A Graph-Based Framework for Structured
Prediction Tasks in Sanskrit

Amrith Krishna*

Department of Computer Science
and Technology

University of Cambridge
ak2329Q@cam.ac.uk

Bishal Santra

Department of Computer Science
and Engineering

Indian Institute of Technology
Kharagpur

bsantraigi@gmail.com

Ashim Gupta'
School of Computing
University of Utah
ashim@cs.utah.edu

Pavankumar Satuluri

School of Linguistics & Literary Studies
Chinmaya Vishwavidyapeeth
pavankumarsatuluri@gmail.com

Pawan Goyal

Department of Computer Science
and Engineering

Indian Institute of Technology
Kharagpur

pawang@cse.iitkgp.ac.in

* Work done while at Indian Institute of Technology Kharagpur. Email: ak2329@cam.ac.uk
! Work done while at Indian Institute of Technology Kharagpur.

Submission received: 23 July 2019; revised version received: 25 August 2020; accepted for publication:
3 October 2020.

https://doi.org/10.1162/COLI_a_00390
© 2020 Association for Computational Linguistics

Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:ak2329@cam.ac.uk
mailto:bsantraigi@gmail.com
mailto:ashim@cs.utah.edu
mailto:pavankumarsatuluri@gmail.com
mailto:pawang@cse.iitkgp.ac.in

Computational Linguistics Volume 46, Number 4

We propose a framework using energy-based models for multiple structured prediction tasks
in Sanskrit. Ours is an arc-factored model, similar to the graph-based parsing approaches,
and we consider the tasks of word segmentation, morphological parsing, dependency parsing,
syntactic linearization, and prosodification, a “prosody-level” task we introduce in this work.
Ours is a search-based structured prediction framework, which expects a graph as input, where
relevant linguistic information is encoded in the nodes, and the edges are then used to indicate
the association between these nodes. Typically, the state-of-the-art models for morphosyntactic
tasks in morphologically rich languages still rely on hand-crafted features for their performance.
But here, we automate the learning of the feature function. The feature function so learned,
along with the search space we construct, encode relevant linguistic information for the tasks
we consider. This enables us to substantially reduce the training data requirements to as low
as 10%, as compared to the data requirements for the neural state-of-the-art models. Our
experiments in Czech and Sanskrit show the language-agnostic nature of the framework, where
we train highly competitive models for both the languages. Moreover, our framework enables us
to incorporate language-specific constraints to prune the search space and to filter the candidates
during inference. We obtain significant improvements in morphosyntactic tasks for Sanskrit
by incorporating language-specific constraints into the model. In all the tasks we discuss for
Sanskrit, we either achieve state-of-the-art results or ours is the only data-driven solution for
those tasks.

1. Introduction

Sentence constructions in morphologically rich languages (MRLs), such as Sanskrit,
generally rely on morphological markers to encode the grammatical information
(Tsarfaty, Sima’an, and Scha 2009). This makes Sanskrit a relatively free word order
language (Staal 1967; Gillon and Shaer 2005). In fact, the same sentence follows a
different word order when written as a verse, as compared to the word order in prose
(Tubb and Boose 2007). However, the sentence will still maintain the same syntactic
analysis, irrespective of its varying word orders (Scharf et al. 2015; Gillon and Shaer
2005). Recently, Krishna et al. (2018) have shown that approaches for non-sequential
processing of Sanskrit sentences result in better system performance even for low-
level tasks such as word-segmentation and morphological parsing. In this work, we
extend the energy-based model (EBM) for joint modeling of word segmentation and
morphological parsing proposed by Krishna et al. (2018) into a general graph-based
parsing framework for multiple structured prediction tasks in Sanskrit. We extend
the framework to include two downstream syntax-level tasks, dependency parsing
and syntactic linearization. We also introduce the prosodification task where a bag of
words is taken as input, and a verse sequence, where the sequence follows a metrical
pattern, is predicted. In prosodification, only the prosody-level information, and no
morphosyntactic information, about a given input is used. Figure 1 shows the hierarchy
of the tasks. The challenges arising from the computational treatment of Sanskrit fall
somewhere between speech recognition and the analysis of written text (Huet 2005).
The written representation in Sanskrit is actually a phonemic stream (Huet 2005).
The word boundaries in Sanskrit are not always explicitly marked, and are of-
ten obscured because of phonetic transformations at word boundaries. The fusional
language has rich morphology, and suffers from ambiguity because of syncretisms
and homonymy. Further, the “case” information from the morphological markers is

786

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

/’/Morphosyntactic Tasks /

Word
Segmentation

Morphological Parsing

—

Dependency Parsing Syntactic Linearization

Figure 1
Hierarchy of the tasks.

crucial for identifying the syntactic roles between words in their dependency analysis
(Kiparsky and Staal 1969). The case to dependency relation mapping is often a many-to-
many mapping, and contextual information is required to resolve the ambiguity in such
cases. Even a small eight-character string, nagarani', can create ambiguities because of
multiple possible word segmentation, morphological, and syntactic analyzes. Nagarani
can either be segmented as a two-word sequence na garani (no poisons) or be treated
as an inflected form of nagara (town) (Krishna, Satuluri, and Goyal 2017). Assuming
the latter is correct, nagarani is a plural form of the neuter gender stem nagara, which
can either be in nominative, vocative, or accusative case. Assuming the inflection to
be in nominative-case, this information enables the nominal to form one of the two
possible syntactic relations with the main verb in the sentence, namely, karta (subject) or
karma (object)?, in the syntactic analysis of the sentence. The cyclic dependency between
morphological and syntax-level tasks is well known (Tsarfaty 2006), and these tasks are
often solved jointly (More et al. 2019). Similarly, the potential error propagation from
word segmentation to its downstream tasks in pipeline models is also well established
for multiple languages (Hatori et al. 2012; Zhang and Yang 2018). Taking this into
consideration, our proposed framework is designed to perform joint training of such
related tasks.

We propose a search-based structured prediction framework for numerous NLP
tasks in a free word order language like Sanskrit. The framework we propose is an arc-
factored model, similar to graph-based parsing frameworks (McDonald et al. 2005b;
Ishikawa 2011). Here, the system expects a graph as input with its edges featur-
ized, irrespective of the task. We design suitable inference procedures to incorporate

1 The International Alphabet of Sanskrit Transliteration (IAST) scheme, a lossless romanization scheme for
Sanskrit. The International Phonetic Alphabet (IPA) equivalents for the IAST scheme can be found in
https://en.wikipedia.org/wiki/Help:IPA/Sanskrit.

2 Nominative case can be karma in a passive construction, e.g., dipaih nagarani prakasayante — English
translation: “Towns are illuminated by lamps”; here the karma ‘nagarani’ is in nominative case. Gloss:
dipaih - Lamps; nagarani - Towns; prakasayante - [lluminate.

787

https://en.wikipedia.org/wiki/Help:IPA/Sanskrit

Computational Linguistics Volume 46, Number 4

task-specific constraints, by which the search space for the possible solutions is con-
siderably reduced. The task is then framed as the search for a task-specific structure.
In principle, the graph-based dependency parsing approaches such as McDonald et al.
(2005b) or the lattice-based morphological parsing approaches such as that of Kudo,
Yamamoto, and Matsumoto (2004) can all be formalized as specific instances under
this framework. To further elaborate, consider the case of dependency parsing. Here,
the input graph will be a complete graph, with the (segmented) words in the sentence
forming the nodes of the graph. Here, the specific sub-structure to search for will be
a spanning tree (Hirakawa). The inference procedure searches for the minimum cost
spanning tree, using a suitable algorithm such as Chu-Liu-Edmond (Edmonds 1967).
Summarily, training consists of learning an energy function that assigns lower scores to
the ground-truth spanning tree than the other candidate spanning trees. All our models
follow an arc-factored approach, where the energy of the structure is nothing but the
sum of the energies of its edges (Ishikawa 2011; LeCun et al. 2006). The edges being
featurized, the energy function is used to score these featurized edge vectors.

The performance of a system depends highly on the choice of feature function used
for the task. In MRLs, hand-crafted features still form a crucial component in contribut-
ing to the performance of the state-of-the-art systems for tasks such as morphological
parsing and dependency parsing (More and Tsarfaty 2016; More et al., 2019; Seeker and
Cetinoglu 2015). But Krishna et al. (2018) learn a feature function using the Path Ranking
Algorithm (PRA) (Lao and Cohen 2010) for the joint task of word segmentation and
morphological parsing. PRA essentially maps the problem of learning a feature function
to that of automatic learning of horn clauses (Gardner, Talukdar, and Mitchell 2015),
where each clause is a morphological constraint. The domain knowledge required here
confines to just defining the literals, the combinations of which will be used to form the
clauses. In Krishna et al. (2018), morphological tags and grammatical categories form the
literals and the feature (clause) values are calculated using distributional information
from a morphologically tagged corpus. We find that the same feature function can be
used effectively for all the standalone and joint tasks we experimented with, including
the downstream morphosyntactic tasks. In the case of prosodification, prosody-level
information, instead of the morphological information, is used to define the literals.
We further improve our feature function learning approach using Forward Stagewise
Path Generation (FSPG) (Meng et al. 2015). FSPG-based features consistently and sig-
nificantly outperform PRA-based features and achieve state-of-the-art results in all the
tasks we experiment with. Our work is an extension of the work by Krishna et al. (2018),
where a joint model for word segmentation and morphological parsing was proposed.
The contributions of our work are as follows:

1. We extend the work of Krishna et al. (2018) to a general graph-based
parsing framework for multiple structured prediction tasks in Sanskrit. We
achieve state of the art (S0TA) results in all the tasks we experiment with.
In fact, this is the first work that introduces statistical models for
performing dependency parsing and prosodification in Sanskrit.

2. We automate the process of learning a common feature function to be used
across all the morphosyntactic tasks by using the FSPG approach. This is
completely automated, and avoids the need for feature engineering for
each task separately. Further, this simplifies the process of choosing the
feature function, and is not constrained by the accessibility to domain
expertise. We use the same approach for learning different feature
functions for the prosodification task and the morphosyntactic tasks.

788

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

3. Sanskrit being a low-resource language, task-specific labeled data are
particularly hard to come by. All our models use as low as 10% of the
training data as required by the current neural SOTA models in Sanskrit for
various tasks. We used around 9.26% (10,000) and 1.5% (8,200) of training
data, as against 108,000 and 0.5 million training sentences for the SoTA
neural models in syntactic linearization (Krishna et al. 2019) and word
segmentation (Hellwig and Nehrdich 2018), respectively.

4. Our experiments on Sanskrit and Czech show the language-agnostic
nature of the framework. We train models for three morphosyntactic tasks
in Czech. We outperform all participating systems in the CoNLL 2018
shared task on “multilingual parsing from raw text to universal
dependencies” (Zeman et al. 2018), that is, in joint morphological and
dependency parsing. We report the third best score in comparison with the
performance of participating systems in the SIGMORPHON 2019 shared
task on “morphological analysis and lemmatization in context” (McCarthy
et al. 2019), that is, in morphological parsing. Finally, we outperform two
highly competitive neural dependency parsers (Qi et al. 2020; Straka and
Strakovéa 2017) in dependency parsing.

5. Though the framework is language-agnostic, it still enables us to
incorporate language-specific constraints to prune the input search space
and filter the candidates during inference. Use of such constraints led to
performance improvements in dependency parsing and syntactic
linearization tasks in Sanskrit. The labeled attachment score [LAS]
(unlabeled attachment score [UAS]) for dependency parsing improved
from 79.28 (82.65) to 83.93 (85.32) and the BLEU score for syntactic
linearization improved by about 8 BLEU scores.

This article is organized as follows. In Section 2, we first elaborate the characteristics
and the history of usage of the language. Then we describe each of the tasks we perform
along with the challenges that need to be addressed. Section 3 details the architecture
of the EBM framework and then describes each component in the framework. Our
experiments and results are discussed in Section 4. Section 5 discusses some of the key
observations along with the future work. In Section 6, we present the related work.
Section 7 then concludes the article by summarizing our key findings from the work.
Table 1 provides the list of the most commonly used abbreviations in this work.

2. Computational Processing of Texts in Sanskrit and Its Challenges

Sanskrit is a classical language (Coulson 1976) and was the prevalent medium of
knowledge transfer in the demographic of the Indian subcontinent for about three
millennia (Pollock 2003; Goyal et al. 2012). Composition and preservation of Sanskrit
texts as part of a rich oral tradition was a salient feature of the Vedic age, prevalent
presumably in the second millennium BCE (Staal 2008; Scharf 2013). Fairly advanced
disciplines of prosody (Chandas), phonetics (Siksd), and grammar (vyakarana), with their
intellectual roots in the Vedic oral tradition, were developed for Sanskrit by the middle
of the first millennium BCE (Scharf 2013; Kiparsky 1995). The oral tradition and these

3 All the experiments were performed on the Czech-PDT UD treebank.

789

Computational Linguistics Volume 46, Number 4

Table 1
List of most commonly used abbreviations in this work.

Abbreviations
SHR Sanskrit Heritage Reader WS Word Segmentation
DCS Digital Corpus of Sanskrit MP Morphological Parsing
PCRW Path Constrained Random Dp Dependency Parsing
Walk
FSPG Forward Stagewise Path SL Syntactic Linearization
Generation
CoNLL 2018 shared task on
PRA Path Ranking Algorithm Raw2UD Raw Text to Universal
Dependencies
EBM Energy-Based Model Joint T1 + T2 Joint modeling of the
tasks T1 and T2
BoW Bag of Words MIT Metre Identification Tool
MRL Morphologically Rich Language | SoTA State of the Art

later developments have shaped the characteristics of the language and its usage in
multiple ways. First, the words in a sentence often undergo phonetic transformations
at the juncture of their boundaries, similar to what one expects in connected speech.
These transformations obscure the word boundaries and often result in the modification
and the fusion of the sounds at the word boundaries (Matthews 2007, p. 353). Such
transformations, called sandhi, are reflected in writing as well. Secondly, a large body
of works in Sanskrit is in the form of verses, where a verse should adhere to one of
the prescribed metrical patterns in Sanskrit prosody. Such constructions often followed
a relatively free word order, with the grammatical information encoded via the mor-
phological markers. The adherence to metrical pattern came even at the cost of verbal
cognition to the listener (Bhatta 1990). However, later, commentators of these verses
started to reorder the sentences in the “most easily understandable prose order” (Tubb
and Boose 2007), or the “natural order” (Apte 1965), for easier verbal cognition.
The prose so obtained is called the anvaya of the verses, and it is merely a permutation
of the words in the verse. Both the original verse and its corresponding anvaya will have
the same syntactic analysis as per the Sanskrit grammatical tradition. The word ordering
in prose is observed to be more restrictive as it tends to follow SOV word order typology
(Hock 2015). Further, the words tend to behave as constituents of phrases, implying that
the phrases are continuous (Gillon and Shaer 2005; Schaufele 1991). Given this context
and history of usage of Sanskrit, we describe the tasks we have considered.

2.1 Tasks

The tasks we consider are word segmentation, morphological parsing, dependency
parsing, syntactic linearization (word ordering), and prosodification. In this section, we
discuss each of these five tasks in detail. As shown in Figure 1, the aforementioned tasks
are categorized into morphosyntactic tasks and prosody-level tasks. Prosodification,
a prosody-level task, is the task of arranging a bag of words into a verse sequence,
such that the resulting sequence follows a metrical pattern. Here, we do not make use
of any morphosyntactic information about the input and rather use the syllable-level
information for modeling the task. The rest of the tasks form a hierarchy such that each

790

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

ramo’pi paramodarassumukhassumahayasah na caicchatpituradesadrajyam ramo mahabalah
a) Verse

ramah api paramodarah sumukhah sumahayasah na ca aicchat pituh adesat rajyarn ramah mahabalah
b) Segmentation — word splits
ramah api parama udarah sumukhah sumaha yasah na ca aicchat pituh adesat rajyarn ramah maha balah

¢) Segmentation — word and compound splits

Figure 2

The reference sentence in (a) its original fused form, (b) its segmented form that shows all the
word boundaries, and (c) its segmented form that shows all the word boundaries and compound
splits. The regions where the sandhi originally occurred between word boundaries are shown in
orange and where the sandhi originally occurred between the compound components are shown
in yellow.

task expects predictions from its upstream tasks to fulfil its input requirements. The
tasks in the hierarchy are collectively termed as morphosyntactic tasks as each of these
tasks either require morphosyntactic information in input or is an upstream task to such
tasks (e.g., word segmentation). The joint modeling of such related tasks in a hierarchy
has empirically been shown to perform better than a pipeline-based approach (Seeker
and Cetinoglu 2015; More et al. 2019). We jointly model the morphological parsing
(MP), and word segmentation (WS) tasks, similar to Krishna et al. (2018). We further
extend this framework to jointly model WS, MP, and dependency parsing tasks as well
as the WS, MP, and syntactic linearization tasks. Throughout the section we will use
a verse from the literary work Ramayana, “Ramo’pi paramodarassumukhassumahayasah na
caicchatpituradesadrajyam ramo mahabalah,” for illustrative purposes. We will henceforth
refer to this sentence as the “reference sentence.” The sentence translates to, “But Rama,
a source of universal delight, exceedingly noble, of beautiful countenance, of very great
fame, very strong, did not want to accept the kingdom in accordance with the command
of his father.”*

Word Segmentation. Word segmentation is the task of identifying the words in a given
character sequence. This can be a challenging task in a language like Sanskrit, where
the word boundaries are often obscured due to sandhi. Sandhi is defined as the euphonic
assimilation of sounds (i.e., modification and fusion of sounds) at or across the bound-
aries of grammatical units (Matthews 2007). Although such phonetic transformations
between the morphemes of a word are common across languages, these transformations
are observed also between the successive words in a sentence in Sanskrit. For instance,
Figure 2(b) shows the verse with all the seven splits of the words that were fused due
to sandhi in its original form (Figure 2(a)).” Here, six of the seven instances of sandhi
result in phonetic transformations at the word boundaries, while the remaining one
results in concatenation of the words without any phonetic transformations. Similarly,
Figure 2(c) shows the splits between the components of a compound along with the
word splits. Here, we jointly perform the task of compound splitting, along with word

4 Gloss: ramah - one who delights everybody, api - also, paramodarah - exceedingly noble, sumukhah -
beautiful countenance, sumahayasah - greatly renowned, mahabalah - very strong, Ramah - Rama (Name
of a person), pituh - father’s, adesat - by command, rajyam - kingdom, na - not, ca - and, aicchat - desired.

