabil-
ity Act (HIPAA) in the US. HIPAA Safe Harbor
for example lists 18 attributes that can potentially
identify an individual and dictates that all of them

need to be de-identified before a dataset can be
shared for secondary use such as research (HIPAA,
2015). One possible approach is the manual anno-
tation and de-identification of clinical text. This
approach is simply not feasible due to the high cost
of experts manually annotating clinical documents
(Friedrich et al., 2019). Due to the advancement
of Natural Language Processing research, the de-
identification of PHI was framed as a Named Entity
Recognition (NER) problem that can be solved by
deep learning techniques. This work fine-tuned
a deep learning model on a medical corpus and
assessed its quality in detecting PHI and medical
concepts in comparison with models whose embed-
dings were generated from a medical corpus.

The paper is organized as follows: in the next
section we review the state-of-the-art for solving
NER tasks used in the detection of PHI. In Sec-
tion 3 and 4 we define the problem and detail our
methodology. In Section 5 we present our results
and we finally conclude in Section 6.

2 Related Work

In a major breakthrough in NLP research, a sim-
pler neural network architecture was introduced by
Vaswani et al. (2017) called Transformers which is
an attention-based mechanism. Its main premise
was to do away with recurrence and convolution
in neural networks. Self attention generates a rep-
resentation by connecting different positions of a
given sequence. Self attention is easier to paral-
lelize and enables better understanding of long-
range dependencies. Transformers enabled the in-
troduction of Bidirectional Encoder Representa-
tions from Transformers (BERT) by Devlin et al.
(2019). BERT allows the generation of represen-
tations utilizing context from both directions of a
sequence. It consists of two steps: pre-training and
fine-tuning. Pre-training is the unsupervised learn-
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ing step to generate the representations. BERT was
pre-trained on Wikipedia and BookCorpus. The
pre-training step consists of two tasks: Masked
Language Model (MLM) which masks a certain
percentage of the input sequence and attempts to
predict those missing tokens. The second pre-
training task is Next Sentence Prediction (NSP)
which was specifically added to help with tasks
involving relationship between a pair of sentences
such as Question Answering. The fine-tuning is
the supervised learning portion where BERT is
trained on custom datasets by the user for their re-
spective tasks with little to no feature engineering
required for a specific NLP downstream task. Fur-
ther attempts have been made to improve on the
original BERT such as RoBERTa introduced by
Liu et al. (2019) which assessed the impact of dif-
ferent hyperparameters and concluded that training
over longer sequences and removing NSP achieves
better results. Other BERT variations were also
pre-trained on medical domain corpora such as
BioBERT (Lee et al., 2019), BlueBERT (Peng et al.,
2019) and ClinicalBERT (Alsentzer et al., 2019)
that were pre-trained on PubMed which contains
biomedical research articles and MIMIC-III which
contains doctors’ notes from the intensive care unit
admissions. The medical versions of BERT pro-
posed higher F1 score performance when evalu-
ated on biomedical tasks including NER.

BERT and its variations, however, require exten-
sive computational resources to deploy in produc-
tion environments. To address these limitations,
DistilBERT was introduced by Sanh et al. (2019).
The authors applied the concept of knowledge dis-
tillation to produce a lighter version of BERT that
is 40% smaller, 60% faster and achieves 97% of
the original BERT F1 score when measured on
Question Answering task. It can also be deployed
on lower power computing chips such as mobile
devices to run predictions. Further studies were
published to assess the performance of DistilBERT
compared to other state-of-the-art models. In a
study by Büyüköz et al. (2020), it compared Dis-
tilBERT’s performance against ELMo on two text
classification tasks. The first was a binary classi-
fication task of protest and non-protest news from
English articles from local newspapers in India and
China. The second task was a sentence classifi-
cation task of movie reviews on Rotten Tomatoes.
The authors concluded that DistilBERT generalizes
better than ELMo while having similar F1 score.

Wang et al. (2020) also used DistilBERT for a ma-
chine translation task to generate synthetic data to
diagnose language impairment in children. Dis-
tilBERT achieved 5% and 15% higher F1 scores
when compared with ELMo and Word2Vec respec-
tively.

