Generating Natural Language Numerals with TeX

Ivan Derzhanski Milena Veneva
Institute of Mathematics and Informatics Independent Researcher
Bulgarian Academy of Sciences
iad58g@gmail.com milena.p.veneva@gmail.com
Abstract

Sometimes one needs to produce a text in which many numbers have to be
written out in words. Writing such a text and ensuring it is error-free can be a
burden, especially if the author is not fluent in the language. Such may occur
when working on a reference grammar, a research paper or presentation, or a
problem on number names for a contest in linguistics. A remedy is to prepare
the text with TEX and let some parts be generated automatically. The human
effort this takes is to compose a grammar that describes the features of the
numeral system. This paper discusses how this is done.

Keywords: number names, number systems, numerals, TgX, typesetting

1. Introduction

Sometimes one needs to produce a text in which many numbers have to be written out in words. Writing
such a text and ensuring it is error-free can be a burden, especially if the quantity of numbers is very
large, they change a lot during the editing, or the author is not fluent in the language. Such may occur
when working on a reference grammar, a research paper or presentation, or a problem on number names
for a contest in linguistics (Derzhanski and Veneva, 2018).

This burden can become lighter if the text is prepared with TgX (Knuth, 1986). Some parts can then
be generated automatically (Derzhanski, 2013), and number names are a prime candidate. The human
effort this takes is to compose a grammar that describes the features of the numeral system, but we leave
the bulk of the typing and the proofreading to TgX.

It should be noted that in this day ‘producing a document with TgX’ tends to mean writing it in
ISTEX 2¢ (IKLEX 2¢, 2018) or another such extension, but in fact the arithmetic operations, conditionals,
switch-case statements, and other programming commands which facilitate the process of writing a semi-
self-generating grammar pertain to pure TgX, albeit freely used within I&TEX 2.

2. The Problems

The method has been employed for generating numerals in eight languages in the statements and so-
lutions of linguistic problems on number names that have been assigned at different instalments of the
International Linguistic Olympiad (IOL) (www.i0ling.org/) or national-scale contests in linguis-
tics in Bulgaria (Derzhanski, 2009: Chapters 12 and 13). Here are the sources, the languages, their ISO
639-3 codes, families and countries where spoken:

IOL7 (Evgenia Korovina and Ivan Derzhanski): Sulka (sua: isolate, Papua New Guinea);
IOLS8 (Ksenia Gilyarova): Drehu (dhv: Austronesian, New Caledonia);

IOL10 (Ksenia Gilyarova): Umbu-Ungu (ubu: Trans-New Guinea, Papua New Guinea);
IOL13 (Milena Veneva): Arammba (stk: South-Central Papuan, Papua New Guinea);
IOL13 (Milena Veneva): Classical Nahuatl (nci: Uto-Aztecan, Aztec Empire);

IOL15 (Milena Veneva): Birom (bom: Atlantic-Congo, Nigeria);

Nk LD =

112

Proceedings of CLIB 2020

7. Winter Mathematics Contest 2000 (Ivan Derzhanski): Georgian (kat: Kartvelian, Georgia);
8. National Contest in Linguistics 2001 (Ivan Derzhanski): Yoruba (yor: Atlantic-Congo, Nigeria).

Table 1 summarises the principal features of the number systems of these languages, as well as Bulgarian
as a point of comparison; that is, the answers to the following questions:

1. What is the base of the number system, and are there supplementary bases (such are often 5 and/or
10, and then perhaps 15, when the principal base is 20)?

2. Does the base have alternative (suppletive) names?

Are there any other numbers that play a base-like part in the number system?

w

4. Does the language use subtraction, or better, do the numbers just below the base behave — or are
they formed — in an unusual way?

5. Does the language use overcounting (Menninger, 1969; Hanke, 2005)?

6. What, if any, arithmetic operations are marked?

7. Ts the order of addends (+) and multiplicands (x) ascending (") or descending (\)?

8. Are there any (morpho)phonological changes in the derivation of number names?

| language | sua | dhv [ubu | stk | nci | bom | kat [yor [bul |
1: base 20 | 20 | 20+ 20+ 24 6 20+ 12 20+ 20+ 10
2: other names no yes no yes yes yes no no no
3: other bases 3147 no no 4 no | no no no no no
4: subtraction (‘—’) no no no | no no yes no yes no
5: overcounting (‘—’) no no yes | no no no no no no
6: operations +, X2 + - no + +,x | +,x | +,— | +
7(a): word order + / AN N TN NN N v
7(b): word order x ¢ N N | S S \ / N\ /
8: (morpho)phonology no yes no | no | yes yes yes no yes
Table 1: Linguistic phenomena in several number name systems.
3. The Idea