5 For example, ca + aicchat — caicchat; pituh + adesat — pituradesat; adesat + rajyam — adesadrajyam.
For a complete list of possible transformations due to sandhi, visit https://bit.1ly/2BFy01F.

791

https://bit.ly/2BFy01F

Computational Linguistics Volume 46, Number 4

ramo'pi paramodarassumukhassumah a yasah na caicchatpitur a desadrajyam ramah mah a balah

B poore [O oo N e B B AR B - B
fama parama arah o aiochat g adesat o [GWan AR o

api para moda _ pitu ra - - -
7 o s s

moda adesa - ap
£} tpidim. sg.nom)
- adesa a
udarah L

Figure 3

All the lexically valid segmentations for the reference sentence based on the analysis from SHR.
The candidate segments are color coded by SHR based on their lexical categories. Blue for
substantives, red for finite verb-forms, mauve for indeclinables, and yellow for all the non-final
components of a compound. Cyan is used for those inflected-forms that can only be used as the
final component of a compound (Goyal and Huet 2016). The numbered boxes indicate the
morphological analysis as per SHR for the inflected forms yasah and pituh.

segmentation, similar to previous word segmentation models in Sanskrit (Hellwig and
Nehrdich 2018; Reddy et al. 2018). The knowledge of the individual components of a
compound will help in its analysis in downstream tasks, and hence is important for
processing Sanskrit corpora abundant with multicomponent compounds.

The analysis of a sequence with fused words can lead to ambiguity in identifying
the original words in the sequence. Goyal and Huet (2016) propose Sanskrit Heritage
Reader (SHR), a lexicon driven shallow parser that encodes all the rules of sandhi as
per traditional Sanskrit grammar.® SHR can enumerate all possible lexically valid seg-
mentations for a given sequence. Figure 3 shows the possible analyzes for the reference
sentence as per SHR.” Here, we define a segmented solution that spans the entire input
sequence as an “exhaustive segmentation.” For the sentence under consideration, the
correct solution is one among the 59,616 possible exhaustive segmentations (Section 2.1).
Given the possible word splits, our task can be formalized as one that finds the seman-
tically most valid exhaustive segmentation among the candidate solutions.

Morphological Parsing. Morphological parsing is the task of identifying the morphemes
of the words in a sentence. Specifically, our task focuses on obtaining the correct stem
and the morphological tag of the inflected forms in a sentence. Sanskrit, similar to Czech
(Smith, Smith, and Tromble 2005), is a fusional language where a morpheme encodes
multiple grammatical categories. Morphological parsing in Sanskrit is challenging pri-
marily because of two factors. First, Sanskrit has a rich tagset of about 1,635 possible
tags. Table 2 shows the lexical categories in Sanskrit and the grammatical categories they
comprise of. Second, an inflected form in Sanskrit may lead to multiple morphological
analyzes, due to syncretism and homonymy. For instance, Table 3 shows the candidate
morphological analyzes produced by SHR for the inflected-forms pituh and yasah.®

6 https://sanskrit.inria.fr/DICO/reader.fr.html.

7 The analysis is available at https://bit.ly/2WYVkie.

8 Figure 3 also shows the SHR analysis (marked with numbered boxes) for both the inflected forms; Yasah
is the final component of the compound sumahayasah. In Sanskrit, the inflectional marker is applied
generally to the final component of a compound.

792

https://sanskrit.inria.fr/DICO/reader.fr.html
https://bit.ly/2WYVkie

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

Table 2 Table 3

Grammatical features and their Instances of homonymy and syncretism in the reference
distribution over inflectional sentence. yasih is a case of syncretism, where the stem
classes. “Other” includes forms has the same inflected form but has different

such as infinitives, absolutives, morphological tags. pitul is a case of both syncretism
compound-components, and homonymy, as it can be an inflection of two
indeclinables, etc. different stems, pitu and textitpitr. “Num” is the

grammatical category, “number.” The information is
based on the analysis from SHR.

2 i Word Stem Morphological Tag
& e g S Case Num Gender
5 £ &
Feature > Z & & ya33h yasas nominative 1 feminine
I 18 P P nominative 1 masculine
ense
Case 8 v v pituh pitr genitive 1 masculine
Number 3 v Vv v ablative 1 masculine
ICjender g v y v pitu nominative 1 masculine
erson
Other 6
Total 41 72 162 1,296

Here, the word pituh has 3 possible analyzes, of which two are cases of syncretism for
the inflected-forms of the stem pitr and the third analysis is an inflection of the stem pitu.
Similarly, yasah is a case of syncretism, where it has two possible analyzes both with
the same stem yasas, but differing in their morphological tags. In this task, we rely on
SHR to obtain an exhaustive list of possible morphological analyzes for the words in a
sequence. We then formulate our task as obtaining the correct morphological analysis
from the exhaustive list of candidate solutions obtained from SHR.

Dependency Parsing. Given a sentence in Sanskrit, dependency parsing requires finding
the syntactic relations between the words in the sentence, thereby predicting a labeled
dependency tree as the final output. For the task, we follow the widely adopted depen-
dency tagging scheme proposed for Sanskrit (Kulkarni, Pokar, and Shukl 2010; Kulkarni
and Ramakrishnamacharyulu 2013). The tagging scheme, consisting of 22 relations,’ is
in principle motivated from the traditional dependency analysis for Sanskrit, known as
the karaka theory (Kiparsky and Staal 1969). These relations are known to be syntactic-
semantic in nature (Bharati and Sangal 1993). Using this scheme enables us to integrate
our predictions into the pipeline of systems currently in use for linguistic annotations
and processing of Sanskrit texts (Goyal et al. 2012; Huet and Kulkarni 2014; Goyal and
Huet 2016; Das 2017). The relations rely heavily on the case markers of the nominals
and the valency of the verb to infer the structural information of the sentence (Kiparsky
and Staal 1969; Ramkrishnamacharyulu 2009). Figure 4 shows the dependency analysis
for the reference sentence. For presentational clarity, the figure uses the prose word
ordering (anvaya of the verse) rather than the original verse order. The sentences in prose

9 https://bit.1ly/3hKLZTI.

793

https://bit.ly/3hKLZT9

Computational Linguistics Volume 46, Number 4

visesanam samuccitam karta
visesanam _ hetuh
— - sasthi-
visesanam karma
viéesanam sambandah nishedhah
visesanam sambandhah

ramah paramodarah sumukhah sumahayasah mahabalah api ramah pituh adesat rajyar na ca aicchat
I I (1)) CER € ZEB 3 B ZEB TIEE I
) J]]

ot ol ool

Figure 4

Dependency analysis for the reference sentence. The kiraka tags as per the dependency tagging
scheme of Kulkarni, Pokar, and Shukl (2010) are shown as the edge labels in the figure. For
presentational clarity, the figure uses the word ordering from the anvaya of the verse. The
numbers in the boxes indicate the position of the word (from left) in the original word order in
the verse. The corresponding English translation for the tags are: Hetuh — Cause; Karma — Object;
Karta — Subject; Nisedhah — Negation; Sambandhah — Relation; Samuccitam — Conjunction;
Sasthisamsambandhah — Genitive or possessive relation; Visesanam — Adjectival modifier.'°

in Sanskrit tend to follow weak non-projectivity in their dependency analyzes, but the
same is not guaranteed for the word arrangements in verse order (Kulkarni et al. 2015).
Nevertheless, the dependency tree is not dependent on the configurational information
of the words in a sequence.

Syntactic Linearization. Commentators often reorder the words in a verse and place them
in the “most easily understandable prose order” (Tubb and Boose 2007, p. 150), as part
of writing a commentary for the verse. This converted prose order is called the anvaya
of the verse, and Apte (1965) describes it as the natural order or connection of words
in a sentence, construing grammatical order or relation. Such orderings tend to follow
a subject-object-verb word order (Hock 2015; Tubb and Boose 2007) and facilitate easier
verbal cognition of the sentence for others (Bhatta 1990). As previously mentioned, the
words in an anvaya tend to behave as constituents of phrases, implying that the phrases
are continuous (Gillon and Shaer 2005; Schaufele 1991). The objective of this task is to
predict the anvaya of a given verse. However, the word order in a verse is guided by the
metrical constraints, and has little to offer in rearranging the words to a prose order!!
(Scharf et al. 2015; Kulkarni et al. 2015). Hence we formulate the task as a syntactic
linearization task. Syntactic linearization is the task of ordering a bag of words (BoW)
into a grammatical and fluent sentence (Liu et al. 2015). In the standalone setting, we
consider a BoW, along with correct morphological analysis for each of the words in
the BoW, as the input. Figure 5 shows an instance of syntactic linearization from a
BoW. But a more realistic scenario is when the input is a verse in its original written
form, where several words may be present in the fused form due to sandhi. In the joint
setting, the task takes the verse in its original written form and jointly performs word
segmentation, morphological parsing, and linearization. The word order divergences
between the verse and the corresponding anvaya at a syntactic level can be assessed
using the following three aspects. First, Sanskrit sentences in their prose order tend
to follow SOV typology (Hock 2015). In the reference sentence, as shown in Figure 4,

10 “Sambandhah” translates to relation. This coarse-level tag is included in the tagging scheme, to assign to
those cases which require extra-syntactic factors for resolving the exact fine-grained relation. For a more
detailed understanding of the tagging scheme and karaka theory in general, please refer to Kulkarni and
Sharma (2019) or Kulkarni, Pokar, and Shukl (2010).

11 We use the terms anvaya and prose order interchangeably in this work.

794

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

ramah paramodarah sumukhah sumahayasah mahabalah api ramah pituh adesat rajyam na ca aicchat

Bgfg aicchat, api, adesat, ca, mahabalah, na, paramodarah, pituh, rajyam,
ramah, ramah, sumahayasah, sumukhah
Words

ramah api paramodarah sumukhah sumahayasah na ca aicchat pituh adesat rajyarh ramah mahabalah

Verse (After Sandhi)

ramo’pi paramodarassumukhassumahayasah na caicchatpituradesadrajyam ramo mahabalah

Figure 5

Instances of syntactic linearization and prosodification from a BoW input. In prosodification,
sandhi may be essential at specific word boundaries to adhere to metrical constraints. However,
sandhi is purely optional in sentences in prose order.

ra mo...modé ra..kha..hé.ééh.cai ccha..ré de da
dra jyam ra mo.hé..
a)
va [maki d bi ba Fa mo da rah 5 mu khah 5u ma ha ya $ah ha G ai ccha Epi fulk &
de $a t-ra jyarn ré-. hé..

b
Syllable weight - Heavy J

Figure 6
Syllable-level segmentation, along with the syllable weights for (a) verse in its original form; (b)
verse with segmented word boundaries.

ramah (numbered 12) is the karta (subject), rajyam (numbered 11) is the karma (object),
and both have the verb aicchat (numbered 8) as their head. As shown in Figure 5, the
prose order conforms to the SOV typology, whereas the verse order does not. Second,
dependency analysis of the prose constructions in Sanskrit tends to be planar, or weakly
non-projective (Kulkarni et al. 2015). Finally, the ordering in the prose is likely to follow
the principles of dependency locality theory (Gibson 1998, DLT). However, none of
these three claims can be established for a verse. As per DLT, the linear distance between
words linked in dependencies should be as short as possible (Gibson et al. 2019). As a
consequence of the DLT, the dependency length of the prose ordering tends to be shorter
than that of the verse ordering.

Prosodification. We define this task as imposition of prosodic structure to a BoW input.
We specifically use the metre information, based on Sanskrit prosody, to convert a BowW
input into a verse sequence. For a verse sequence, its metre can be deterministically
identified based on the sequence of syllable weights present in the sequence. The syl-
lable weight can either be laghu (light) or guru (heavy), decided deterministically using

795

Computational Linguistics Volume 46, Number 4

rule-based systems (Melnad, Goyal, and Scharf 2015). Our task is to convert a BoW input
to a sequence such that the generated sequence adheres to one of the prescribed metres
in Sanskrit prosody. While prosodification involves rearranging a BoW to a sequence,
the rearrangement in itself need not result in a sequence that adheres to a valid metrical
pattern. Given a sequence, the phonetic transformations due to sandhi may lead to
reduction in the number of syllables in the sequence or might alter the syllable weight of
one or more syllables. Although sandhi operations are optional when writing in prose,
a poet might be compelled to use sandhi in a verse to obtain a valid sequence of syllable
weights (i.e., a metrical pattern). Figure 5 shows the linear arrangement of the words
followed in the verse, as well as the final verse sequence where sandhi is performed
at specific word boundaries. While the former does not adhere to any known metre in
Sanskrit prosody, the latter belongs to the Anustubh meter. So in prosodification, our task
is not just confined to finding the correct permutation from a BoW, but also to determine
the junctures at which sandhi needs to be performed. As shown in Figure 6, the reference
sentence has 32 syllables in its original form (Figure 6(a)). Further, its syllable weight
pattern adheres to the Anustubh meter. However, the segmented form, as shown in
Figure 6(b)), results in a sequence of 34 syllables. The segmented sequence, with 34
syllables, does not adhere to any known meter pattern in Sanskrit prosody. Consider
the string, ramo’pi, a substring of the reference sentence. ramo’pi has 3 syllables, where
the syllables r@ and mo are heavy syllables and the remaining ’pi is a light syllable.
However, after word segmentation, the string becomes ramah api; this has 4 syllables,
where 77 is a heavy syllable, while mah, a, and pi are light syllables. This illustrates how
sandhi becomes a convenient tool for poets in verse generation and the decision of sandhi
is bound by the metre patterns. In the case of prose, since the generated sentence is not
bound to follow any metrical pattern, sandhi is purely optional.

3. Energy-Based Framework for Structured Prediction in Sanskrit

We define a search-based structured prediction framework using EBMs (LeCun et al.
2006) for performing numerous sequence-level NLP tasks in a free word order language
like Sanskrit. The framework essentially consists of three components, namely, a graph
generator, an edge vector generator, and a structured prediction model. A structured
prediction model can further be subdivided into input representation, learning, and
inference (Belanger 2017). The processed outputs from the graph generator and edge
vector generator form the input representation for the structured prediction model. For
all the tasks we consider, the graph generator takes input from the user, which can either
be a sequence or a BoW, and converts it into a graph structure. The edge vector generator
then generates feature vectors for the edges in the graph.

Formally, the aforementioned graph and feature vectors form the observed variable
X to the structured prediction model in our framework. The model performs inference
on X to predict an induced subgraph of X, which forms the output variable Y. Here,
X and Y are structured objects that can be factorized into multiple variables. Such
problems are challenging because the number of candidates in the output space is
exponential in the number of output variables that constitute the factored structure
of Y (Doppa, Fern, and Tadepalli 2014; Belanger 2017). EBMs enable non-probabilistic
training of structured models, thereby avoiding the need to normalize over Y. EBMs
can be used to design architectures that can incorporate known properties about the
language or the properties beneficial for the task, and then perform constrained opti-
mization over Y (Belanger, Yang, and McCallum 2017). In EBMs, a model is viewed as
an energy function that captures the dependencies between the observed and output

796

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

sundarah ramah ravanam hanti==Graph Generator =————p
User Input S ,O, -= O~\

Input /R Q :
[representation ! 0.0
A

l\)
R Energy- ~@. el
<_ ____________
/O O\ Based Model
O a<..>
RN b<..>
c<...
; d<....> <—— Edge Vector Generator
Predicted output Y e<...>

Edge vectors f < >

Figure 7
Overview of the EBM architecture. Dependency parsing for a four word sentence, sundarah
ramal ravanam hanti [Handsome Rama kills Ravana], is shown as the use-case.

variables, by associating a scalar energy to each configuration of the variables (LeCun
et al. 2006). The inference process consists of finding the values of output variable Y that
are most compatible with the observed variable X, such that the energy is minimized
(LeCun et al. 2007). Learning consists of finding an energy function that associates
lower energies to correct output structures and higher energies to the incorrect ones
(LeCun et al. 2007). The models we train are non-probabilistic models that use “margin
losses” (LeCun et al. 2006, §6) to create the energy gap between the correct structure and
incorrect structures.