3 Problem Statement

Although BERT achieved state-of-the-art for a wide
variety of NLP tasks, they are hard to train and de-
ploy in a production environment as they require
excessive computational power. For example, the
original BERT took 4 days to pre-train on 4 TPUs.
Furthermore, there are few limitations of using a
non-medical corpus to train a model for medical
tasks (Patel et al., 2017). There are medical-specific
terms that do not usually exist in general corpora
such as news or Wikipedia. There are other terms
that mean something else in a medical context. The
idea of training on domain-specific corpora was
explored by Cengiz et al. (2019) where the authors
pre-trained BERT on specific domains such as tele-
phone conversations, travel guides, government
records and fiction novels. This achieved higher
performance for related tasks than the generic ver-
sion of BERT.

While versions of BERT pre-trained on medical
text are publicly available as pointed out in Sec-
tion 2, these models share the same computational
power limitations of the original BERT. For exam-
ple, the pre-training of ClinicalBERT took 18 days
on a single GPU.

There are no studies we could find as of date
that fine-tuned and assessed the performance of
DistilBERT on medical tasks such as NER of PHI
in medical records. Although in the context of de-
identification predictions performance is more criti-
cal than runtime, the resource limitations may pose
a challenge for healthcare organizations to comply
with privacy regulations. Especially if they need to
generate pre-trained embeddings or incrementally
fine-tune their models on new data frequently.

The question we attempt to answer through
this paper is how DistilBERT performs when fine-
tuned on medical corpora compared to medical
pre-trained versions of BERT. Is it possible to
achieve a comparable result to medical pre-trained
BERT variations such as ClinicalBERT with a
much lighter version such as DistilBERT?
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4 Method

DistilBERT is based on the concept of knowl-
edge distillation introduced by Hinton et al. (2015).
The main characteristic of a machine learning
model evaluation is how it performs on unseen
data. While high-confidence predictions are picked
during inference, there are useful information in
low-confidence predictions that can help explain
how well a model can generalize. Knowledge distil-
lation is a compression algorithm that involves the
transfer of such information from the main model,
called the teacher, to a smaller distilled version,
called the student. Further details on knowledge
distillation are in the paper by Hinton et al. (2015).
DistilBERT consists of the same two steps as the
original BERT: pre-training, which in this case cre-
ates the student model and fine-tuning which uses
the pre-trained student model to train on a custom
dataset for a specific task. DistilBERT was pre-
trained on the same datasets as the original BERT:
BookCorpus and Wikipedia. The assessment ap-
proach was to use the pre-trained DistilBERT and
fine-tune it on i2b2 2010 and i2b2 2014 datasets for
NER and compare the results with ClinicalBERT
(Alsentzer et al., 2019) and BlueBERT (Peng et al.,
2019) that were both pre-trained on medical text.
The comparison was done in terms of runtime and
F1 score.

The transformers package developed by
Hugging Face Co1 was used for all the experi-
ments in this work. Its developers are also the cre-
ators of DistilBERT and it hosts a wide variety of
pre-trained BERT models including the ones men-
tioned in Section 2. The package is implemented
in python and this work was implemented in Py-
Torch.

Throughout this paper, by ‘training’ we are re-
ferring to the supervised learning step that BERT
and its variants call ‘fine-tuning’ in order to avoid
confusion with hyperparameter tuning. By ‘pre-
training’ we are referring to the unsupervised step
that generates the embeddings.

4.1 Datasets

i2b2 2014 - PHI: A dataset compiled by the Na-
tional Center for Biomedical Computing (NCBC)
also known as i2b2: Informatics for Integrating
Biology and the Bedside. It contains doctors’ notes
provided by Partners HealthCare System in Boston.

1https://github.com/huggingface/
transformers

The 2014 version has an annotated text of PHI la-
bels. The raw data is an XML file with positions of
the PHI labels.