The idea of writing a computer program to convert a number to words is not original. It can be found
under the form of a popular programming exercise on applying conditional and switch-case operators and
manipulating strings of characters. For instance, problem #5.6 in (Dreyfus and Gangloft, 1975) concerns
composing a program in Fortran IV to write out a given one- or two-digit number in French. Likewise,
problem #31 in (Todorova et al., 2008) shows one of the ways to convert a two-digit number input from
the keyboard to its Bulgarian name in C++.

4. TgXDefinitions

Typesetting with TgX (Knuth, 1986) is akin to writing a program in several ways.

One is that frequently used constructions can be formulated as macro definitions—control sequences
that can be evoked every time we need them. They can be mathematical formulae, words, sentences or
even whole text passages. This reduces the number of keystrokes, typing errors and inconsistencies.

Another is that information of various types can be stored in variables (registers), which can be
assigned values and performed operations on (in particular, integer arithmetics).

Finally, there are flow of control constructions of the if-then-else kind (depending on the outcome of
a numeric comparison or another boolean condition) and the switch type (depending on the non-negative
integer value of a variable).

5. Implementation

5.1. Bulgarian

Bulgarian has a decimal number system; up to 99 multiplication is expressed by juxtaposition and addi-
tion by the preposition na ‘on, over’ and the conjunction i ‘and’. The number names in this range are

113

Proceedings of CLIB 2020

formed as follows:

| Rule no. | | Lines |

1 edno 1, dve 2, tri 3, chetiri 4, pet 5, shest 6, sedem 7, osem 8, devet 9 #20

2 deset 10 #18

3 a-na-deset = 10 + « (1<a<9) ##17-18
(if a = 1, the stem is edi; if o = 2, the stem is dva)

4 3-deset (2<8<9) (if B = 2, the stem is dva) #13

5 B-desetia =3 x 10+ « (1<a<9,2<8<9) ##13-14,
(if 5 = 2, the stem is dva) #20

1

2

3

S

ul

o

-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Table 2: Rules for Bulgarian

Figure 1 shows the TgX macros for generating number names in the range [1;99]. The top macro
is \blg (e.g., \blg{42} produces chetirideset i dve 4 x 10 4 2), and it turns to the auxiliary \b1n,
which yields numerals in the range [1; 9], in the general case for both the \tens and the \ones, into
which the argument is split in lines 9—10. Since by default counting is done in the neuter gender but the
number 2 as a multiplier in 20 and both 1 and 2 as addends in the second decade are in the masculine,
the flag \ i fneut rum is set to indicate that a neuter form is required.

\newcommand \bln[l]{\ifcase #1
\or ed\ifneutrum nol\else i\fi \or dv\ifneutrum el\else a\fi
\or trilor chetirilor petl\or shestlor sedem\or osem\or devet\fi

}

\newcount \tens \newcount \ones
\newif \ifneutrum
\newcommand \blg[1l]{%

\ifnum #1<100

\fi

5.2. Birom

\tens=#1\divide \tens by 10
\ones=-\tens \multiply \ones by 10\advance \ones by #1
\neutrumfalse
\ifnum 1<\tens
\bln{\tens}deset%
\ifnum O0<\ones \space 1 \fi
\fi
\ifnum 1=\tens
\ifnum O0<\ones \bln{\ones}na\fi
deset%
\else
\ifnum 0<\ones \neutrumtrue \bln{\ones}\fi
\fi

Figure 1: Macro definitions for generating Bulgarian numerals up to 99.

The use of macros to avoid typos is most opportune when the number names contain many diacritics,
which happens to be the case in Birom. The number names up to 120 (the range featured in the problem;
in fact the same rules hold for [121; 131] as well, and only fail to do so at 132) obey the rules in Table 3.