An overview of our framework is shown in Figure 7. In the figure, dependency
parsing for a four word sentence S, sundarah ramah ravanarii hanti [Handsome Rama
kills Ravana], is shown for illustrative purposes. Similar to other graph-based parsing
approaches, S is first converted to a complete graph using graph generator. The edge
vectors are then generated such that each edge captures the distributional information
between the pair of nodes it connects. The graph structure and the edge vectors together
form the input (X) to the EBM, which uses an inference procedure to predict a structure
with the minimum energy (Y). For dependency parsing, Chu-Liu—-Edmond’s algorithm
becomes the inference procedure that searches for the minimum energy spanning tree.'?

We train eight models, five in standalone setting, and three in joint setting, for the
tasks mentioned in Section 2.1. While the learning procedure generally remains the
same across the tasks in the framework, the input representation and the inference
procedures are task-specific. Table 4 enumerates the setup for each of the tasks in terms
of user given input S, the observed variable X, the output variable Y, and the inference
applied. In our case, X will always be a graph X(Vx, Ex).!* Here, Vx forms the vertex

12 We search for the minimum energy spanning tree, instead of the maximum spanning tree as in the case of
McDonald et al. (2005b).

13 We overload the notations to indicate both the observed variable for the model as well as its
corresponding graph representation.

797

Computational Linguistics Volume 46, Number 4

Table 4
Task-wise description of user input S, observed variable of the model X, output variable of the
model Y, and the inference applied.

. Output Vertex
Task User Input Observed Variable Variable Attributes Inference
S X
Y A
Morphosyntactic tasks
. . Graph . Greedy maximal
Word ' A string with Vi = set of Ma{(lmal clique selection
Segmentation (WS) fused words words Clique heuristic.
. Graph . §3.3,
MorPhologlcal A sequence of Vy = spet of Ma>-<1ma1 Algorithm 1
Parsing (MP) segmented words Clique
words

Dependenc A sequence of Complete Graph Spannin. Chu-Liu-Edmonds

b . 4 segmented words, Vx =setof P & Chu and Liu (1965)
Parsing (DP) ; Tree A; = Stem
with morphemes words Edmonds (1967)
Ay = Inflected
. Complete Graph .

Syntactic A bag of words, Ve = sot of Hamiltonian form Beam Search

Linearization (SL) with morphemes Xw_or ds Path As = Morph.
Graph Tag

Joint A string with B Maximal .

WS + MP fused words Vx = set of Clique §3:3, Algorithm 1
words

. . . Graph . ., .

Joint A string with Ve = set of Steiner Prim’s algorithm

WS + MP + DP fused words x= Tree §3.3 Algorithm 2
words

Poletry to Prose ' A verse ‘ Graph Hamiltonian

Joint (adhering to metre) with Vx = set of Path Beam Search

WS + MP + SL fused words words

Prosody level task

Prosodic A bag of Cor‘?pletsee?ézfip h Hamiltonian ﬁl - Zgﬂzgi

. - x = o=
Linearization (PL) words syllables Path Weight Beam Search

set and Ex forms the edge set of the graph X. Each vertex encodes relevant linguistic
information about the component it represents. For morphosyntactic tasks, Vx is a
set of words, and syllables form the vertices for the prosody-level tasks. Every edge
e € Ex is then featurized using the “edge vector generator” module. A suitable inference
procedure gives a structured output Y* with the minimum energy, from a set of possible
solutions) (LeCun et al. 2006). Y* can be expressed as:

Y* = argmin £(Y, X)
Yey

where £ is the energy function and) is the set of possible solutions. Every element Y€ Y
is an induced subgraph of X. The design of the inference procedure further restricts
the type of induced subgraphs that can form a solution, and this is task-specific. For
instance, in word segmentation, we use the greedy maximal clique selection approach as
the inference (Section 3.3, Algorithm 1), thereby restricting) to be the set of all maximal
cliques in X. Similarly for dependency parsing,) is the set of all the directed spanning
trees in X. Ours is an arc-factored model and, hence, the energy of the structure pro-
duced by the inference procedure is factorized as the summation of energies of its edges
(McDonald et al. 2005b; Ishikawa 2011).

EN) =) €@

ecEy

798

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

Here ¢'is a non-negative real valued vector, for each edge e € Ex. The energy function
E() 1 [0,00)/8 — (=00,), takes non-negative real valued edge-vector and produces a
scalar energy value. The energy function is calculated using multilayer perceptrons,
with leaky ReLU activation function at the hidden layer. The training involves learning
an energy function that minimizes the energy of the ground-truth structure Y°T as
compared to other candidate structures in). We apply hinge loss (Taskar, Guestrin,
and Koller 2003; Altun, Johnson, and Hofmann 2003), a generalized margin loss, as the
loss function. The loss function takes the following general form:

L = max(0,m + E(YCT) — £(Y))

where m is the positive margin, £(Y®T) is the energy of the ground truth solution, and
E(Y) is the energy of the incorrect candidate with the lowest energy. This loss attempts
to make £(YCT) lower than £(Y), at least by m (LeCun et al. 2007, 2.1). Thus, unless
£(Y) has the energy value larger than £(Y®") by the margin m, loss is computed. The
margin is defined as a function that captures the structural divergences between the
ground truth and other candidate structures, such that energy of an incorrect can-
didate with a higher structural divergence should be much higher. For dependency
parsing, the margin m is the number of nodes with an incorrect head attached to them
(McDonald et al. 2005b; Carreras 2007; Bohnet 2010). Similarly, for all the tasks that
use beam-search as inference and for joint WS+MP+DP, the margin is the number of
incorrect local decisions, that is, incorrect edges. For word segmentation, morphological
parsing and also for joint WS+MP (Krishna et al. 2018), we predict a structure containing
a subset of nodes from the vertex set Vx of the input X. Here, the margin is the square
of the number of nodes in the prediction that are not in the ground truth, namely,

m = ‘VY} — VYcT|2

We minimize the given loss function using gradient descent. The network param-
eters are updated per sentence using back-propagation. The hinge loss function is not
differentiable at the origin. Hence, we use the subgradient method to update the net-
work parameters (Socher, Manning, and Ng 2010; Ratliff, Bagnell, and Zinkevich 2007).
Next, we discuss various components of our framework in further detail.

3.1 Graph Generator

The graph generator analyzes the user input S, and transforms S into a graph X(Vx, Ex).
An edge is added between every two vertices that can co-exist in a predicted output
structure. Hence the set Ex encodes the structural information between the vertices in
Vx. The edges are featurized to capture the distributional information between the pair
of vertices they connect. This feature vector is used to calculate the scalar energy for
the edge, which indicates the strength of the association between the node pairs. For
morphosyntactic tasks, we have word-level vertices in V. Here, each vertex is a word,
represented using the word’s inflected form, its stem, and its morphological tag. Sim-
ilarly, prosody-level tasks have syllable-level vertices, where each vertex encodes the
syllable and its syllable weight. Thus, a vertex v in the set Vx essentially represents some

799

Computational Linguistics Volume 46, Number 4

linguistic information encoded as a tuple of multiple attribute-value pairs.!* Formally
put, every (type of) task consists of a predetermined set of attributes, A, A;...A,.
We define A as the Cartesian product of these sets, A=A; xA;...xA,. Ev-
ery vertex encodes a tuple a € A, where a(i) indicates the value for the i at-
tribute. The vertices in Vx for morphosyntactic tasks form a 3-tuple, consisting of
(inflected form, stem, morphological tag), while that of a prosody-level task form a 2-tuple,
consisting of (syllable, syllable weight).

Morphosyntactic Tasks. As shown in Table 4, we experiment with seven different settings
for the morphosyntactic tasks, of which four are for standalone and three are for the joint
models. For standalone dependency parsing and syntactic linearization, the user input
S is expected to include the gold-standard inflected form, stem, and morphological tag
for each word in the sentence. This information is used directly to construct the vertices
and the aforementioned attribute tuples (3-tuple) for these vertices. However, for other
tasks, the user input S is expected to be a sequence. The sequence is then analyzed
using a lexicon-driven shallow parser, Sanskrit Heritage Reader (Goyal and Huet 2016,
SHR). SHR relies on finite state methods to exhaustively enumerate all possible word
splits for this sequence, based on rules of sandhi. As previously shown in Figure 3 (§2.1),
SHR not only generates possible candidate words, but it also provides the word-level
morphological analysis for each candidate word it generated. SHR is limited only by
the coverage of its lexicon’s vocabulary. The SHR analysis is then used to form the
vertex set Vx and 3-tuple of attributes for each vertex in V. For instance, SHR provides
four separate analyzes corresponding to the substring pitur in the reference sentence,
as shown in Figure 3. One analysis is for the compound component (in yellow box)
pitu, and the remaining three analyzes accommodate the homonymy and syncretism
expressed by the surface-form pitul as per Table 2.!°> Thus it will be represented by four
different nodes in the input graph X. For morphological parsing, as the task does not
involve word segmentation, the user input S will be a sequence of segmented words,
for which SHR will produce only the stem and tag analyzes. Summarily, for all the
seven morphosyntactic tasks, as shown in Table 4, each unique combination of the
aforementioned three attributes forms a vertex in X.1

The edges in X should connect those nodes that can co-occur in a solution. If two
candidate words are proposed as alternatives, such as the words ddesat and desat in
Figure 3, then they are defined as conflicting nodes. In Figure 3, we can find that all the
conflicting nodes do have overlapping spans in their word position with respect to the
input sequence. An exception to this will be those overlaps valid under the sandhi rules,
such as the pair of words ca and aichhat overlapping at the input character a in Figure 3.
The edge set Ex consists of edges between every pair of nodes that are not conflicting.
This implies that a complete graph will be formed for standalone dependency parsing
and syntactic linearization, as there will be no conflicting nodes in the input for both
tasks. For other tasks, our current design choice results in a denser graph structure
as input. Such a design choice may lead to a computationally costly inference, which
requires justification. A large number of texts in Sanskrit are written in verses. The

14 We additionally add unique identifiers to each of the vertices, in order to avoid confusion due to multiple
instances of the same tuple in the input.

15 The morphological analyzes for pituh are shown also in Figure 3, marked with numbered boxes 2 and 3.

16 We additionally consider the span of the word-form with respect to the input sequence (as a unique
identifier) to distinguish between words that are used more than once in the sentence. For instance, there
are two occurrences of the inflected-form ramah in the reference sentence used in §2.1.

800

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

ramo mahabalah Syllable level nodes
ramah mahabalah Merged nodes
ra —» mah —— ma ha ba —— lah
4 Syllable weight
b) '
mo Heavy

N n Light
ramo mahabalah &

Figure 8
Input representation for the prosody-level task. Nodes where there is no ambiguity in traversal
are merged to form a single node in the merged node representation.

relatively free word order structure of Sanskrit, especially in verses, motivated us to
design a denser graph structure. Such a construction is agnostic to the original word
order in a sentence and ignores any word order information present in the original
input. The denser graph structure we use enables us to capture the relation between
word pairs that might be grammatically related, even though the ordering between the
words may not be indicative of this.

Prosody-Level Task. Prosodification is the sole prosody-level task that we discuss in this
work. In this task, a BoW input is converted into a sequence that adheres to one of the
prescribed metres in Sanskrit. In addition to finding a suitable word order for the words
in the BoW, the task involves identifying the word boundaries where sandhi needs to
be applied. The phonetic transformation due to sandhi may alter the syllable patterns
of the sequence. For the task, the user given input S, namely, a BoW, is converted into
a syllable-level graph X(Vx, Ex). Here, each node encodes a syllable, representing the
surface-form of the syllable and its syllable weight. The syllables and the corresponding
weight of these syllables for each word are identified deterministically using the Metre
Identification Tool by Melnad, Goyal, and Scharf (2015). Figure 8(a) shows the syllable
level graph X for a two word BoW input, mahabalah and ramah. The vertex set Vx for
this input is initialized with all the syllables of both the words, as shown in the boxes
enclosed with dotted lines in Figure 8(a). The graph is augmented further, by keeping
the following three points in mind. First, the relative ordering of syllables in a word
should not be allowed to change, as that would lead to a different word altogether.
This is ensured by representing each word as a directed path, namely, ra—mah and
ma—hia— ba— lah. For a word, the path begins with the first syllable of the word and
terminates at the last syllable of the word. Second, it should be possible to predict any
possible permutation of words in the input BoW. To ensure this, we form directed edges
from the last syllable of every word to the first syllable of all the remaining words

801

Computational Linguistics Volume 46, Number 4

in the input.’” The current input can lead to two permutations, ramah mahabalah and

mahabalah ramah. To enable these two permutations, we add edges from the last syllable
nodes of each word, mah and lah, to the first syllable nodes of each word, ma and ra,
respectively. Third, the final sequence that adheres to a metre might have to undergo
sandhi at specific word boundaries. This leads to two more possible sequences, ramo
mahabalah and mahabalo ramah, one each from either of the two permutations. Hence,
two more syllable nodes are added, namely, mo and lo. mo is inserted between ri and ma
and o is inserted between ba and ra. The graph constructed after following all the three
points can be seen in Figure 8(a). The graph allows us to generate any valid permutation
of the input BoW, including all the possible sequences of each permutation that can be
generated due to sandhi. We use beam search as our inference procedure. However, if we
look into the directed path ma—ha— ba, the inference has no prediction to make here.
We will refer to such paths as unambiguous paths. The nodes in an unambiguous path
can be merged together to form a single node, and this helps to reduce the search space
size. The resultant graph after merging of unambiguous paths is shown in Figure 8(b).'®

3.2 Edge Vector Generator

Each edge in the edge set Ex is passed onto the edge vector generator to obtain its
feature vector. The edge vectors, along with the graph structure, form the input to the
arc-factored structured prediction model. Identifying a set of features that is beneficial
for each task is a challenge in itself. Morphologically rich languages, the state-of-the-
art models for dependency parsing (More et al. 2019; Seeker and Cetinoglu 2015), and
even morphological parsing (More and Tsarfaty 2016), rely on hand-crafted features to
obtain the feature function. In our case, we automate the learning of the feature function
by using Forward Stagewise Path Generation (FSPG) algorithm (Meng et al. 2015). The
edge vector generation in Krishna et al. (2018) for the joint word segmentation and
morphological parsing task was performed using Path Ranking Algorithm (Lao and
Cohen 2010, PRA). Both PRA and FSPG essentially map the problem of learning a
feature function to that of automatic learning of arbitrary length horn clauses (Gardner,
Talukdar, and Mitchell 2015). Both approaches follow a two-step process of feature
function learning and feature value computation. Feature function learning involves
automated generation and selection of a finite subset of features from a potentially
infinite feature space, which are beneficial to the task. For all the morphosyntactic tasks,
we learn a common feature function and a separate feature function is learned for the
prosody-level task. This is a one-time process that happens prior to the training of the
models. Feature-value computation involves finding the feature values for every edge,
and hence it happens every time an input is processed.

For feature value computation, both FSPG and PRA use Path Constrained Ran-
dom Walks (Lao and Cohen 2010, PCRW), a random walk-based inference approach.
However, both approaches differ in the feature function learning step. PRA requires
exhaustive enumeration of all the possible horn clauses in the feature space prior to

17 As a converse, this implies that the first syllable of each word receives an edge from the last syllable of all
the other words in the input.

18 In Figure 8(b), though lah—ra forms an unambiguous path, we will not merge the nodes in the path. This
is because the nodes in the path do not belong to the same word. Further, we generally have multiword
inputs and in such cases there will be more than one outgoing edges from the syllable nodes at the word
boundaries.

802

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

feature selection. An arbitrary limit on the maximum number of predicates possible in
a horn clause is set, to make the feature space finite. The feature enumeration step is
followed by feature selection and feature value computation steps. FSPG, on the other
hand, is a modified version of least angle regression, which uses greedy strategies for
feature selection, thereby avoiding the need for exhaustive enumeration of the features.
For a given edge, a feature should essentially capture the strength of the association
between the two nodes the edge connects, that is, how likely the two nodes are to co-
occur in a solution. We calculate the strength of the association between the nodes based
on distributional information obtained from a corpus. Each feature acts as a means to
calculate this information under specific linguistic constraints. We now elaborate on our
feature space, feature value computation approach using PCRW, and finally the feature
function learning approach using FSPG.

The Feature Space. We define the feature space F, from which the features, used for
forming the edge vectors, are filtered. Given an edge in Ex, let the corresponding
attribute tuples for the pair of nodes it connects be denoted as 4,4’ € A. For the mor-
phosyntactic tasks, an element in A (i.e., an attribute tuple) is a 3-tuple consisting
of (inflected form,stem, morphological tag), while for a prosody-level task it is a 2-tuple,
consisting of (syllable, syllable weight). Now, a(i),a’(j) are the i’ and j indexed attributes
of a and a’, respectively. A feature f € F can be defined as a triple (a(i), ¢, a’(j)), which
captures the distributional information between the attributes a(i) and a’(j), under the
presence of the constraint . Concretely, consider an edge connecting the node with
the attribute tuple (pituh, pitr, genitive|1|masculine)’® to a node with the attribute tuple
(ramah, rama, nominative|1|masculine). So, a feature (a(1), ¢, a’(2)) should capture the dis-
tributional information between the inflected form pituli and the stem rama, namely,
(pituh, ¢, rama), under the presence of the constraint ¢.