In total, there are 23 different labels with the top
3 accounting to 69% of all label instances (DATE,
DOCTOR, HOSPITAL) and the bottom 7 having
insignificant counts accounting to near-zero per-
centages. Since it was shown by Sokolova (2011)
that using granular entities for PHI achieves better
de-identification results than binary classification
of whether an entity is a PHI, we chose to use all
the labels for NER classification instead of binary
PHI/non-PHI classification.

i2b2 2010 - Concepts: This dataset is also com-
piled by NCBC. It is another NER task that is fo-
cused on the extraction of medical concepts from
patient reports. Specifically, it extracts medical
problems, treatments, and tests. This dataset was
included to validate whether models pre-trained on
general domain corpora perform poorly on detect-
ing medical terms and if yes, how poorly. Further-
more, medical history contains rich information
about patients that HIPAA (2015) advised can indi-
vidually identify a person.

Access to both datasets was requested through
the Department of Biomedical Informatics2 at Har-
vard Medical School which is provided for free to
researchers and students.

The BERT model and its variations including
DistilBERT expect NER datasets to be in CONLL-
2003 format introduced by Tjong Kim Sang and
De Meulder (2003). It was designed for NER tasks.
Every line contains the word, a space, and the la-
bel of the entity in BIO format: B indicates the
beginning token of a label, I for inside a multi-
token label, and O for a token outside the entities
to predict. Sequences are separated by two empty
lines.

In order to produce the training, development
and testing datasets in CONLL format from the
raw files, we used the same scripts3 used by Clini-
calBERT authors (Alsentzer et al., 2019).

BERT variants including DistilBERT have a hard
limit on sequence length set to 512 tokens. Some
sequences in the raw datasets exceeded that limit.
Those longer sequences had to be further split to
fit the different sequence length experiments. The
script referred to in the transformers pack-

2https://portal.dbmi.hms.harvard.edu
3https://github.com/EmilyAlsentzer/

clinicalBERT

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://portal.dbmi.hms.harvard.edu
https://github.com/EmilyAlsentzer/clinicalBERT
https://github.com/EmilyAlsentzer/clinicalBERT
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age’s documentation4 was used for splitting longer
sequences. Table 1 shows token and sequence
count after pre-processing.

i2b2 2010 i2b2 2014
tokens seq. tokens seq.

train 126,111 14,511 425,566 45,641
dev 7,612 1,804 58,053 5,241
test 229,992 27,626 306,441 32,587

Table 1: Tokens and Sequence Count for i2b2 2010 and
i2b2 2014 after pre-processing

The train/test split for both i2b2 2010 and 2014
was already done by i2b2. In order to compare with
other papers that used the same datasets as baseline,
the train/test split was not modified even though
i2b2 2010’s training dataset has fewer tokens than
its testing dataset.

4.2 Training
The NER examples provided by the
transformers package was used as a
starting point for training and evaluation. The full
list of parameters used is discussed in Section
4.4. Adam optimizer (Kingma and Ba, 2014), a
replacement to the generic stochastic gradient
descent, was used for computing the loss function.
The optimizer is initialized with learning rate,
weight decay as well as the Adam ε constant set
to 10−8 to avoid division by zero in the Adam
calculation when the gradient approaches zero.
A learning schedule was setup to dynamically
modify the learning rate during training. The
learning rate linearly increases during a phase of
“warmup” steps, then linearly decreases after the
warmup period. This is done because early on
during training the model is far from convergence
therefore updating the weights does not need to
happen frequently. For every epoch in training, the
loss is calculated, optimizer and scheduler steps
incremented, model evaluated on the development
set, and checkpoint is saved to disk.

4.3 Evaluation
The evaluation uses seqeval.metrics pack-
age to calculate precision, recall and F1 score. A
classification report was also produced to display
the scores for every label as well as the micro and
macro average across labels for all 3 metrics. The

4https://github.com/stefan-it/
fine-tuned-berts-seq

classification report calculates the individual label
scores using instances of the labels. For example,
it does not calculate the scores for B-DATE and
I-DATE individually but for the whole DATE la-
bel.

We ranked the best run based on micro average
F1 score followed by recall if there’s a tie in F1. In
the context of de-identification, high recall is more
critical since incorrectly annotating a non-PHI as
a PHI token is less damaging than the opposite; or
“leaking” personal information.

4.4 Experiments

The experiments were run on a GeForce GTX 1080
Ti, with 6 virtual cores, 64 GB of memory, 126 GB
in hard drive storage and running Ubuntu 18.04.