The TEX macros for generating these numerals in Birom are shown in Figure 2. The main macro

114

Proceedings of CLIB 2020

Rule no. | | Lines

1 gwinin 1, ba 2, tat 3, naas 4, tugin 5, titmin 6, taama 7, rwiit 8 #30

2 Jad-a =12 — a (1 < a < 3): [aatat 9, [aaba 10, faagwiniy 11 #30

3 kara 12 #21

ba-kiri bi-y = 7-12(2<y<8),
4 ba-kiirii [aa-bi-y = (12—7) 12 (1<~ <2) ##22-23
(the tone in the first syllable of v becomes middle)
5 Bné{igsgggygu)}ézﬁ—ird (8=Fk-12) #2128

Table 3: Rules for Birom

\newcommand \biron [3]{%
\newcount \numm \numm=#3%
\ifnum 8<\numm \textesh\={a}\={al%
\advance \numm by-12\numm =-\numm
\fi
#1\ifcase \numm \or gw\={\i}n\‘{\i}\ng%
\or b#2{a}\or t#2{alt\or n#2{al#2{als%
\or t#2{ul\ng\={ulnlor t#2{\i}\={\i}m\ ‘{\i}n%

\or t#2{a}\={a}m\‘{a}\or rw\={\i}\={\i}t\fi

}

\newcount \biggestBM
\newcount \biggestBA
\newcommand \birom [1]{%

\newcount \numb \numb=4#1
\ifnum 121>\numb
\ifnum 11<\numb
\biggestBM=\numb
\divide \biggestBM by 12
\biggestBA=\biggestBM
\multiply \biggestBA by 12
\ifnum 1=\biggestBM k\={u}r\={u}%
\else b\={altk\={u}r\={u}
\biron{b\={\i}}{\=}{\biggestBM}\fi
\advance \numb by -\biggestBA
\ifnum O0<\numb \space n\’ {a}
\ifnum 1=\numb gw\={\textepsilon}
\else v\ ‘{\textepsilon} \fi
\fi
\fi
\ifnum O<\numb \biron {}{\‘}{\numb}\fi
\fi

Figure 2: Macro definitions for generating Birom numerals.

115

Proceedings of CLIB 2020

is \birom (e.g., \birom{117} produces bakiri [aabitat nd v¢ faatar (12 — 3) x 12 + (12 — 3)).
The auxiliary \biron is somewhat more complex than its counterpart for Bulgarian: it implements
the expression of 9-11 by subtraction and the prefixing of bi- and the tone change in coefficients in the
names of dozens.

A part of the text of the problem on Birom numerals prepared with the use of this method (as IXTgX
source and typeset) is in Figure 3.

\newcommand \numB [1]{\mbox {\bomfont {\birom {#1}}}}

\begin{enumerate}
\item $S\numB{5}72 + \numB{3} + \numB{4} = \numB{32}$
\item $\numB{3}\totheB{4} = \numB{81}$S
\item $\numB{7}"2 + \numB{9} + \numB{1l}
\item $\numB{9}\totheB{l} = \numB{9}$
\item S$\numB{81}72 + \numB{2} + \numB{5} = \numB{71}$
\item $\numB{2}\totheB{5} = \numB{32}$3
\item S$\numB{9}172 + \numB{4} + \numB{3} = \numB{88}5S
\item $\numB{4}\totheB{3} = \numB{64}$3
\item $\numB{16} + \numB{21} = \numB{18} + \numB{2} + \numB{17}$S
\end{enumerate}

\numB{59}$S

\item Write the numbers \numB{36}, \numB{11l}, \numB{12}
and the equalities (A) and (B) in numerals.

o

\begin{enumerate}
\item[A.] $S\numB{108} — \numB{3} - \numB{13}
\item[B.] $\numB{49} - \numB{14} - \numB{1l5}
\end{enumerate}

\numB{921}$
\numB{20}$

1. tiplin® + tat + naas — bakiird biba na v& rwiit

2. tat133S _ bakiiri bitiimin na vi faatat

3. taama’ + faatat + gwinig — bakiri binais na vi faagwinip
4. faatat8WIND _ (mesy

6. ba 0N _ b3kr biba na v rwitt

r. faatat’ | naas + tat = bakiiri bitaama na vi naas

t

.
8. naas "t — bakiirn bitiniin na vé naas

9. kiirti nd v naas | kiirii na v2 [aatat = kiirti na ve titmin + ba + kiirii na v tipin

(b) Write the numbers bakdrd bitat. faagwinip, kiirti and the equalities (A) and (B) in
numerals.

A. bakiiri faabitat — tat — kiiri na gwe gwinig = bakiird bitaama na ve rwiit

Figure 3: An excerpt from the statement of the Birom problem.