Formally, a feature, f = (a(i), ¥,d’(j)), is a tuple f = (a(i), (1), (2),p(k),a’(j))
of size k+2, where k can be any non-negative integer. Every intermediate entry
P(1), ¥(2),.....9(k) is an entry in the constraint tuple . For morphosyntactic tasks,
we use morphological constraints and for prosody-level tasks, we use subpatterns of a
metre (sequences of syllable weights) as these constraints. Because ¢ can also be an
empty tuple, it is possible to enumerate nine (four) different features for a morphosyn-
tactic task (prosody-level task), with no constraints. This comes from the possible
combinations of attributes from a,a’ € A. We refer to this type of feature as e-features,
(a(i), €,d'(j)). But, the total number of possible features can be infinite, as the morpho-
logical constraint ¢ can be an arbitrary length tuple. We now define ¢ as a member of a
countably infinite set MC where

MC:GMi

i=1

In other words, ¥ € MC, is an arbitrary-length tuple where each element comes
from a set M. M* indicates the k-ary Cartesian product on the set M. MC is the union
all such k-ary Cartesian products. In the prosody-level task, M is nothing but a set
consisting of all the syllable weights, which happens to be a set of cardinality 2 for
Sanskrit. MC consists of all the possible sequences of syllable weights, which are crucial

19 The morphological tag for the nominal is of the form case—number—gender.

803

Computational Linguistics Volume 46, Number 4

for metrical patterns. In morphosyntactic tasks, M is defined such that an element in it is
either a complete combination of categories, which leads to a valid morphological tag,
or a partially complete combination of grammatical categories. We define the complete
combination and partial combination as follows:

1. Complete combination (i.e., a morphological tag) — Any combination of
grammatical categories that forms a valid morphological tag for some
lexical category in the language is considered a complete combination. For
instance, a nominal is represented by case, gender, and number. Hence, the
combination genitive-masculine-singular forms a complete combination
for the lexical category Noun.

2. Partial combination — A combination of grammatical categories, which can
form a morphological class by adding one or more categories to it. For
instance, genitive-masculine is a partial combination that denotes all the
possible (three) complete combinations, which differ from each other only
in terms of the category number. However, genitivefirst person is not a
valid combination as it can never form a valid morphological tag. The
evidence for a partial combination in the corpus C can be obtained by
summing the evidence of all the morphological classes that it can form.

We obtain a total of 528 different entries in set M, where we consider 240 complete
combinations and 288 different partial grammatical category combinations. Here, we
consider all complete and partial combinations of a noun, verb, and those denoted by
“Others” in Table 2.

Thus, every feature is unique in two ways. One, given an edge, a feature cap-
tures only a partial information about the node pair the edge connects. This is be-
cause each feature contains only one attribute each from the nodes in the node pair
connected by the edge. For instance, consider two e-features, f; = (a(1), €,4’(2)), and
fo = (a(3),€,a'(1)), for the edge connecting the tuples (pituh, pitr, genitive|1|masculine)
and (ramah, rama, nominative|1|masculine). Then f; calculates the feature value based on
distributional information between pituh and rama, whereas f, calculates the feature
value between genitive|1|masculine and ramah. Two, it can additionally use a constraint
1 to limit the distributional context under which the association strength between a(i)
and a’(j) should be measured. For instance, (a(1), ¢, a’(2)) is different from (a(1), €,4’(2))
and results in different feature values, as the former has an additional constraint ¢ based
on which the distributional information is calculated. The distributional information is
calculated from a morphologically tagged corpus. We first construct a typed graph C
from the corpus, henceforth to be referred to as the corpus graph. Every node in C has
exactly one type. For morphosyntactic tasks, C has 530 types and the set of types is
defined as T = {inflected form, stem} U M. This implies that the type of a node in C can
either be a partial combination in M, a complete combination (morphological tag) in M,
an inflected form or a stem. The number of nodes of the types inflected form and stem
in C depends on the vocabulary of the corpus, as every unique stem and inflected-form
will form nodes in C. However, there will only be one node each in C for each type in
M. Prosody-level task has a corpus graph C with just 3 types, the surface-form of the
syllable and the two syllable weight values (i.e., “light” and “heavy”). The number of
nodes here will depend on the number of unique syllables present in the corpus; and
further, we have one node each for the types heavy and light. Based on the construction
of C, a feature f = (a(i), (1), P(2),.....¥(k),a’(j)) can be seen as a typed path in C,

804

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

where each node in the typed path corresponds to a type in T. This translates to a horn
clause Edge(a(i), (1)) A Edge(y(1), ¢(2)). ... A Edge(p(k — 1), 9 (k)) A Edge(yp(k),a’(j)) —
Edge(a(i),a’(j)), where Edge(x,y) is a predicate defined as “an edge from x to y.” Thus,
the features essentially denote different paths to reach from a(i) to a’(j) in C, and the
feature value for a given node pair will measure the strength of the path. Next, we
discuss the feature value computation process using PCRW.

Feature Score. We use PCRW (Lao and Cohen 2010) for calculating the feature values.
The feature values are calculated based on the distributional information from the
corpus graph C. Two nodes in C are connected, irrespective of their types, if they co-
occur in a sentence in the underlying corpus. Further, for every node in C, we calculate
its frequency of occurrence in the corpus. Such a formulation for C enables us to use
the PCRW for the calculation of feature values. For instance, consider an e-feature,
(a(i), €,a'(j)). Here, the attributes a(i) and a’(j) are nodes in C and because the feature
has no additional constraints, it simply forms an edge between the nodes a(i) and a’(j)
in C. The score for an e-feature translates to the co-occurrence probability of both the
attributes in sentences across the corpus. This is defined as Pco:

N g count(a(i),a’(f))

Peo(a(@la’(}) = count(@ ()

Now, the feature score calculation in the presence of morphological constraints ¢ € MC,
can be formulated as follows. For a feature (a(i), ,a’(j)), where ¢ = (1, Po, .. . Pp):

Py (a(i)la’ () = Pco(a(@)|y1) x (11 Pco(¢i1¢i)> x Peo(xla’ (/)

i=2...k

The feature essentially is a typed directed-path with multiple edges. The score for the
typed path is the product of co-occurrence probability of the edges in the typed path.
We next describe about FSPG, the approach we use for learning the feature function.

Learning of Feature Function. We use the FSPG Algorithm (Meng et al. 2015) for
the learning of feature function. The FSPG framework essentially is an extension of
Least Angle Regression approaches (LARS; Efron et al. 2004), which uses greedy strate-
gies for feature subset selection from a potentially infinite feature space. The approach
is used as a pretraining step, with an auxiliary task as Krishna et al. the objective for
the supervised regressor. We first define a regression model, where the ground truth
is obtained based on a measure of binary association between a pair of words in a
corpus, such as bigram, co-occurrence probability, or pointwise mutual information
(PMI; Krishna et al. 2018). The method iteratively chooses the most relevant feature
that can distinguish the strong associations from the weak associations. The choice for
the most relevant feature is made greedily, where the method chooses a feature with the
strongest correlation to the expected output (Meng et al. 2015). For this purpose, a vector
of residual values, 7, is constructed. The residual vector essentially is the element-wise
difference between the values of the ground truth examples and the predictions from
the current model, for the training data given as input (Meng et al. 2015). Now, for a
new feature to be added we create a vector 771, where we calculate the feature score for
the training data given as input. The cosine similarity between 7and 1 for each of such
features is calculated, and the feature with the highest cosine similarity is chosen as the

805

Computational Linguistics Volume 46, Number 4

feature to be added. The algorithm terminates until the residual vector 7 is negligible
(i-e., |1 < e).

Meng et al. (2015) adapt LARS to handle infinite feature spaces by proposing the
GreedyTree Algorithm (Meng et al. 2015, Algorithm 2), a greedy approach for finding
relevant features iteratively. Similar in spirit to the approaches used in Monte Carlo
Tree Search, the GreedyTree algorithm follows a best first search, which explores a
graph by expanding the most promising node in the graph (Gaudel and Sebag 2010). A
feature in our framework is defined as a tuple (a(i), ¢(1), $(2), ... p(k),a’(j)). This tuple
is represented as a path in the GreedyTree. Here, each element of the tuple is a node.
A path keeps expanding until a certain lower bound for a priority score is obtained.
After a feature with the highest priority is expanded, the tree structure is preserved for
subsequent feature generation passes (Meng et al. 2015). Krishna et al. (2018) perform
exhaustive enumeration of the features and then perform feature selection using PRA.
But in PRA the exhaustive enumeration was achieved in practice by limiting the max-
imum length of the feature tuple to an arbitrary length. In both PRA and FSPG, the
feature score is calculated using PCRW.

Vector Formation in the Merged Representation for Prosody-Level Tasks. In Section 3.1, we
discussed merging of nodes in “unambiguous paths” for graph construction in the
prosody-level task. Here nodes are formed at a syllable level, but the nodes in unam-
biguous paths of a word are merged together to form a single node. For instance, in
Figure 8(a), consider a path of two edges ma — ha — ba. In Figure 8(b), this was merged
to form a single node, mahaba. The edges ba — lah and ba — lo, will now become mahiba
— lah and mahaba — lo, respectively. Because the graph structure with the merged node
forms the input to the structured prediction model, the edge vector generator has to
generate the feature vectors for the edges in the graph with merged nodes. However, the
corpus graph C for the prosody-level task contains syllable-level nodes only. To obtain
the edge vector for an edge (e.g., mahaba — lo), we first obtain the edge vectors for all the
edges in the original graph structure without any merged nodes. In this case we obtain
three vectors, one each for the edges ma — ha, ha — ba, and ba— lo. We then form a new
vector by performing element wise max operation using all the edge vectors in the path
ma — ha — ba — lo. This operation is similar to the max-pooling operation. It implies
that the new vector will contain the maximum value at each dimension of the vector
among the three edge vectors in the path.

3.3 Inference Procedure

We use the inference procedure to find the output variable Y, the structure with the
minimum energy, where Y will always be an induced subgraph of the observed variable
X. However, the inference procedure is task specific and it determines the search space
of the possible output structures from which the structure with the minimum energy is
predicted. Table 4 mentions the different inference procedures our framework uses and
the specific structures they predict. For instance, Algorithm 2 is used for the joint task of
word-segmentation, morphological parsing, and dependency parsing. The procedure is
basically a slightly modified version of Prim’s algorithm, used here as an approximation
algorithm to find directed Steiner trees (Takahashi 1980). Similarly, Algorithm 1 is used
for the tasks of word segmentation, morphological parsing, and the joint task of word
segmentation and morphological parsing (Krishna et al. 2018). Here, we start the clique
selection with a single node. At any given instance, we loop through the nodes in
the graph that are not yet part of the clique. We add a vertex v to the clique if the

806

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

cumulative score of all the edges from v to every vertex that is already in the clique
is the minimum. We discard all the nodes that conflict with vertex v. As guaranteed
by our structured input graph construction, we obtain the maximal clique (exhaustive
segmentation) when there exist no more vertices to loop through. We perform this for
every node in the graph X. From all the cliques so obtained we select the maximal
clique with the least score. The approach does not guarantee enumeration of all the
cliques, but it is guaranteed that every node will be covered by at least one maximal
clique. These approximate algorithm-based inference procedures can be seen as a means
of sampling some potential minimum energy maximal cliques for the learning task.
EBMs do not require proper normalization of the solution space (LeCun et al. 2006), a
choice that enables the use of the heuristic. During inference, the greedy clique selection
heuristic is performed for every node in X. Though the run-time for this inference
is polynomial, it can still be computationally expensive. In practice, we find that our
inference procedure results in faster output for graphs with > 19 nodes in comparison
to the exponential time Bron-Kerbosch algorithm (Tomita, Tanaka, and Takahashi 2006;
Bron and Kerbosch 1973) for clique enumeration (McDonald et al. 2005a). We further
improve the run time of our inference procedure by paralleling the clique selection
procedure for each node on a separate thread.

We use Beam search as our inference for the linearization task both in standalone
and joint settings, and for the prosodification task. In the joint word segmentation,
morphological parsing, and syntactic linearization task, similar to the other joint tasks,
only a subset of the nodes from the input X will be in the predicted structure. In such
tasks, we encode the constraints in the inference such that once a node is selected,
its “conflicting nodes” are removed from the search space. This can be observed in
Step 4 of Algorithms 1 and 2 and this is used in the beam search inference for the
Joint WS+MP+SL task as well. “Conflicting” nodes are any pair of nodes that are
not connected by an edge between them. This follows from the construction of the
graph X, as the non-connectivity between the nodes implies that they are proposed
as alternative word suggestions in X. The removal of such nodes guarantees that the
structures predicted by these inference procedures will always result in an “exhaustive
segmentation.” In fact, the inference procedures for all the tasks, with an exception to the
dependency parsing task, are essentially approximation algorithms. For dependency
parsing, we use the exact search-based inference using the Edmonds—-Chu-Liu
algorithm for obtaining the minimum energy-directed spanning tree (McDonald et al.
2005b).

Algorithm 1 Greedy maximal clique selection heuristic

1: for each node v; in Vx do

2: Initialize a graph K;(V,, Ex,) with K; = X such that Vi, = Vx and Eg, = Ey.
Initialize a vertex set Vr, with v; as the only element in it. Remove all the vertices
that are conflicting with v; from K.

3: Add the vertex v; € (Vk, — Vr,) to V7, such that in K;, the sum of edge weights
for the edges starting from v; to all other vertices in Vr, is minimum.

4: Remove all the vertices that are conflicting with v; from V..
5: Repeat steps 34 till Vg, — V, = @
6: end for

807

Computational Linguistics Volume 46, Number 4

Algorithm 2 Approximation algorithm for finding directed Steiner Tree using Prim’s
algorithm originally proposed for Minimum Spanning Tree

1: for each node v; in Vx do

2: Initialize a tree T;(V7,, Et,) with v; as the only vertex in it. Initialize a graph
K;(Vk,, Ex,) with K; = X such that Vi, = Vx and Ex, = Ex. Remove all the vertices
that are conflicting with v; from K;.

3: Find the minimum weighted directed edge in Ex,, which has its source node in
one of the nodes in Vr, and target node in one of the nodes in (Vk, — Vr,). Add
this edge to Er, and its target node v; to V..

4: Remove all the vertexes conflicting with v; from V..
5: Repeat Steps 34 till Vg, — V1, = @
6: end for

3.4 Design Decisions

The configurations of the EBM we have discussed so far can be seen as language-
agnostic. The language-specific components come from the graph generator, where we
use SHR and MIT for the morphosyntactic and prosody-level tasks, respectively. The
framework treats the input as a graph without incorporating any language-specific
constraints. But, the architecture enables one to incorporate known properties about the
language and then perform constrained optimization over the structure to be predicted
(Belanger, Yang, and McCallum 2017). We experiment with EBM configurations where
we incorporate such language-specific constraints for the dependency parsing and syn-
tactic linearization. The linguistic information is made to use both in pruning the search
space and in filtering the candidates during the inference. Essentially, these constraints
can be seen as higher order features that capture constraints that span beyond a pair of
words. For dependency parsing we rely on the linguistic information from rule-based
dependency analyzers proposed for Sanskrit (Kulkarni, Pokar, and Shukl 2010; Kulkarni
and Ramakrishnamacharyulu 2013; Kulkarni 2013). In the language-agnostic version of
dependency parsing we form a complete graph as input. However, several of these
edges might not be valid as per the traditional Sanskrit grammar. Such invalid edges
can be determined and pruned using the linguistic information from the grammar,
already used in the aforementioned rule-based dependency parsers. For several MRLs,
including Sanskrit, morphological markers are indicative of the presence and also the
type of syntactic dependency between the words in a sentence (Nichols 1986; Seeker and
Kuhn 2013). Further, morphological markers may also be indicative of the agreement
that needs to be fulfilled between the words in a syntactic relation (Nichols 1986). For
instance, the subject and verb must agree on the “Number” grammatical category in
Sanskrit.

In Sanskrit, case markers of a nominal are indicative of the syntactic relations it
can have with a verb and in some case with other nominals. For instance, consider two
candidate nodes (adesat, adesa, ablative|l|masculine) and (ramah, rama, nominative
|1|masculine) in the graph X for the reference sentence. As these two candidate nodes are
not conflicting, they will have two edges between them, one in either direction. How-
ever, as per the traditional Sanskrit grammar, a nominal in nominative case cannot
form a valid syntactic relation with a nominal in ablative case. Hence, the edge can be

808

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

removed from X.* Summarily, we prune all those edges where no relation is possible
between the words as per Sanskrit grammar. The linguistically informed pruning can
happen not only prior to the inference, but also during the inference. Consider the words
ramah and sumukhah in the reference sentence. Both the nominals are in nominative
case, and hence both are eligible to have the verb aicchat as their head for the karta
(subject) relation. The linguistic pruning approach cannot distinguish one from the
other, as both have the same morphological information, and will keep both the edges
in the input. However, during inference, once one of these two edges is chosen as part
of the (partial) predicted structure, then the other edge can be pruned from the search
space. This is because the verb aicchat can form an edge with at most one nominal that
is in nominative case.”! We also incorporate knowledge that lies outside of morpho-
logical markers, such as roles of specific indeclinable words, as well as cases where an
indeclinable acts like a noun by taking a declension and forming noun—noun relations
(Kulkarni, Pokar, and Shukl 2010, §2.2). We add numerous constraints that mandate
or invalidate the presence of certain word-pair connections and relations in the final
solution, by virtue of presence of one or more relations in the solution (Kulkarni and
Ramakrishnamacharyulu 2013, §4). Such constraints are actively used in the linguistic
tradition of dependency analysis in Sanskrit (Kulkarni, Pokar, and Shukl 2010, §2.1).
We altogether incorporate about 120 constraints, which include rules and exceptions
that make use of morphological and morphosyntactic features, lexical lists, and lists of
indeclinables, and so forth.