The following are the different models that were
experimented with:

distilbert-base-cased: DistilBERT English lan-
guage model distilled from the cased version of
Toronto BookCorpus and English Wikipedia.

distilbert-base-uncased: DistilBERT English
language model distilled from the lowercase corpus
version of distilbert-base-cased.

For the comparison with BERT variants pre-
trained on medical corpus we used the following
models:

BlueBERT Formerly known as NCBI BERT. A
pre-trained version of BERT on uncased PubMed
abstracts and MIMIC-III notes (Peng et al., 2019).

BioClinicalBERT: Also known as Clinical-
BERT (Alsentzer et al., 2019). Another implemen-
tation of PubMed+MIMIC-III BERT which also
included a hospital discharge summary corpus but
pre-trained on cased text.

Both the cased and uncased versions of Distil-
BERT models are listed since they produced sig-
nificantly different results. This is also required
for a direct comparison since ClinicalBERT used
a cased corpus while BlueBERT used an uncased
one. Therefore, when comparing with Clinical-
BERT, the cased version of DistilBERT was used.
While when comparing with BlueBERT, the un-
cased version was used.

In total, 40 experiments were run to choose best-
performing training parameters based on the high-
est micro average F1. For maximum sequence
lengths, experiments ranged from using 128 to
maximum allowed of 512. In terms of batch sizes,

https://github.com/stefan-it/fine-tuned-berts-seq
https://github.com/stefan-it/fine-tuned-berts-seq
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16 and 32 were experimented with. Using a high
maximum sequence length with a high batch size,
however, resulted in out of memory issues. There-
fore, 32 batch size was only used with maximum
sequence length up to 256 while a batch size of 16
was used for higher maximum sequence lengths.
All the experiments ran for 3 training epochs ex-
cept one experiment ran for 2 epochs on the i2b2
2014 dataset to match the parameters reported by
Alsentzer et al. (2019) for ClinicalBERT. The full
range of parameters used in the experiments are
shown in Table 2. The rest are all the defaults
built-in the transformers package.

Parameter Values
max. seq. length {128, 150, 256, 300, 512}

batch size {16, 32}
learning rate 5× 10−5

training epochs {2, 3}
lowercase corpus {True, False}

Table 2: Parameters experimented with

5 Results

We can draw the following insights from the results
presented in Table 3. In terms of micro average F1
score, the performance gap between DistilBERT
and its medical variants were dataset-specific. For
the detection of PHI using i2b2 2014, DistilBERT
scored within 0.5% of its clinical variants. It scored
0.56% higher than BlueBERT but 0.45% lower
than ClinicalBERT. While for the detection of med-
ical terms using i2b2 2010, the medical variants
of BERT achieved 5% higher F1 score on average
than DistilBERT. These results show that for the
context of de-identification, using DistilBERT does
not suffer in performance. This can be attributed
to the generic nature of PHI labels such as dates,
names and addresses that exist in general-domain
corpus such as Wikipedia. While in the context of
detecting medical terms, using a compressed model
such as DistilBERT can result in significantly lower
score than medically pre-trained models. Overall,
the cased version of the models achieved F1 score
of 6.82% higher on average than the uncased ver-
sions regardless of the dataset. This performance
gap can be attributed to the importance of case
information to the NER task according to BERT
documentation5.

5https://github.com/google-research/
bert

Another aspect of the results we were interested
in was runtime. As mentioned in Section 3, the
original BERT is heavy to use requiring signifi-
cant computing resources. DistilBERT runtime
was 43% faster on average than the medical vari-
ants of BERT. It also produced a model that was
consistently 60% smaller in size than BlueBERT
and ClinicalBERT.

The per-label performance for all models and
both datasets is shown in Appendix A. We can
draw the following insights from the per-label com-
parison. As shown by support numbers column,
the testing dataset for i2b2 2014 did not have sig-
nificant counts for entities such as FAX, DEVICE
and EMAIL therefore producing unpredictable F1
scores. This subsequently drove the average F1
lower. However, of the top 4 frequent labels (DATE,
DOCTOR, PATIENT and HOSPITAL), DATE had
the highest F1 score. On the other hand, HOSPI-
TAL had the lowest F1 with significant support
number (877 instances) achieving 48 F1 score
which contributed to a lower micro F1 average
for DistilBERT Uncased. On the other hand, Distil-
BERT cased model performed significantly better
for the HOSPITAL label achieving 88 F1 score.
As discussed earlier, casing features are important
in the context of NER tasks. For English nouns,
casing is particularly important. For example, hos-
pital names are written with a capital first letter.