116

Proceedings of CLIB 2020

5.3. Yoruba

Yoruba operates a decimal—vigesimal system; its most peculiar feature is that subtraction (of 10 from a
whole twenty and of 1 to 5 from a whole ten) is liberally used where most other languages use addition.
The rules produce the numbers up to 184 except for the range [25; 34], because 30 has a suppletive name,
which was not featured in the problem for which the macros shown here were made.'

| Rule no. | | Lines |

1 okan 1, €ji 2, eta 3, erin 4, arun 5, efa 6, eje 7, ejo 8, esan 9 #6

2 ewa 10 #19

3 ogun 20 #24

4 ogun =08 x20 (2<3<9) | ##24-25

5 ewa din ogun 8 = 3 x 20 — 10 (3<3<9) | ##23-25

6 adiny=~v—a« (I1<a<by=k-10,4 <k <19) | ##16-17

7 alvy=v+« (I1<a<4;y=k-10,1 <k <19) | ##16-17

Table 4: Rules for Yoruba

The TgX macros for generating these numerals in Yoruba and an excerpt from the text of the problem
produced with their use (as I&TEX source and typeset) are shown in Figures 4 and 5, respectively.

1 \newcommand \yorn [1]{%

2 \ifcase #1\or\d okan\or ejilor\d etalor\d erin\or arun \or\d efa
3 \or ejel\or\d ej\d olor\d esan\fi}

4 \newcount \scor \newcount \tens \newcount \ones \newcount \absones

s \newcommand \yorr [1]{%

6 \ifnum #1<10 \yorn #1%

7 \else

8 \tens =#1\divide \tens by 10

9 \ones =-\tens \multiply \ones by 10\advance \ones by #1
10 \ifnum 4<\ones

11 \advance \tens by 1\advance \ones by-10%

12 \absones =0\advance \absones by-\ones

13 \else \absones =\ones

14 \fi

15 \ifnum O=\ones

16 \else \yorn \absones \space

17 \ifnum O<\ones l-\else din \fi

18 \fi

19 \ifnum 1=\tens \d ewa%

20 \else

21 \scor =\tens \divide \scor by 2%

22 \ones =-\scor \multiply \ones by 2\advance \ones by \tens
23 \ifnum 1=\ones \advance \scor by 1\d ewa din\fi
24 ogun$s

25 \ifnum 1<\scor \space \yorn \scor \fi

26 \fi

27 \fi

28 }
Figure 4: Macro definitions for generating Yoruba numerals.

The forms given here are in fact reconstructions which reveal the internal structure of the numerals but conceal the complex
morphophonological processes which produce the surface forms of the contemporary living language.

117

Proceedings of CLIB 2020

\newcommand \yorl [1]{$#1$ & \textit {}\yorr{#1}}}

\begin{tabular}{rl}
\yorl 3 \\
\yorl{11l} \\
\yorl{22} \\
\yorl{37} \\
\yorl{66} \\
\yorl{93} \\
\yorl{135}
\end{tabular}

\item[(a)]Identify the numbers: \yorr{144}; \yorr{45}.

3 eta

11 okan l-ewa
22 en l-ogun

37 eta din ogun e

66 ern din ewa din ogun erin
93 eta l-ewa din ogun arun
135 arun din ogun eje

(a) Identify the numbers: erin l-ogun eje; arun din ewa din ogun eta.

Figure 5: An excerpt from the statement of the Yoruba problem.

5.4. Some other noteworthy issues

The other occasions in which the method has been used for writing number names in linguistic problems
will not be considered in detail here, for want of space, but a few notes on various interesting issues that
come up are in order.

Generating large numerals in a non-decimal system is error-prone. The Arammba number system is
base-6 and goes up to 67 = 279 936, so there is much to be gained by leaving the number crunching to the
computer. This passage encodes the fact that a number greater than or equal to 6° = 7776 (and presumed
less than 2 x 6° = 15552 because of the parameters of the linguistic problem for whose typesetting the
macros were composed) is named weremeke ‘6°° followed by the difference:

1 \ifnum 7775<\numb

2 \ifstarted \space \fi

3 weremekeladvance \numb by -7776
1 \startedtrue

5 \fi

Likewise for the lower degrees of 6, with coefficients where necessary. The same technique is applied, in
the text of the same linguistic problem, for the base-20 system of Nahuatl (if the number is greater than
7999, then 8000 is subtracted, etc.).

Umbu-Ungu is base-24, with 4 as a secondary base, but has special (unanalysable) names for all
multiples of 4 up to 32, which means that, although 48 is expressed as 24 x 2 tokapu talu, the following
two fours are 52 = 24 + 28 tokapu alapu and 56 = 24 + 32 tokapu polangipu, and 24 x 2 only comes
up in 60 = 24 x 2 4 12 tokapu talu rurepo. The macro \tuu{k} (where 3 < k < 26; k is not divisible
by 6) generates the name of the kth multiple of 4.