We incorporate additional linguistic information for syntactic linearization as well
(Kulkarni et al. 2015; Scharf et al. 2015). Similar to the dependency parsing task, we
make use of the rule-based constraints for dependency analysis (Kulkarni, Pokar, and
Shukl 2010) to obtain a pruned search space. Further, on the pruned search space we
apply the principles of dependency locality (Gibson 1998; Gibson et al. 2013) and weak
non-projectivity (Kulkarni et al. 2015, §3.2 and §4.3) to filter out invalid partial candidate
sequences. We perform each of these during inference and apply these principles on
partially predicted sequences. The three steps we use are: (1) Take candidate (partial)
sequences from the beam, and evaluate if a dependency tree can be made using the
rule-based parser from Kulkarni (2013).?? (2) Based on the tree construction, we check
for violation of weak non-projectivity and minimum dependency length. (3) If any
of the sequence is more than double the minimum dependency length (Gildea and
Temperley 2010) and has more than 2 weak non-projectivity violations, then we discard
the candidate. For the partial sequence we always maintained a dummy root, to which
all the dangling nodes were connected to form a tree.>

4. Experiments

We present the results for experiments for all the tasks that we have described so far. We
first look into the performance of standalone tasks and compare them with other SoTA
baselines whenever possible and show the effectiveness of our model. Then we present

20 A possible exception to this rule is when one of the nominals is derived from a verb. In such cases, it is
possible that the nominal may act as a verb. In such a case, we do not prune the edge.

21 A possible exception to this might be for those verbs like gamayati, which have a causative marker in it.
As SHR is equipped with this analysis as well, we consider such cases as well.

22 While we used the same set of rules from Kulkarni (2013), we re-implement the parser.

23 The number for minimum dependency length and number of violations of weak non-projectivity were
decided empirically on the development data.

809

Computational Linguistics Volume 46, Number 4

the results for the joint formulation of the tasks and compare them to the pipeline-
based approaches. We further evaluate settings where linguistic characteristics specific
to Sanskrit are taken into consideration. Finally, to show the language-agnostic nature
of the framework, we present the results for Czech. We train two standalone models for
dependency parsing and morphological parsing and one model for joint MP+DP.

4.1 Data Set

We use the Digital Corpus of Sanskrit (DCS) (Hellwig 2010-2016), a morphologically
tagged corpus of Sanskrit, for all our experiments. The corpus mostly consists of texts
from epics and scientific domains such as medicine, astronomy, grammar, and so on
(Hellwig and Nehrdich 2018). DCS contains digitized works from periods that span over
3,000 years, and includes works written in prose, poetry, or a mix of both. This makes the
corpus a collection of texts that are stylistically, topically, and chronologically diverse. It
contains more than 66,000 unique lemmas and 3,200,000 tokens. DCS currently consists
of 561,596 lines of text, where every line has undergone word segmentation and mor-
phological parsing. We use a subset of 350,000 textlines from DCS for the construction
of the corpus graph. We mostly reuse the subset of DCS containing 350,000 textlines,
originally used by Krishna et al. (2016) for the word-segmentation task and later in
Krishna et al. (2018) for the joint WS+MP task. Some of these textlines were removed
from the original subset as they formed part of the train, test, or dev data set for the
newly introduced tasks in this work. However, to maintain the count at 350,000, new
textlines, sampled randomly from DCS, were added. The train, test, and development
split for each of the tasks discussed in this work is shown in Table 5.

Word Segmentation and Morphological Parsing Krishna et al. (2018) used a training
set of 8,200 textlines from DCS for training the joint model for word segmentation and
morphological parsing. In Krishna et al. (2018), the segmentation results were reported
on a data set of 4,200 sentences (termed as DCS4k), and results for morphological
parsing were reported on a data set of 9,576 sentences called the DCS10k. In this work,
we report the results of morphological parsing on the same DCS10k data set. However,
for word segmentation we use a subset of the DCS10k with 8,925 textlines, as about 650
textlines were either missing or had alignment issues with the data set used for one of
the baselines (Hellwig and Nehrdich 2018).

Table 5

Number of textlines used as the train, development, and test splits for the tasks in this work.
Task Train Dev Test

WS 8,200 2,000 8,925

MP 8,200 2,000 9,576

WS+MP 8,200 2,000 9,576

DP 12,320 2,000 1,300

WS+MP+DP 12,320 2,000 1,300

SL 10,000 2,000 3,017
WS+MP+SL 10,000 2,000 3,017

Prosodification 10,000 2,000 3,017

810

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

Dependency Parsing DCS is a morphologically tagged corpus, but does not contain
annotations for dependency parsing. We obtain 4,000 dependency tagged sentences
from the Sanskrit Treebank Corpus (Kulkarni 2013) and the corpus of Sisupalavadha.?*
From the collection, we choose a subset of 1,300 sentences as our test data set. For
training, we do not use any gold standard sentences directly, but obtain 12,320 sentences
by augmenting the remaining 2,700 gold standard sentences. Dependency parsing is
the only task where we do not use any gold standard data for training. Given the
restricted settings under which we train the model, we make sure that every word in
the augmented data and the test data (from the original data) has its stem present
in the corpus graph C. However, 13.81% of the inflected forms are out of vocabulary
in C. For obtaining the 12,320 augmented sentences, we relied on standard data aug-
mentation approaches followed generally in text classification, semantic role labeling,
and dependency parsing. In particular, we perform synonym replacement® of at most
one word per sentence (Zhang, Zhao, and LeCun 2015), such that the stem for a new
word is found in DCS. We additionally perform sentence simplifications (Vickrey and
Koller 2008), originally proposed for SRL, and sentence cropping approaches (Sahin
and Steedman 2018) proposed for dependency parsing. In sentence cropping, we make
sure that every cropped sentence still maintains at least one subject, object, and verb
and we primarily target cropping of non subject/object words (and their subtrees) in
the sentences. While augmentation may lead to sentence-level semantic shifts, it will
still preserve local syntactic tags (Sahin and Steedman 2018). We altogether obtain a
set of 20,000 augmented sentences. We further apply linguistic constraints based on the
principles of verbal cognition (Bhatta 1990) and Karaka (Sanskrit-specific dependency
analysis) (Kulkarni and Ramakrishnamacharyulu 2013) and filter 12,320 sentences from
the 20,000 augmented sentences. We use the filtered set of sentences as our training data,
and each sentence has an average length of 6.42 words per sentence. This is comparable
to the average number of words in a sentence in the test data, which is 7.03. The test data
is devoid of any augmentations, and is in its original form. We also filter 2,000 sentences
from the remaining sentences (7,680 of 20,000) to use as development data.

Syntactic Linearization and Prosodification We obtain 17,017 pair of verses and their
corresponding anvaya from the epic Ramayana from Srinivasa Aiyankar (1910).%°
Krishna et al. (2019), the current state of the art in syntactic linearization in Sanskrit, use
a test set of 3,017 textlines from this data set. We use the same test data for all these three
tasks. From the remaining data, we use the 10,000 textlines as training data. Standalone
syntactic linearization takes a BoW as input and predicts the anvaya. Prosodic lineariza-
tion takes a BoW as input and predicts the verse. Joint WS+MP+SL takes a verse as input
and predicts the anvaya.”’ We compare our EBM configurations with the SoTA neural
baselines for the standalone tasks. These baselines are provided with additional data for
their training. For syntactic linearization, we use 95,000 prose order sentences crawled
from Wikipedia by Krishna et al. (2019). Similarly for prosodification, we use 100,000
verses from DCS and Vedabase.?®

24 http://sanskrit.uohyd.ac.in/scl/e-readers/shishu/#/home.

25 We use the lexical networks Indowordnet (Kulkarni et al. 2010) and Amarakosa (Nair and Kulkarni 2010).

26 The 17,017 verse-anvaya pairs are filtered from 18,250 verse-anvaya pairs available at
http://bit.ly/ramayanapairs. The rest of them are ignored due to word-level mis-alignments between
verses and their corresponding anvaya.

27 The input, i.e., verse, will retain the original written form, including fused word-forms due to sandhi. The
anvaya will be a sequence of segmented words.

28 https://vedabase.io/en/.

811

http://sanskrit.uohyd.ac.in/scl/e-readers/shishu/#/home
http://bit.ly/ramayanapairs
https://vedabase.io/en/

Computational Linguistics

4.2 Baselines

Table 6 shows the list of baseline systems and the various configurations of our EBM
framework, along with the tasks for which these systems are used. We provide a brief

description of each of the baseline systems.

4.2.1 Word Segmentation.

Supervised PCRW (Sup-PCRW) Krishna et al. (2016). Similar to the EBM-framework, the
model uses the graph output from SHR. It treats the problem as an iterative query
expansion problem, where a greedy heuristic approach is used to select candidate nodes

Volume 46, Number 4

Table 6

Different baseline systems and configurations of EBM used in various tasks. The tick mark (v')
indicates that the system is used for the task as a baseline. Star (*¢) indicates that the system
reports the best score for the task. The naming for EBM configurations is as follows: The
inference procedure used, the term “EBM,” followed by the type of the edge vector generation
marked by its first character (PRA/FSPG). Here “Tree-EBM*-F” and “Beam-EBM*-F” are the two

EBM configurations with language-specific augmentations as described in Section 3.4.

System Tasks
5 3
+ F
ol [an ol
= = =
PP I I
2 =0 % 2 2 2 &
EG-CRF v v v
Sup-PCRW (Krishna et al. 2016) v
rcNN-SS (Hellwig and Nehrdich 2018) v
FCRF (Malaviya, Gormley, and Neubig 2018) v
SeqGen (Tkachenko and Sirts 2018) v
NeurDP (Dozat and Manning 2017) v
YAP (More et al. 2019) v
EasyFirst (Goldberg and Elhadad 2010) v
LinLSTM (Schmaltz, Rush, and Shieber 2016) v v
BSO (Wiseman and Rush 2016) v v
kavya guru (Krishna et al. 2019) v v
Energy-Based Model (EBM) Configurations
VL-EBM v v v
BL-EBM v v v
Prim-EBM-P v v v v
Prim-EBM-F b S
Tree-EBM-P v
Tree-EBM-F v
Tree-EBM*-F (S
Clig-EBM-P v v v
Clig-EBM-F LS *
Beam-EBM-F Ok
Beam-EBM*-F LS
ATSP-EBM-F v v

812

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

based on the edge weights. The edges are featurized with hand-crafted morphological
features. The feature values are calculated using PCRW (Lao and Cohen 2010),
EdgeGraphCRF (EG-CRF). This is a second order CRF model (Miiller and Behnke 2014;
Ishikawa 2011) that also uses the SHR output graph X as the input to the system. Every
node is represented with fastText (Bojanowski et al. 2017) word embeddings, trained
with inflected forms of the words from the combined data set of Bhagavatam from
Vedabase and the DCS data set (Hellwig 2010-2016).2° The edges are featurized with
the PRA vectors. We used 1-slack structured SVM for training. QPBO (Rother et al. 2007)
inference approach provided the best results for the model.

Char RNN-CNN Seq-Tagger (rcNN-SS). Hellwig and Nehrdich (2018) propose a sequence
tagger that uses character-level recurrences and convolutions to train a Sanskrit word
segmenter. The best performing model of theirs passes characters of the sequence
through a bidirectional RNN and then performs convolution operations on the resulting
embedding. Additionally, shortcut connections (Bishop 1995) are applied both from the
input character embeddings and the RNN output to the resulting embeddings.
Lattice-EBM. This is an energy-based sequence labeling model, where the input is a
lattice (Wolf and Woods 1977) similar to that of Kudo (2006). The model can be seen
as a special case of Graph Transformer Networks (LeCun et al. 1998; LeCun et al. 2007).
In the lattice structure, the candidate links only to its adjacent nodes in an exhaustive
segmentation. We also generate edge vectors for the dummy nodes that act as the start
and end markers in the lattice. We use the PRA vectors as the edge vectors for the
model. During prediction, we have to find the best path from the lattice that minimizes
the sentence score. Here, we consider two variants of Lattice-EBM. VL-EBM uses the
discriminative forward training approach (Collobert et al. 2011) with the standard hinge
loss. The second variant BL-EBM uses multimargin loss (Edunov et al. 2018) instead
of the hinge loss. Here, we employ beam search to generate multiple candidates as
required by the loss.

Prim-EBM-P. This is also a configuration of the EBM, where the model uses the input
graph X from SHR, PRA vectors for the edges, and modified Prim’s algorithm as the
inference. The inference procedure searches for a Steiner Tree (Takahashi 1980) from the
input graph X. Prim’s algorithm acts as an approximation algorithm to find the Directed
Steiner tree (Voss 1993). The Steiner tree essentially spans over a subset of nodes, and
by graph construction it is guaranteed that the inference procedure will produce an
exhaustive segmentation.

Cligue-EBM (Clig-EBM-P/Clig-EBM-F). This is the proposed EBM configuration for the
word segmentation (and morphological parsing) problem. Similar to other Prim-EBM-P,
the configuration uses the input X obtained from SHR. Here we use our greedy maximal
clique selection heuristic, as shown in Algorithm 1, as the inference procedure. In
Krishna et al. (2018) the configuration used PRA edge vectors, and is denoted as Clig-
EBM-P. Here, we additionally introduce a variant Clig-EBM-F that uses FSPG-based
edge vectors for the task. The model works exactly the same as Prim-EBM-P but differs
only in the inference procedure used.

4.2.2 Morphological Parsing.

Neural Factorial CRF (FCRF). Malaviya, Gormley, and Neubig (2018) proposed a Factorial
CRF model (Sutton, McCallum, and Rohanimanesh 2007) that relies on an LSTM-based

29 https://vedabase.io/en/library/sb/.

813

https://vedabase.io/en/library/sb/

Computational Linguistics Volume 46, Number 4

sequence model for its feature representation. The model predicts a composite label for
each word in the sequence, where a label is a set of tags, one for each of the grammatical
category. Here, co-temporal factors are defined to capture the dependencies between
various tags of the same word. To capture the dependencies across the words, there
exist factors between tags of the same type for the adjacent words, thereby forming a
linear chain.

Sequence Generation Model (SeqGen). The model, proposed in Tkachenko and Sirts (2018),
also treats the label as a composite label. Here, a char-BiLSTM is used to obtain word-
embeddings, which are then passed on to a word-level BiLSTM as the input features
(Lample et al. 2016; Heigold, Neumann, and van Genabith 2017). The model, inspired
from seq2seq models, uses an LSTM decoder to predict the grammatical categories one
after the other, based on the previous predictions for each word.

Energy-Based and CRF-Based Configurations. All the configurations of the EBMs, in addi-
tion to Edge Graph CRF, which is used for the word segmentation task (Section 4.2.1),
are used in the morphological parsing task as well. These models predict all the mor-
phemes of a given word, including the stem of a word. But the aforementioned neural
baselines only predict the morphological label of a word and not the stem. In these
models, we use segmented sentences obtained from the gold standard data in DCS, as
input to the SHR. SHR does not analyze for sandhi and only performs morphological
analysis of the words involved. This forms the input graph X for these models.

4.2.3 Dependency Parsing.

Yet Another Parser (YAP). The model is a language-agnostic dependency parser for
morphologically rich languages (More et al. 2019). The transition-based framework
currently reports the best score for dependency parsing and for the joint task of mor-
phological analysis and dependency parsing in Hebrew. Further, the framework was
experimented on multiple languages for dependency parsing (Seker, More, and Tsarfaty
2018).

Easy-First Parser (EasyFirst). The model proposed by Goldberg and Elhadad (2010) is
a non-directional greedy search procedure used for dependency parsing. The parsing
procedure is initialized with all the words in a sentence. The system iteratively forms
partial structures by merging existing partial structures, where only the head partial
structure is retained in the list of structures available for merging. The procedure
terminates when there is exactly one structure remaining, which corresponds to the root
of the sentence.

Neural Graph-Based Dependency Parsers (NeurDP). We experiment with two neural de-
pendency parsers, the deep biaffine attention-based model of Dozat and Manning (2017)
and the neural graph-based dependency parser based on Kiperwasser and Goldberg
(2016a). Both the models rely on LSTM-based feature extractors for the parsing.

EBM Configurations. Our EBM configurations are basically graph-based parsing
framework for dependency parsing. Here, similar to McDonald et al. (2005b), we use
Edmond-Chu-Liu’s algorithm for finding arborescence (directed spanning tree) of min-
imum weight.*® We experiment with three variations: Tree-EBM-P, Tree-EBM-F, and
Tree-EBM*-F. Tree-EBM-P uses PRA vectors as the edge vectors, and Tree-EBM-F uses
the edge vectors using FSPG. Here, Tree-EBM*-F incorporates the language-specific

30 While McDonald et al. (2005b) used the approach to find the maximum weighted arborescence, we use
this to find the minimum weighted arborescence.

814

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

augmentations as discussed in section 3.4. For all our EBM models, the label prediction
is fully integrated with our parsing procedure, similar to Kiperwasser and Goldberg
(2016b).

4.2.4 Syntactic Linearization and Prosodification.

LSTM-Based Linearization Model (LinLSTM). The model (Schmaltz, Rush, and Shieber
2016) essentially is a neural language model (Bengio et al. 2003) with a beam search—
based decoder. First, a language model is learned by feeding an LSTM-based neural
network with ground truth sequences, namely, sequences with desired word order.
Beam search is used for decoding from the language model. We use a beam size of
512, as reported in Schmaltz, Rush, and Shieber (2016), for all our experiments. This
model currently reports the best result in the word ordering task for English (Hasler
et al. 2017), even outperforming other syntax-based linearization models.