For i2b2 2010, since labels are all medical con-
cepts, DistilBERT had trouble recognizing all 3
entities of treatment, problem and test achieving
an F1 ranging from 78 to 82. For comparison,
BlueBERT achieved 84-85 for all 3 entities and
ClinicalBERT achieved 87.

The parameters that yielded the best perfor-
mance out of all 40 runs are shown in Table 4.
The parameters were dataset-specific but the same
across all models.

In terms of relative performance, DistilBERT
model’s F1 score was, on average, 95% that of
medically pre-trained BERT score for i2b2 2010
containing medical terms but on par for i2b2 2014
dataset. This result is 2 points lower than reported
by Sanh et al. (2019) for question answering task.
The performance degradation of using a distilled
model is therefore task- as well as data-specific.

6 Conclusion

In this work the main contribution was a full per-
formance assessment of DistilBERT in terms of

https://github.com/google-research/bert
https://github.com/google-research/bert


163

Cased Uncased
DistilBERT ClinicalBERT DistilBERT BlueBERT

2010 2014 2010 2014 2010 2014 2010 2014
F1 83.48 94.85 87.51 95.38 79.56 86.44 84.05 86.05

Min. 19 60 34 102 18 31 34 50

Table 3: DistilBERT vs BERT Variants Results on i2b2 2010 & 2014 in terms of micro average F1 and runtime

i2b2 2014 i2b2 2010
seq length 150 300

batch 32 16

epochs 3

learning rate 5× 10−5

Table 4: Parameters for best performing runs on i2b2
2010 and i2b2 2014

runtime and F1 score for the detection of medical
concepts and PHI labels in medical records. Distil-
BERT was trained on a medical corpus using i2b2
2014 and i2b2 2010 datasets and compared the re-
sults with ClinicalBERT and BlueBERT; both are
BERT variants that were pre-trained on medical
corpora. For NER task of detecting PHI labels in
medical records, DistilBERT achieved comparable
results with twice the speed at approximately half
the runtime. Its uncased version also performed
slightly better in terms of F1 than BlueBERT. How-
ever, for detecting medical concepts such as prob-
lems, treatments and tests, DistilBERT’s F1 score
was lower by 5% on average than models such as
BlueBERT and ClinicalBERT whose embeddings
were generated from pre-training on medical cor-
pus. Therefore, in the context of de-identification,
using a distilled version of BERT such as Distil-
BERT produces very similar performance results
at approximately 43% of the runtime compared to
medically-trained BERT versions even when PHI
labels are extracted from medical documents. Re-
sults shown here can guide the decision of adopting
DistilBERT at healthcare organizations that need to
frequently fine-tune their models on new medical
data and use it for the detection of PHI labels. The
reduced model size can also simplify the deploy-
ment process without performance degradation.

7 Future Work

Since DistilBERT achieved the same performance
as medically-trained versions of BERT when detect-
ing PHI labels even in medical context but suffered

performance degradation when detecting medical
concepts, future research can investigate and assess
how DistilBERT performs on medical concepts if
the student model was generated from a medical
pre-trained teacher such as BlueBERT or Clinical-
BERT. This involves pre-training DistilBERT using
the same corpora as ClinicalBERT or BlueBERT
in an unsupervised fashion to generate the embed-
dings. These embeddings can then be used for the
fine-tuning step.
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A Per-label Performance