118

Proceedings of CLIB 2020

1 \newcommand \tuu [1]{\uux=#1l\relax
2 \ifnum 20<\uux tokapu yepoko \advanceluux by-18

3 \else \ifnum 14<\uux tokapu talu \advanceluux by-12
4 \else \ifnum 8<\uux tokapu \advance\uux by-6

5 \NEINFINfdL

6 \advance\uux by-2

7 \ifcase \uux \or rurepo\or malapulor

8 supulor tokapulor alapulor polangipul\fi}

Also the language uses overcounting, so 57 is tokapu talu rurepo-nga telu 24 x 2 +12-1 =60 -1
(‘1 from the 4 that completes 60°). This is implemented by checking if the number of ones is zero, and
if not, adding 1 to the number of fours before generating their name.

1 \ones=#1

2 \uuy=#1\divide \uuy by4\fours=\uuy

3 \multiply \uuy by4\advance \ones by-\uuy

4 \ifnum O=\ones \tuu {\fours}%

s \else \advance \fours byl\tuu {\fours}nga

6 \ifcase \ones \or telulor talulor yepoko\fi%
7 \fi

Drehu, which has a vigesimal system but uses 5, 10 and 15 as supplementary bases, calls these three
numbers §-pi, where 3 is the quantity of fives, but has a suffix for each of them when a number of the
range [1; 4] is to be added: 15 is koni-pi 3 x 5 but 18 is koni-qaihano 3 + 15.

\ifnum O=\ones
\Drehun \fems pi%
\else \ifcase \fems \Drehun \ones
\or \Drehun \ones ngdmen%
\or \ifcase \ones \or caalor lualor kéni\or ekal\fi ko%
\or \Drehun \ones gaihano\fi

The macro \Drehun produces the numbers from 1 to 4; the forms they assume before the suffix -ko
¢+ 10 are simply listed because of various opaque morphophonological changes.

Generating whole noun phrases containing numerals as quantifiers can present additional challenges.
The Sulka language has three number systems (for counting coconuts, breadfruit, and everything else).
Some of the nouns have suppletive singular and plural forms (e. g., sg. tu, pl. sngu ‘yam’). There is also a
dual number (marked by /o preposed to the singular), although it does not preclude the use of a numeral.
So generating an expression combining a noun and a number involves choosing the appropriate system
as well as putting the noun in the appropriate grammatical form (a tu a tgiang ‘1 yam’, a lo tu a lomin
‘2 yams’, o sngu a korlotge ‘3 yams’).

6. Conclusions

It is hoped that this brief exposition has sufficed to demonstrate both the advantages of leaving the
construction of complex number names to the computer whilst creating a text — in essence, a minor
exercise in automatic natural language generation — and the difficulties one may encounter when doing
so. The last example that was mentioned here touched upon the possibility of expanding the method
beyond the numeral, which hints at the great potential of the approach.

119

Proceedings of CLIB 2020

References

Derzhanski, I. and Veneva, M. (2018). Linguistic Problems on Number Names. In Proceedings of the Third
International Conference Computational Linguistics in Bulgaria, pages 169-176. https://dcl.bas.
bg/clib/wp-content/uploads/2018/07/CLIB_2018_Proceedings_v2_final.pdf.

Derzhanski, 1. (2009). Linguistic Magic and Mystery. Sofia: Union of Bulgarian Mathematics.

Derzhanski, I. (2013). Multilingual Editing of Linguistic Problems. In Proceedings of the Fourth Workshop on
Teaching NLP and CL, pages 27-34.

Dreyfus, M. and Gangloff, C. (1975). La pratique du Fortran: Exercises commentés. Paris: Dunod.

Hanke, T. (2005). Sum: Overcounting in Numerals. LINGUIST List 16.2448. https://linguistlist.
org/issues/16/16-2448.html.

Knuth, D. E. (1986). The TeXbook. Addison-Wesley Professional.

KX 2e. (2018). LaTeX2e Unofficial Reference Manual. http://tug.org/texinfohtml/latex2e.
html.

Menninger, K. (1969). Number Words and Number Symbols: A Cultural History of Numbers. Cambridge: MIT
Press.

Todorova, M., Armyanoyv, P., Petkova, D., and Georgiev, K. (2008). Sbornik ot zadachi po programirane na C++:
Chast 1. Sofia: Tehnologika.

120