Seq2Seq Beam Search Optimization (BSO). This is a seq2seq model (Wiseman and Rush
2016), where the training procedure defines a loss function in terms of errors made dur-
ing beam search. The beam always keeps multiple top-k possible sequence hypotheses
as possible solutions. The loss penalizes the function when the gold sequence falls off
the beam during training. The model during inference is constrained to predict only
from the words that are present in the input at the encoder side. Additionally, the model
is further constrained to predict only from the entries in the input that are yet to be
predicted. BSO has been shown to outperform LinLSTM by a huge margin, in English,
when both the models used the same beam size for decoding (Wiseman and Rush 2016).
We use a beam size of 15 and 14 for testing and training, respectively, the setting with
the best reported scores in Wiseman and Rush (2016).

kavya guru. This is a seq2seq model (Krishna et al. 2019) with gated CNNs (Gehring
et al. 2017), using a sequence-level loss (Edunov et al. 2018). The model uses a weighted
combination of expected risk minimization and the token-level log likelihood with label
smoothing as loss. Additionally, the model uses two pretraining components: One for
learning task-specific embeddings, formed by a weighted combination of pretrained
word embeddings (Kiela, Wang, and Cho 2018); and, second, a component for generat-
ing multiple ordering hypotheses (Wang, Chang, and Mansur 2018) to be used as input
to the seq2seq component. The model currently reports the state-of-the-art results for
syntactic linearization in Sanskrit.

EBM-Based Configurations (Beam-EBM-F/ATSP-EBM-F). Here, for both the syntax-level
and prosody-level linearization tasks, we use the exact same EBM configurations. The
only difference will be in the input graph representation. For the tasks, we experimented
with two different inference procedures. Horvat and Byrne (2014) proposed to solve
the task of linearization as that of solving the Asymmetric Traveling Salesman Problem
(ATSP) over a graph. We incorporate the same as our inference procedure in the ATSP-
EBM-F configuration. Inspired from the works of Schmaltz, Rush, and Shieber (2016)
along with Wiseman and Rush (2016), we use beam search as the approximate inference
in the Beam-EBM-F procedure. We also report the performance score for Beam-EBM*-
F, which incorporates the language-specific augmentations as discussed in Section 3.4.
This configuration is used only for the syntactic linearization task.

4.2.5 Edge Vector Generation.
Path Ranking Algorithm (PRA). In Krishna et al. (2018), the authors use the PRA (Lao

and Cohen 2010) for learning the feature function. PRA is a 2-step pipeline approach,

815

Computational Linguistics Volume 46, Number 4

where the features are first exhaustively enumerated, and then filtered in the next step.
In PRA, it is possible to have a morphological constraint tuple ¢ of any cardinality.
However, because an exhaustive enumeration of all possible features is required in
PRA, the cardinality of the constraint tuples is typically restricted by an arbitrary upper
bound. Krishna et al. (2018) used two different settings, one where the upper bound was
setto 1 (i.e., || < 1), and another where the upper bound was set to 2 (i.e., || < 2). The
feature selection was performed using recursive feature elimination (Kohavi and John
1997; Guyon et al. 2002, RFE) and Mutual Information Regression (Kraskov, Stégbauer,
and Grassberger 2004, MIR). These supervised approaches used PMI and word-pair
co-occurrence probability (Co-Occ) as the labels for the feature selection. Altogether,
this resulted in eight different configurations of feature sets using PRA. Of the eight,
the one that used MIR with co-occurrence probability as the label on a set of features
with an upper bound of || <1 reported the best performance. We use this as our
default configuration for the PRA. The PRA-based edge vectors are generated only for
morphosyntactic tasks; hence all the aforementioned settings are valid only for edge
vectors used in morphosyntactic tasks.

Forward Stagewise Path Generation (FSPG). This is the feature learning approach we
elaborated in Section 3.2. It does not require exhaustive enumeration of features and
uses LARS for feature selection. Word-pair co-occurrence probability is used as the
supervised label for LARS.

4.3 Results

Hyperparameters. We report all our experiments based on the hyperparameter settings
shown in Table 7. We use separate hyperparameter settings for prosodification, and a
common hyperparameter setting was used for all the morphosyntactic tasks. Hyper-
parameter tuning for morphosyntactic tasks was performed originally on the word
segmentation task. We perform random search for the hyperparameter tuning and
perform 100 iterations each for morphosyntactic and prosodic tasks. The hidden layer
size was varied at a step size of 50—that is,{50, 100, ...800,850} for morphosyntactic
tasks and {50, 100, ...500} for prosodification. Margin loss discount, a constant between
0 and 1 multiplied to the margin, and dropout were varied at a step size of 0.1. Simi-
larly, the learning rate was varied in multiples of 0.1 {1 x 107°%,1 x 107%,...1 x 107%}.
Additionally for each of the morphosyntactic tasks, we change the values of one hyper-
parameter at a time and observe if that leads to any improvement in the results, from
the ones reported in Tables 8-15 for those tasks. We find that increasing the margin
loss discount leads to marginal improvements for the syntactic linearization task, and
leads to a 1.2 BLEU improvement when the margin loss discount is 1, that is, when no
discount is applied. Keeping the hidden layer size to 750 leads to a 0.5 UAS and 0.4
LAS improvement for Tree-EBM*-F for dependency parsing, though no particular trend
could be observed in varying the hidden layer size. Similarly, setting the dropout to 0.2
leads to an improvement 0.9 F-Score for the joint WS+MP+DP task.

Evaluation Metrics. For the standalone tasks, we report the standard metrics. For de-
pendency parsing, we use UAS and LAS. Similarly for linearization tasks, we follow
Krishna et al. (2019) and report the performance of the systems using BLEU (Papineni
et al. 2002), Kendall’s Tau (7) score (Lapata 2003), and perfect match score, namely, the
percentage of sentences with exact match to the input. For WS, MP, and the joint task of
WS and MP, we use macro-averaged Precision, Recall, and F-Score (Krishna et al. 2018).
We adopt the same metric for the joint task of WS, MP, and dependency parsing. As

816

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

Table 7
Hyperparameter settings for all the EBM models, based on which the results in Tables 8-15 are
reported. The hyper parameter settings are tuned for the task word segmentation.

System Morphosyntactic Tasks ~ Prosodic Tasks
Hidden Layer Size 650 400
Learning rate 1x107% 1x107%
Margin Loss Discount 0.3 1
Dropout 0.4 0.5

More et al. (2019) previously noted, the use of standard metrics for dependency parsing
(i.e., UAS and LAS) need not be feasible in the joint setting due to the possibility of
structural mismatch between the prediction and the ground-truth. For the same reason,
we do not use the Kendall’s Tau score for reporting the performance of the joint task of
WS, MP, and syntactic linearization. Instead, we use the longest common subsequence
ratio for this joint task, along with BLEU and perfect match scores.

Tables 8-12 show the results for each of the five standalone tasks as discussed in
Section 2.1. In all the tasks, we can find that our models, using the EBM framework,
report the best performance for the tasks. We elaborate the results for each of the tasks
and compare the system performance with the baseline models.

Word Segmentation. Table 8 shows the results for the word segmentation task. The pro-
posed system, Clig-EBM-F, reports the best score in terms of macro average Precision,
Recall, and F-Score for the task. Here, rcNN-SS (Hellwig and Nehrdich 2018) scores the
best when it comes to perfect match score. Clig-EBM-F reports a percentage improve-
ment of 1.15% over rcNN-SS in F-Score.’! The system named as Clig-EBM-P was the
system that was proposed in Krishna et al. (2018). Previously, the word-segmentation
systems rcNN-SS and Clig-EBM-P showed that they both outperform the then state
of the art, a seq2seq model from Reddy et al. (2018). But a comparison between both
these systems was not available. Here, we find that the rcNN-SS outperforms Clig-
EBM-P with a percentage improvement of 1.82% in terms of F-score (Section 4.3). But,
both Clig-EBM-P and the best performing model Clig-EBM-F were trained on 8,200
sentences, which is just about 1.5% of the training data (> 0.55 million) used in rcNN-SS.

All the competing systems for word segmentation except for rcNN-SS use the
linguistically refined output from SHR as their search space to predict the final solution.
EG-CRF was trained on 10,000 sentences, whereas V-L-EBM and B-L-EBM were trained
on 9,000 sentences, after which the models became saturated. The Prim-EBM-P, Clig-
EBM-P/F all use a training data of 8,200 sentences. Being a second-order CRF model
(Ishikawa 2011), EdgeGraphCRF does not take the entire sentence context into account.
Also, the QBPO inference does not guarantee prediction of exhaustive segmentation. In
fact, 85.16% of the sentences predicted by the model do not correspond to an “exhaustive
segmentation.” Prediction of an exhaustive segmentation is guaranteed in all our EBM

31 Following Dror et al. (2018), we perform pairwise t-tests between the reported scores for these systems,
and find that the scores are statistically significant (p <0.05).

817

Computational Linguistics Volume 46, Number 4

Table 8 Table 9

Word segmentation results. Morphological parsing results.

System P R F PM (%) System P R F
Sup-PCRW 7337 8284 7782 3132 SeqGen 81.79 81.79 81.79
EG-CRF 7766 7981 7872 4046 FCRF 80.26 80.26 80.26
VL-EBM 84.11 8694 855 56.52 EG-CRF 7948 824 8091
BL-EBM 8712 8737 8724 63.17 VL-EBM 79.67 79.67 79.67
Prim-EBM-P 8879 9137 90.06 6422 BL-EBM 8142 8142 81.42
Clig-EBM-P 9448 96.52 9549 8157 Prim-EBM-P 8511 85.11 85.11
rcNN-S5 9715 9741 9723 8775 Clig-EBM-P 9352 93.52 93.52

rcNN-SS-350k 96.83 97.07 96.9 86.59 Clig-EBM-F 9533 95.33 95.33
Clig-EBM-F 98.04 98.67 9835 8525

models (also in supervised PCRW) by virtue of the inference procedure we use. Clig-
EBM-P and Cliq-EBM-F differ only in the vector generation module used. Between these
two configurations, the use of FSPG-based vectors result in a percentage improvement
of about 3% in the results (Section 4.3). In the lattice-based configurations, V-L-EBM-P
and B-L-EBM-P, the edges are formed only to position-wise immediate nodes in an
exhaustive segmentation. Also the inference procedures process the input sequentially,
from left-to-right. The approach substantially reduces the performance of the system.
This justifies the additional cost incurred due to use of our non-sequential inference
procedure. Similarly, Prim-EBM-P performs substantially worse as compared to Clig-
EBM-P. Here, the latter considers all the pairwise potentials between the inputs, while
the former does not.

Morphological Parsing. Table 9 shows the results for morphological parsing in San-
skrit. We find that similar to word segmentation, our proposed EBM configuration,
Clig-EBM-F provides the state-of-the-art results for morphological parsing. Currently,
there exists no morphological parser that performs both analysis and disambiguation of
morphemes in Sanskrit, leaving aside the Clig-EBM-P configuration reported in Krishna
et al. (2018). Instead, as baselines, we utilize two widely used neural sequence taggers
that reported state-of-the-art results on multiple morphologically rich languages, the
FCRF (Malaviya, Gormley, and Neubig 2018) and SeqGen (Tkachenko and Sirts 2018).
But they predict only the morphological tag of each word. For all the other models we
predict all the morphemes of a word including its stem. All the EBM configurations we
use for morphological parsing are used for the word-segmentation task as well.
Among the models with a sequential processing of input, SeqGen reports the best
F-Score of 81.79. Our lattice-based EBM configuration reports an F-Score of 81.42%, close
to SeqGen. Clig-EBM-F, our best performing model, reports a percentage improvement
of 16.55% over FCRF. All the EBM configurations with graph-based input representation
and a non-sequential inference procedure in general report a score that is significantly
greater than the sequential models. Further, Clig-EBM-F reports a percentage improve-
ment of about 2% in comparison to Clig-EBM-P. All our EBM configurations used
the same amount of training data as used in word segmentation, which is less than
10,000. At the same time, the neural sequence taggers were trained on a data set of

818

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

50,000 sentences. For morphological parsing in standalone setting, the word segmented
sequence is used as input. Due to this, the system’s precision will be the same as its
recall for all the systems, except for EG-CRF. For EG-CRF, the QBPO inference it uses
does not guarantee prediction of an exhaustive segmentation, and hence the number of
predictions need not match with the number of words in the ground truth. Hence, the
precision and recall can be different.

Dependency Parsing. Table 12 shows the results for dependency parsing in Sanskrit.
Here, our energy-based model configurations outperform the other baseline models
for the task. Among the EBM configurations, Tree-EBM*-F reports the best score of
85.32 UAS and 83.9 LAS. Tree-EBM*-F is an EBM configuration where we incorporate
language-specific knowledge as constraints, as discussed in Section 3.4. We find that the
configuration reports percentage improvement of 3.23% from the reported performance
of Tree-EBM-F (UAS of 82.65). Further, we find that the performance improvements in
LAS are much more substantial in Tree-EBM*-F, with 5.86%, as compared to LAS of
79.28 of Tree-EBM-F. Thus, incorporating linguistic constraints in Tree-EBM*-F helped
much more in disambiguating between the edge labels. The highest gain, in absolute
numbers, is shown by karma (object) relation. Tree-EBM*-F gets 1,076 cases of 1,153 cases
correctly, both in terms of predicting the correct head and label, while Tree-EBM-F only
has 861 cases correct. Tree-EBM-F had 292 incorrect predictions for karma relation; in 62
of these cases, a dependent node was assigned an incorrect head with which no relation
is possible in Sanskrit. Such cases would get pruned prior to inference in Tree-EBM*-F,
due to the linguistic information. Four relations, apadana, prayojanam, tadarthyam, and
sampradanam, had less than 50% recall in Tree-EBM-F, while Tree-EBM*-F has a recall
greater than 50% for all the 22 relations. The lowest recall in Tree-EBM*-F is 56% for
tadarthyam. It happens to be the lowest occurring relation with just 25 occurrences,
and had a recall of just 24% in Tree-EBM-F. Among the aforementioned four relations,
prayojanam has the highest occurrence (130), of which the number of correct predictions
increased from 54 to 82 (63.08%).

YAP (More et al. 2019) reports an UAS of 76.69 and LAS of 73.02, lower than the least
performing EBM configuration, Tree-EBM-P. YAP currently reports the state-of-the-art
score for dependency parsing in Hebrew, outperforming previous models including
that of Seeker and Cetinoglu (2015). It may not be fair to compare YAP with Tree-
EBM*-F because of the latter’s advantage in explicit linguistic information. But as a fair
comparison of two language-agnostic dependency parsing models, Tree-EBM-F reports
a performance improvement of about 7.77% as compared to YAP. We experimented with
neural models for dependency parsing such as those of Dozat and Manning (2017) and
Kiperwasser and Goldberg (2016a), but both the models had UAS/LAS scores below
50. All of the models used a training data set of 12,000 sentences, as described in Section
4.1. Given that the neural models rely on the network architecture for automatic feature
extraction, we hypothesize that the lack of sufficient gold standard training data may
have resulted in their poor performance.

Syntactic Linearization. Table 10 shows the results for syntactic linearization. Here, our
model Beam-EBM*-F, a model that incorporates additional linguistic knowledge about
Sanskrit syntax, performs the best in comparison to the other models. The model
improves the performance by more than 4 BLEU points (percentage improvement of
7.45%), in comparison to kdvya guru, the current state of the art for linearization in
Sanskrit. Altogether, we report performance of three different configurations of EBM
for the task, of which kavya guru outperforms two of the configurations. But all the

819

Computational Linguistics Volume 46, Number 4

Table 10 Table 11

Results for syntactic linearization. Results for prosodification.

System T BLEU PM (%) System T BLEU PM (%)
LinLSTM 61.47 35.51 822 LinLSTM 4296 1542 5.18
BSO 65.38 41.22 1297 BSO 48.28 20.12 6.8

ATSP-EBM-F 7279 48.03 20.18 Kavyaguru 58.27 36.49 12.59
Beam-EBM-F 73.62 51.81 2516 ATSP-EBM-F 6324 42.86 17.67
Kavya Guru 75.58 55.26 26.08 Beam-EBM-F 70.4 46.88 21.16
Beam-EBM*-F 78.22 59.38 27.87

neural sequence generation models including kavya guru were trained with an ad-
ditional training data set of 95,000 from Wikipedia amounting to a total of 108,000
training sentences. Our EBM models were trained only on 10,000 sentences. LinLSTM
performed worse when additional data from Wikipedia was used. Hence we report the
score of linLSTM where the additional data was not used. We experiment with two
different inference procedures, ATSP-EBM-F and Beam-EBM-F. We find that the beam
search inference with a beam size of 128 works the best for the task. Larger beams
result in diminishing returns, with improvements not being significant but incurring
computational overheads at the same time.