A.1 i2b2 2014

precision recall f1 support
DATE 0.97 0.96 0.96 4988

DOCTOR 0.82 0.78 0.8 1915
PATIENT 0.79 0.75 0.77 881

HOSPITAL 0.56 0.41 0.48 877
AGE 0.98 0.98 0.98 764

MEDICALRECORD 0.96 0.96 0.96 422
CITY 0.76 0.74 0.75 260

PHONE 0.89 0.94 0.92 215
IDNUM 0.85 0.81 0.83 195
STATE 0.71 0.79 0.75 190

PROFESSION 0.75 0.7 0.72 179
ZIP 0.97 0.96 0.97 140

STREET 0.87 0.89 0.88 136
COUNTRY 0.6 0.24 0.34 117

USERNAME 0.99 0.96 0.97 92
ORGANIZATION 0.57 0.41 0.48 82

OTHER 0 0 0 13
DEVICE 0 0 0 8

FAX 0 0 0 2
EMAIL 0 0 0 1

Table 5: DistilBERT Uncased

precision recall f1 support
DATE 0.99 0.99 0.99 4987

DOCTOR 0.95 0.95 0.95 1915
PATIENT 0.91 0.92 0.92 881

HOSPITAL 0.9 0.87 0.88 875
AGE 0.98 0.98 0.98 764

MEDICALRECORD 0.97 0.99 0.98 422
CITY 0.78 0.9 0.84 260

PHONE 0.93 0.97 0.95 215
IDNUM 0.8 0.88 0.84 195
STATE 0.88 0.8 0.84 190

PROFESSION 0.86 0.84 0.85 180
ZIP 1 0.96 0.98 140

STREET 0.95 0.97 0.96 136
COUNTRY 0.77 0.62 0.69 117

USERNAME 0.96 0.96 0.96 92
ORGANIZATION 0.7 0.55 0.62 82

OTHER 0 0 0 13
DEVICE 0 0 0 8

FAX 0 0 0 2
EMAIL 1 1 1 1

Table 6: DistilBERT Cased
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precision recall f1 support
DATE 0.97 0.96 0.97 4988

DOCTOR 0.82 0.75 0.79 1915
PATIENT 0.76 0.78 0.77 881

HOSPITAL 0.55 0.4 0.46 877
AGE 0.98 0.97 0.98 764

MEDICALRECORD 0.96 0.98 0.97 422
CITY 0.76 0.69 0.72 260

PHONE 0.9 0.95 0.93 215
IDNUM 0.87 0.77 0.82 195
STATE 0.67 0.77 0.72 190

PROFESSION 0.69 0.7 0.69 179
ZIP 0.96 0.96 0.96 140

STREET 0.88 0.9 0.89 136
COUNTRY 0.63 0.15 0.24 117

USERNAME 0.94 0.96 0.95 92
ORGANIZATION 0.53 0.44 0.48 82

OTHER 0 0 0 13
DEVICE 0 0 0 8

FAX 0 0 0 2
EMAIL 0 0 0 1

Table 7: BlueBERT

precision recall f1 support
DATE 0.99 0.99 0.99 4987

DOCTOR 0.94 0.95 0.94 1915
PATIENT 0.93 0.93 0.93 881

HOSPITAL 0.88 0.86 0.87 875
AGE 0.98 0.98 0.98 764

MEDICALRECORD 0.97 0.99 0.98 422
CITY 0.76 0.85 0.8 260

PHONE 0.94 0.98 0.96 215
IDNUM 0.82 0.86 0.84 195
STATE 0.86 0.78 0.82 190

PROFESSION 0.8 0.87 0.83 180
ZIP 0.99 0.97 0.98 140

STREET 0.98 0.98 0.98 136
COUNTRY 0.68 0.48 0.56 117

USERNAME 0.94 0.96 0.95 92
ORGANIZATION 0.42 0.41 0.42 82

OTHER 0 0 0 13
DEVICE 0 0 0 8

FAX 0 0 0 2
EMAIL 0 0 0 1

Table 8: ClinicalBERT
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A.2 i2b2 2010

precision recall f1 support
problem 0.77 0.79 0.78 12592
treatment 0.79 0.79 0.79 9346

test 0.81 0.82 0.82 9226

Table 9: DistilBERT Uncased

precision recall f1 support
problem 0.82 0.85 0.83 12593
treatment 0.82 0.84 0.83 9345

test 0.84 0.84 0.84 9226

Table 10: DistilBERT Cased

precision recall f1 support
problem 0.83 0.84 0.84 12592
treatment 0.84 0.83 0.84 9346

test 0.84 0.86 0.85 9226

Table 11: BlueBERT

precision recall f1 support
problem 0.86 0.88 0.87 12593
treatment 0.86 0.88 0.87 9345

test 0.86 0.87 0.87 9226

Table 12: ClinicalBERT