Prosodification. Table 11 shows the results for prosodification. Here, we find significant
difference between both the EBM configurations presented and other baselines. kavya
guru reports the best score among the non-EBM configurations. But for Beam-EBM-F,
the score jumps by about 10 BLEU as compared to kdavya guru. Similarly, kdvya gquru
performs significantly better than other neural sequence generation models. We observe
that the improvement appeared only after we incorporated prosody information, that
is, explicitly incorporating syllable weight information and then filtering the sequence
that adheres to valid patterns of syllable weights. This was incorporated in one of the
pretraining steps used to generate multiple hypotheses for the final seq2seq component
of kavya guru. The BLEU score improved from 23.16 to 36.49 with this additional infor-
mation. For LinLSTM, filtering sequences with only valid patterns of syllable weights
during its beam decoding did not lead to any improvements. We find that larger beam
sizes with a size of 512, as against 128 for the morphosyntactic task, lead to better results
for this task. This difference can probably be attributed to larger path lengths of the
final solution in a prosody task as compared to a morphosyntactic task due to the graph
construction (Figure 8, merged Nodes). While the EBM configurations were trained on
a data set of 10,000 verses from Ramayana, the neural sequence generation models were
trained on a data set of 110,000 verses. The additional 100,000 verses were taken from
DCS and also from Vedabase.

Joint and Pipeline Modeling of Tasks. Tables 13—15 show the results for the three joint tasks
we perform using the framework. For all the three tasks, we observe similar trends
to what is observed in the previous research (Seeker and Cetinoglu 2015; More et al.
2019), that the joint modeling of the tasks outperforms the pipeline-based models. In
Table 13 we report the task of joint word segmentation and morphological parsing
as reported in Krishna et al. (2018). The pipeline models perform far inferiorly than

820

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

Table 12 Table 13
Results for dependency parsing. Results for the joint task of word segmentation and
morphological parsing.

System UAS LAS System P R F PM

EasyFirst 73.23 - EG-CRF 76.69 7874 777 31.82
YAP 76.69 73.02 VL-EBM 76.88 7476 758 27.49
Tree-EBM-P 81.07 77.73 BL-EBM 7941 7798 78.69 31.57
Tree-EBM-F ~ 82.65 79.28 Prim-EBM-P 8235 79.74 81.02 32.88

Tree-EBM*-F 85.32 83.93 Pipe-Clig-EBM-P 8743 841 8573 4275
Joint-Clig-EBM-P ~ 91.35 89.57 9045 55.78
Pipe-Clig-EBM-F 8723 8538 8629 44.81
Joint-Cliq-EBM-F 94.04 9147 92.74 58.21

the corresponding joint models for the task. For Clig-EBM-F the joint version reports
a percentage improvement of 7.47% over its pipeline-based counterpart. The pipeline
setting for the task first makes use of the Clig-EBM-F word segmentation model to
obtain the word splits, and the predicted words are then passed to SHR to generate the
search space for morphological parsing. We also experimented with a pipeline setting
where word segmentation was performed using rcNN-SS. The setting that used rcNN-
SS for word-segmentation performed inferiorly to the pipeline setting that uses Clig-
EBM-F word segmentation model in terms of Precision, Recall, and F-Score. However,
the former reports a better perfect match score of 45% against the 44.81% perfect match
score of the latter. The perfect match score for the joint WS+MP task is less than that
of the standalone word segmentation task by more than 25 percentage points. We
observe that this is primarily due to syncretism and homonymy, as the system ended
up predicting a different morphological tag or stem even though it predicted the correct
inflected-form in those cases. Table 9 shows the results for morphological parsing when
using gold standard segmented sentence as input.

Similarly, the results for the joint task of word segmentation, morphological parsing,
and dependency parsing are shown in Table 14. It is evident that the pipeline system
performs inferiorly to the joint modeling. The joint model of Prim-EBM*-F reports an
F-Score of 79.2 as against an F-Score of 77.49 for the pipeline model. Table 15 shows
the performance of pipeline and joint models for the joint task of word segmentation,
morphological parsing, and syntactic linearization. Here, the pipeline-based model of
Prim-EBM*-F is outperformed by the joint model with a significant margin of more
than 11 BLEU points. In the pipeline configurations of both these tasks, we perform
the word segmentation and morphological parsing jointly using Cliq-EBM-F/P models.
For both the tasks, use of rcNN-SS for segmentation in the pipeline resulted in inferior
performances, as compared to joint modeling of the upstream tasks using EBM.

4.3.1 Training Specifics.

Effect of Feature Function Learning Approach. FSPG, the feature function learning approach
we introduce in this task, consistently outperforms PRA, previously used in Krishna
et al. (2018), for all the tasks we experimented with (Section 4.3). Table 16 reports the
Precision, Recall, and F-Score on the word segmentation task, for all the different feature

821

Computational Linguistics Volume 46, Number 4

Table 14 Table 15

Results for the joint task of word Results for the joint task of word segmentation,
segmentation, morphological parsing, and morphological parsing, and syntactic
dependency parsing. linearization.

System p R F System LCS BLEU PM (%)

Pipe-Prim-EBM-P 69.82 7195 70.87 Pipe-ATSP-EBM-F 38.51 32.78 10.14
Joint-Prim-EBM-P 7298 7442 73.69 Pipe-Beam-EBM-F 4022 33.73 10.37
Pipe-Prim-EBM-F =~ 7517 76.58 75.87 Pipe-Beam-EBM*-F 4239 36.12 1227
Joint-Prim-EBM-F 77.65 77.92 77.78 Joint-ATSP-EBM-P 46.75 36.67 11.83
Pipe-Prim-EBM*-F 76.54 77.39 76.96 Joint-Beam-EBM-P 51.44 40.18 13.92
Joint-Prim-EBM*-F 78.68 79.72 79.2 Joint-ATSP-EBM-F 49.72 38.04 12.53

Joint-Beam-EBM-F 53.82 43.39 16.87

Joint-Beam-EBM*-F 55.06 47.27 18.66

sets we learn using FSPG and PRA. We find that the best performing set is the one using
the FSPG and reports an F-Score of 98.35. Among the eight different configurations
for PRA-based vectors (§4.2.5), the best configuration (Table 16, Row 3), by design,
considers a feature space where all the features have || < 1. This implies all the features
learned will have a constraint tuple of length at most 1. We observe a performance drop
when we change this setting to || < 2 (Table 16, Row 4). On the contrary, FSPG does
not require any such upper bound on the length of the constraint tuple . This results
in a quite diverse set of features. FSPG has only 54.94% of its features with a tuple size
|| <1 for the morphosyntactic tasks. Interestingly, 17.06% of paths have |¢| > 3, and
the longest path was of size 4. In the case of prosody-level FSPG features, we find that
all the features have a tuple size || between 3 and 7. In fact more than 50% of the paths
have a tuple size |¢| > 5. Further, we learn feature sets of different sizes using both
FSPG and PRA. For FSPG, we experimented with feature sets of sizes starting from
300 through 1,000, in step sizes of 50. We find that the model performs the best with
a feature set size of 850 for morphosyntactic tasks, and 500 for the prosody-level task.
Similarly, for PRA, we vary the feature set size from 400 to 2,000 in steps of 100, and

Table 16

Effect of feature selection approach tested on the word segmentation model.
Upper bound on || Feature Selection Label P R F

1 MIR PMI 92.86 9527 94.05
2 MIR PMI 8218 86.17 84.13
1 MIR Co-Occ 94.48 96.52 95.49
2 MIR Co-Occ 9365 9552 94.57
1 RFE PMI 80.93 87.65 84.16
2 RFE PMI 84.85 86.90 85.86
1 RFE Co-Occ 83.69 89.11 86.31
2 RFE Co-Occ 86.34 8947 87.88
- FSPG Co-Occ 98.04 98.67 98.35

822

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

Table 17 Table 18

Performance of Clig-EBM-F with Performance of Clig-EBM with pruned edges in G.
increased number of candidates per

inflected form in the input. First row

(k = 0) shows the MP results on the

original search space.

k Similar tags Disjointtags k WS WS+MP
F-score p R F p R F
0 95.33 5 9046 9227 91.36 83.52 80.48 81.97
2 92.12 93.71 10 9292 95.07 93.98 8532 844 84.86
3 91.03 93.08 15 9485 96.14 9549 87.67 86.38 87.02
5 88.89 91.14 20 95.23 96.49 95.86 89.25 88.62 88.93

we achieve the best results for a feature set with a size of 1,500. The feature function
learning process takes about 9 to 11 hours when using the PRA approach (Krishna et al.
2018, supplementary). Using FSPG, the time required for feature function learning was
reduced to about 4 hours for morphosyntactic tasks, and 3 hours for the prosody-level
tasks. This is primarily due to the use of GreedyTree structure in FSPG, which avoids
the need for exhaustive enumeration of all the features that was a bottleneck in PRA.
While feature function learning is a one-time process that happens prior to training, the
feature value computation is performed each time during the inference. Feature value
computation is performed using PCRW, irrespective of the function learning approach
used. However, owing to the lower number of features in the feature set when using
FSPG, a feature vector for morphosyntactic tasks is generated in 38 ms as compared
to 66 ms for PRA. For prosody-level tasks the time is about 23 ms (with 500 vector
components).*

Owergeneration of Candidates in the Input Graph X. SHR is used for the generation of the
search space X for the morphosyntactic tasks. For standalone morphological parsing,
we use SHR for performing only the morphological analysis for the words in the
input sequence, and not for the segmentation analysis. To understand the impact of
the quality of the search space generated by SHR on our EBM models, we experiment
with a scenario where we over-generate the possible analyzes each word can have in
the search space. For the morphological parsing task, we add additional candidates to
each word such that the added candidate would differ from existing candidates (from
SHR) only in their morphological tags. Further, the morphological tags introduced for
the additional candidates would be the same as the lexical category of the existing
candidates.® Table 17 shows results of the Clig-EBM-F morphological parsing model
in two separate settings, namely, similar tags and disjoint tags. In similar tags, we add
k additional analyzes for each word where the added analysis would differ from an
existing candidate only by one grammatical category value. If an inflected form has the

32 The vector generation can be performed in parallel, and we use 40 threads in our experiments.
33 The inflected-form Ramah, as per SHR, can be analyzed either as a nominal or a verb. So a new added
candidate for the inflected form would either be a nominal or a verb.

823

Computational Linguistics Volume 46, Number 4

tag “nominative |1| masculine” in its analysis, then a newly added candidate would
be “accusative |1| masculine.” The latter, similar to the former, is a nominal and the
latter differs from the former only in terms of its grammatical category value “case.”
In disjoint tags settings, the added nodes will have no grammatical category values
shared with any of the candidate analyzes. If “nominative |1| masculine” is the only
analysis for an inflected form, then a tag like “accusative |2| neuter” would be an eligible
tag for the disjoint tags setting. Irrespective of the setting, the tags added are all valid
morphological tags in Sanskrit and of the same lexical category as the candidates. We
show instances with added 2, 3, and 5 analyzes per word. The morphological tagging
performance degrades as the number of candidates increase in the search space. More
interestingly, the system has greater difficulty in predicting the correct candidates when
the candidates has similar tags as compared to having additional candidates with
disjoint tags. We add k additional analyzes per inflected form in the input, implying
the number of possible candidates in the search space increase by n x k, where # is the
number of words in the input.

Limiting the Context by Pruning Edges in the Input Graph X. From the tasks of word
segmentation, morphological parsing, and their joint task formulation, we make two
important observations. In these tasks, the EBM configurations that use inference pro-
cedures with non-sequential processing of input outperform those that perform the
input sequentially. Between Prim-EBM and Clig-EBM configurations, the two configu-
rations with non-sequential processing, Clig-EBM (which considers pairwise potentials
between all the pairs of non-conflicting words) leads to significant performance im-
provements over Prim-EBM. But, to get a better understanding of the impact of pairwise
potentials between non-conflicting words, we perform experiments where the edges are
pruned from the original input graph X, if two words are separated by more than k
characters between them.

For any two words appearing in an exhaustive segmentation, we keep an edge only
if both the words overlap within a distance of k characters. We experiment with k =5,
10, 15, and 20. Hence, for k = 20, a word will form edges with all the words that fall
within 20 characters to the left and 20 characters to the right. The average length of
an input sequence in the test data is 40.88 characters. We do not modify our inference
procedure in Clig-EBM-P other than to take care of the possibility that a clique need not
always be returned. Table 18 shows the results for different values of k. Interestingly, the
results show a monotonic increase with the increase in the context window size, and the
results with the entire context are still better than those with k = 20, even though only
marginally. It is interesting to note that keeping the entire context does not adversely af-
fect the predictions as none of the pruned models outperform the original configuration
in Clig-EBM-P. The lattice structure can be seen as an extreme case of pruning. Similarly,
we perform WS using Prim-EBM-P, where the model uses a non-sequential inference.
However, we experiment with a new setting, where we use the same observed variable
X constructed for VL-EBM (i.e., edges exist only between adjacent nodes), instead of the
dense graph structure that is normally used for Prim-EBM-P. The lattice models used
special start and end marker nodes, owing to their sequential inference. These nodes
were removed from Prim-EBM-P. We find that the Prim-EBM-P with modified observed
variable from VL-EBM reports an F-Score of 87.4 for WS. This implies Prim-EBM-P,
when using the observed variable of VL-EBM, outperforms the VL-EBM configuration
by more than two points. We find that VL-EBM makes more early mistakes, owing to its
sequential inference, resulting in higher error propagation as compared to Prim-EBM-P.

824

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

Out of Vocabulary Stems and Inflected Forms in C. For joint word segmentation and mor-
phological parsing we use DCS10k as the test data. DCS10k has 8,007 stems, of which
514 (6.42%) are out of vocabulary in C. For such stems in C, we apply add-one smoothing
prior to computation of the co-occurrence probability using PCRW. The model reports a
macro-averaged F-Score of 92.74. The micro-averaged F-Score for those 514 OOV stems
is 57.98. However, the F-Score quickly picks up even for those stems whose inflections
occur only at most five times. We find that 833 in DCS10k occur at most five times in C,
and the micro-averaged F-Score for those is 72.87. The test set for dependency parsing
(DP) has 100% stem coverage with vocabulary of C. We create two synthetic versions of
C, where 5% and 10% of stems in the vocabulary of the DP test data are removed from
C. Tree-EBM*-F reports a UAS (LAS) of 84.95 (83.51) when using C with 5% missing
stems. This setting stands closer to DCS10k in terms of missing stems. Similarly, Tree-
EBM*-F reports a UAS (LAS) of 84.37 (83.04) when using C with 10% missing stems.
Tree-EBM*-F originally reported a UAS (LAS) of 85.32 (83.93), when using C with 100%
stem coverage. For a morphologically rich language like Sanskrit, the number of missing
inflected forms for a stem that is present in the corpus graph vocabulary would be much
higher than missing stems in the vocabulary. The DP test data has 13.81% of the inflected
forms missing from C. We create a synthetic version of C, where we increase the missing
inflected forms by 10% (i.e., to 23.81%). However, the performance drop is negligible as
it drops from 85.32 to 85.09 UAS and from 83.93 to 83.77 LAS. For this experiment, we
used C with 100% coverage.

Morphological Class Specific Assessment. Table 19 presents the micro-averaged recall for
the words grouped based on their inflectional classes (Table 3) for Clique-EBM-F,
Clique-EBM-P, and Prim-EBM-P. For word segmentation (WS), the surface-forms be-
longing to indeclinables and nominals have the highest recall. In the case of joint
word segmentation and morphological parsing (WS+MP), the recall over nominals
(surface-form and tag) shows the highest decline among the lexical cateogries. This
difference in recall for nominals mostly arise due to mispredictions in the morphological
tag of the word, rather than the surface-form (i.e., due to syncretism). The entry “com-
pound” in Table 19 shows the recall for the non-final components of a compound (i.e.,
on those components where no inflection is applied). This entry was added due to the
extensive use of compounds, often with more then two components, in Sanskrit. We find
that considering the pairwise potential between all the words in a sentence in Clique-
EBM-P/F led to improved morphological agreement between the words in comparison

Table 19
System performance in terms of Recall on the lexical categories (Table 3) for the competing
systems Clique-EBM-P, Clig-EBM-F, and Prim-EBM-P.

WS Recall WS + MP Recall
Type Prim-EBM Clig-EBM Clig-EBM Prim-EBM Clig-EBM Clig-EBM
-P -P -F -P -P -F
Nominal 93.06 96.87 98.07 86.14 89.0 91.33
Verb 89.14 95.91 96.84 87.38 94.42 95.14
Participle 87.66 96.42 97.17 87.12 94.71 95.52
Compound 89.35 93.52 95.69 86.01 91.07 92.86
Indeclinable 95.07 97.09 98.26 94.93 96.47 97.95

825

Computational Linguistics Volume 46, Number 4

Table 20 Table 21

Error propagation, in terms of the number of Error propagation, in terms of the number
errors, in the pipeline (pipe) and joint models of errors, in the pipeline (pipe) and joint
for word segmentation (WS), morphological =~ models for word segmentation (WS),

parsing (MP), and dependency parsing. morphological parsing (MP), and syntactic
linearization. Here dep. locality denotes
dependency locality.
Prim-EBM-F Pipe Joint Beam-EBM-F Pipe Joint
EBM EBM* EBM EBM*
WS 425 322 297 WS 318 233 204
MP 703 547 520 MP 356 241 226
Label mismatch 404 372 294 Dep. locality 213 197 144
Others 886 827 777 Others 486 408 397
Total errors 2,418 2,068 1,888 Total errors 1,373 1,079 971

to Prim-EBM-P. The difference is particularly visible in the case of improvements in
the verb prediction. In Prim-EBM-P, the top five cases of mispredictions from one
morphological class to a particular wrong class were due to syncretism. In Clique-EBM-
P/F such patterns were no longer present and, more importantly, the skewedness in
such mispredictions was considerably reduced.**

Error Propagation in the Pipeline and Joint Models for Word Segmentation, Morphological
Parsing, and Dependency Parsing. Table 20 shows the error analysis over the entire test
data of dependency parsing. We analyze the pipeline model and both the joint models,
Prim-EBM-F and Prim-EBM*-F, for the task. As we can expect, the largest gap in errors
between the pipeline model and the joint model is due to the mispredictions in word
segmentation and in morphological parsing. At the same time, the reduction in mis-
predictions in the remaining categories of errors between these models is lower. Now,
among the joint models, Prim-EBM*-F (marked as EBM*) shows considerable reduction
in errors under the “label mismatch” category as compared to Prim-EBM-F. Prim-EBM*-F
is the EBM configuration with language-specific augmentations as described in Sec-
tion 3.4. Here, the “label mismatch” category specifically looks into those mispredictions
that occur due to the many-to-many mapping between the case markers of the words
and the dependency tags (kdraka). In this category, we consider those mispredictions
where the gold tag and the mispredicted tag are applicable for the case markers of
the words and hence are more susceptible to being mispredicted. A nominal, which
is in instrumental case, can be assigned a kartd or a karanam relation (and rarely a
hetuh). Similarly, among other cases, a nominal in nominative can also be assigned a
karta relation. However, two nominals, one in instrumental and another in nominative,
both together cannot be a kartd in a sentence. Of the 204 occurrences of karanam in
the test data, 63 of them were wrongly assigned as karta. All these 63 cases had more
than one prediction of kartd in the sentences. With Tree-EBM*-F, 56 of the cases were
correctly assigned as karanam, and 7 were wrongly assigned as hetuh. Such cases have

34 Please refer to Tables 6 and 7 in the supplementary material of Krishna et al. (2018) for details.

826

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

substantially led to reduction in label mismatch for Tree-EBM*-E. This tag forms the
majority contributor to the reduction due to label mismatch.

Error Propagation in the Pipeline and Joint Models for Word Segmentation, Morphological
Parsing, and Syntactic Linearization. Table 21 shows the performance difference between
the pipeline-based model and the joint models for the poetry to prose linearization task.
Here, we perform a qualitative analysis on a sample of 300 sentences of the test data for
linearization.®® It can be observed that the pipeline model suffers due to errors from the
word segmentation and morphological parsing. Among the joint models, Beam-EBM*-F
makes considerably fewer errors in the dependency locality category as compared to
the errors made by Beam-EBM-F. This is due to the language-specific augmentations
(Section 3.4) made to Beam-EBM*-F that mitigate the errors from dependency locality.
We observe that 39.62% of the reduction in error in this category is achieved specifically
in the case of placement of adjectives near the word it modifies. The error reduction
is primarily a result of pruning out candidates with longer dependency lengths and
pruning of candidates with more than two violations of weak non-projectivity.

Merging of Syllable-Level Nodes in Prosodification. For the graph generation in the prosody-
level tasks (Section 3.1), we define the vertices at a syllable level. At the same time,
we have made a modification by merging the nodes that have only one outgoing edge
(Figure 8). This node merging substantially reduces the number of nodes and edges in
the input graph X, as well as the edge vectors generated. Empirically we find that this
modification results in an overall improvement of system performance. While the best
performing model of ours using the modified structure performs with a BLEU score of
46.88 and a Kendall’s Tau score of 68.4, the original syllable-level representation results
in a BLEU of only 41.93 and a Kendall’s Tau score of 64.21.

Summarily, FSPG significantly and consistently outperforms PRA in learning effec-
tive feature functions for all the tasks. Our non-sequential method of inference results
in better performance in comparison to the sequential models, even for low-level tasks
such as word segmentation and morphological parsing. For morphological parsing,
leveraging the pairwise potentials between every connected nodes while making a
prediction results in reduced syncretism. The performance gain of Clique-EBM over
Prim-EBM illustrates the effectiveness of this approach. Joint modeling of the tasks
mitigates the error propagation from upstream tasks, compared to a pipeline-based
approach. Language-specific augmentations in pruning the search space and filtering
the candidates during inference reduces errors due to label mismatch and dependency
locality for dependency parsing and syntactic linearization, respectively.

4.4 Experiments on Czech
Our proposed structured prediction framework is language-agnostic. We show its ef-

fectiveness by training models for morphological parsing and dependency parsing in
Czech, another MRL.

35 We restricted ourselves to a sample of the test data due to the requirement of manual inspection of data to
detect the errors in the “dependency locality” (Gibson et al. 2019) category. One of the authors and two
other annotators with a graduate level degree in Sanskrit linguistics performed this. We filter 300 (x 3, as
there are predictions from three systems to be considered) sentences where at least two of the three
annotators agreed on the errors made by the system.

827

Computational Linguistics Volume 46, Number 4

Tasks. We train models in Czech for three tasks, one related to morphological parsing
and two related to dependency parsing. For morphological parsing, we follow the ex-
perimental and evaluation settings of the “Morphological Analysis and Lemmatization
in Context” task conducted as part of the SIGMORPHON 2019 shared task (McCarthy
et al. 2019). The task expects a system to input a sentence and output the lemma and
morphological description, that is, the morphological tag, for each word in the sentence.
This task is exactly the same as the morphological parsing task we perform for Sanskrit,
and henceforth we refer to this task as morphological parsing. Similarly, for dependency
parsing, we follow the experimental and evaluation settings of the “CoNLL 2018 Shared
Task on Parsing Raw Text to Universal Dependencies” (Zeman et al. 2018), henceforth
to be referred to as Raw2UD. Here, the participants were asked to parse sentences in a
raw text document where no gold-standard pre-processing information (tokenization,
lemmas, morphology) is available. The participating systems should output the labeled
syntactic dependencies between the words (Zeman et al. 2018). To enable the partici-
pants to focus only on selected parts of the pipeline, predictions from a baseline system
was provided for each prepossessing step (Straka and Strakova 2017). We make use of
the tokenization output from Straka and Strakova (2017) and feed it to a morphological
analyzer, whose output is then provided as input to our joint morphological and depen-
dency parsing model, Prim-EBM-F. Finally, we also perform the standalone dependency
parsing task, where sentences with gold tokenization and morphological description are
provided as input.

Data. Both the shared tasks use treebanks from Universal Dependencies (UD; Nivre
et al. 2018). The morphological parsing task (McCarthy et al. 2019) used the UD
version 2.3% and Raw2UD (Zeman et al. 2018) used the UD version 2.2¥. We per-
form our experiments on Czech, specifically on the Czech-PDT treebank available as
part of UD. However, the train, dev, and test splits provided for both these shared
tasks differ. We use the corresponding splits used in the shared tasks for reporting
our model performances, such that our models are comparable with the models sub-
mitted as part of the shared task. For the dependency parsing (with gold token-
ization and morphology), we use the train, test, and dev split of Czech-PDT in UD
version 2.2. A morphologically tagged corpus is required for the construction of
the corpus graph Cc..s, which is used for generating the edge vectors. First, we
construct Cc,.q, by only using the sentences from the PDT training data split.%®
We expand Cc,q by using one million raw sentences randomly sampled from
the common crawl corpus. The relevant tokenization and morphological informa-
tion, for these sentences, required to construct Cc, was predicted using UDPipe
(Zeman et al. 2018). The organizers of Raw2UD had already provided this data as part
of the shared task.

Evaluation Metrics. McCarthy et al. (2019) report the performance of the participating
systems based on lemma accuracy, lemma edit distance, tag accuracy, and tag F1-
score. Here, lemma accuracy and tag accuracy report a 0/1 accuracy of the predicted
lemma and morphological information, respectively, micro-averaged at the corpus level

36 https://github.com/sigmorphon/2019.

37 https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2837.

38 For each model, we used the corresponding training data split from the shared-task. For Raw2Ud the
training set has 68.496 sentences while MP has 70,331 sentences in the training set.

828

https://github.com/sigmorphon/2019
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2837

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

(McCarthy et al. 2019).* The lemma edit-distance and tag F1-score were used to give
partial credits to the systems, if they predict a part of the solution correctly. Because our
system’s predictions are basically selections of candidates from a morphological ana-
lyzer and not exactly character-wise or grammatical category—wise prediction, we use
only the tag and lemma accuracy as evaluation metrics. For Raw2UD we use the official
evaluation script used in the shared task. From the evaluation, we report the UAS and
LAS scores. However, these UAS and LAS scores take the possible misalignment of the
tokens in the prediction and in the ground truth, due to tokenization errors, also into
consideration. For such misaligned tokens, the prediction is considered to be invalid. To
avoid confusions with our previously defined UAS/LAS metric we would mark them
with UAS'** and LAS'k. For standalone dependency parsing, we use UAS and LAS as
evaluation metrics.

Models. For the morphological parsing task, we use the Clig-EBM-F model, that is, the
one that uses the maximal clique search as inference and FSPG for the edge vector gen-
eration. We use two variants, Clig-EBM-F-Xtra and Cliq-EBM-F-PDT, where the former
uses one million sentences from common-crawl and training data from PDT treebank
for the corpus graph construction, and the latter uses only the PDT training data for
the corpus graph construction. We consider three systems from McCarthy et al. (2019)
as baselines for the task. The systems are CHARLES-SAARLAND-02 (Kondratyuk
2019), NLPCUBE-01 (Boros, Dumitrescu, and Burtica 2018), and EDINBURGH-02
(McCarthy et al. 2019).*0 Here, CHARLES-SAARLAND-02, henceforth to be referred to
as SAARLAND-02, uses two separate word-level bidirectional residual LSTM decoders
for the lemma and morphological tag prediction tasks. The model uses a common
encoder and a separate attention layer for both the tasks. The encoder representations
use multilingual BERT embeddings fine-tuned on a concatenation of all the available
languages. This model achieved the best overall results for the task (in terms of Morph
accuracy and Fl-score) and also in the Czech-PDT treebank. Similarly NLPCUBE-01 and
Edinburgh-02 achieved the third best scores for Czech-PDT treebank in terms of lemma
accuracy and tag accuracy, respectively.*! Edinburgh-02 is a character-level LSTM
encoder-decoder model, while NLPCUBE-01 is a pipeline model that uses an encoder-
decoder model for lemmatization and a LSTM-based sequence tagger for morphological
tagging. Both these models use the same set of input features, which is a concatenation
of character-level embeddings, word embeddings, and fasttext embeddings. These two
models do not use any external resources and their models are trained using resources
provided in the shared task.

For dependency parsing we train the Tree-EBM-F model, and for the Raw2UD task
we use the Prim-EBM-F model. Tree-EBM-F uses the exact search Edmonds-Chu-Liu
algorithm and Prim-EBM-F uses the approximate algorithm for maximal spanning tree
as the inferences, respectively. The Raw2UD task is similar to the joint MP and DP task,
where the search space considers all the possible morphological analyzes for a given
word and hence the Prim-EBM-F model searches for a maximal spanning tree. Similar
to morphological parsing task, we report scores for two variants of Prim-EBM-F for
the Raw2UD task as well, Prim-EBM-F-PDT and Prim-EBM-F-Xtra. We consider the

39 https://sigmorphon.github.io/sharedtasks/2019/task2/.

40 NLPCUBE-01 and EDINBURGH-02 did not publish their findings as separate papers, and hence their
results can be found in McCarthy et al. (2019).

41 We do not include, UFAL-Prague-01 (Straka, Strakova, and Hajic 2019) the second best system as it also
uses BERT based pretraining similar to SAARLAND-02.

829

https://sigmorphon.github.io/sharedtasks/2019/task2/

Computational Linguistics Volume 46, Number 4

three systems HIT-SCIR (Che et al. 2018), TurkuNLP (Kanerva et al. 2018), and Stanford
(Qi et al. 2018). These systems achieved first, second, and third positions in Czech-
PDT treebank based on the LAS'* metric. All the three systems use the neural biaffine
parser proposed by Dozat and Manning (2017) with minor modifications. Che et al.
(2018) makes use of ELMO embeddings trained on 20 million words from the common-
crawl Czech corpus. TurkuNLP and Stanford use pretrained word2vec embeddings
trained on the common-crawl corpus (Ginter et al. 2017). All the models for Czech
use MorphoDita (Strakovd, Straka, and Hajic¢ 2014) as the morphological analyzer (i.e.,
the graph-generator). For the dependency parsing task we use Stanza (Qi et al. 2020),
an extended version of Qi et al. (2018), and UDPipe (Straka and Strakova 2017) as the
baselines.

Results. Table 22 shows the result for the morphological parsing task. Our model Clig-
EBM-F-Xtra stands third in terms of lemma accuracy and tag accuracy in comparison to
all the participating systems in the shared task (McCarthy et al. 2019). The first two
systems in the shared task, SAARLAND-02 and UFAL-PRAGUE-01, greatly benefit
from the fine-tuning and pretraining, respectively, on the multilingual contextualized
BERT embeddings. Among the systems that use no external resources other than the
training data, our model Clig-EBM-F-PDT scores the highest in terms of tag accuracy,
followed by NLPCUBE-01 and EDINGBURGH-02, respectively. Our morphological
analyzer identifies 99.74% of the lemma in the test data for the shared task. Similarly,
99.45% of the morphological tags were identified by our morphological analyzer.

Table 23 shows the results for the Raw2UD task. Our system Prim-EBM-F-Xtra
achieves the best result, outperforming all the models in the shared task. Similarly, for
the dependency parsing task, Stanza (Qi et al. 2020) reports 93.73 UAS and 92.19 LAS
on the Czech-PDT treebank. UDPipe reports 90.3 UAS and 88.2 LAS. Our proposed
model Tree-EBM-F-Xtra reports 95.84 UAS and 93.67 LAS. Tree-EBM-F-PDT reports
a UAS of 94.38 and LAS of 91.28. Here, both Tree-EBM-F-Xtra report the best score,
outperforming all the baselines. Tree-EBM-F-PDT, the model with no external resources

Table 22 Table 23

Results for the SIGMORPHON 2019 Results for the Raw2UD task. All the
morphological analysis in context shared Non-EBM systems were the competing
task. All the non-EBM systems were competing systems in the shared task (Zeman et al.

systems in the shared task (McCarthy et al. 2019). 2018). The evaluation metrics UAS'* and
SAARLAND-02 corresponds to the CHARLES- LAS"* considers the misalignment due to

SAARLAND-02 in the shared task and other segmentation and tokenization as well.
systems follow the same naming as in the shared
task.
System Lemma Morph System UAStk LAStok
Accuracy Accuracy

HIT-SCIR 93.44 91.68
SAARLAND-02 99.42 98.54 TurkuNLP 92.57 90.57
EDINBURGH-02 98.66 93.90 Stanford 9244 90.38
NLPCUBE-01 98.50 95.89 Prim-EBM-F-PDT 92.67 90.88
Clig-EBM-F-PDT 98.16 95.97 Prim-EBM-F-Xtra 93.76 92.03

Clig-EBM-F-Xtra 98.94 97.21

830

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

other than the training data, outperforms both the neural baseline models in terms of
UAS. Overall, we find that our EBM models achieve competitive results in all the three
tasks, outperforming all the baselines in two of the three tasks.

5. Discussion

Our EBM framework consists of 3 components, namely, a graph generator, an edge
vector generator, and a structured prediction model. All the three components act as
a pipeline, where the edge vector generator obtains its input from graph generator,
and the structured prediction model obtains its inputs from both the other components.
This separation of the tasks becomes beneficial at multiple steps. First, we have limited
data for both the syntax level tasks, dependency parsing and syntactic linearization,
in Sanskrit. As demonstrated, the feature function we use substantially reduces the
task-specific training data requirements. Second, our edge vectors are task agnostic,*?
thereby enabling the use of the same feature vectors for standalone and joint formula-
tion of multiple tasks. Finally, such a separation enables us to plug and play multiple
third party external tools such as the graph generator to our framework. For instance,
while SHR was the graph generator module for Sanskrit, MorphoDita was used for
Czech, and both of these are external tools developed independent of our framework.

Our feature function learning approach using FSPG can be seen as a pretraining
approach, similar to the learning of word embeddings or network embeddings. In
information networks terminology, the corpus graph we construct is an instance of
a Heterogeneous Information network (Sun 2010), where our corpus graph contains
nodes of different types. The typed paths we learn are metapaths and we use random
walk-based inference to compute a scalar feature value. A major novelty of our work
is the automated generation and filtering of the typed paths that compute the strength
of association between two nodes under diverse constraints. A large number of neural
embedding approaches are either intended for homogeneous information networks, or
are used to learn embeddings for only one metapath at a time (Dong, Chawla, and
Swami 2017). Recently, graph neural networks were introduced for learning network
embeddings using metapaths. These approaches generally tend to use a limited number
of metapaths, ranging from two to six (Cen et al. 2019; Fu et al. 2020). Most importantly,
these approaches still assume the metapaths are hand-crafted, while we automate the
identification of relevant metapaths.

An immediate future work would be the extension of the proposed framework to
perform downstream semantic tasks such as semantic role labeling. The tagging scheme
that we used for the dependency analysis is based on the karaka theory, and the relations
as per karaka theory are known to be syntactic-semantic in nature (Bharati and Sangal
1993). This was a conscious design decision we made, which leaves us with a potential
scope for expanding the framework for a semantic labeling task. Given the link between
the case markers to kiraka tags as per traditional Sanskrit grammar, we hypothesize
that modeling of semantic labeling tasks such as Semantic role labeling might benefit
from jointly modeling it with its preliminary tasks. However, task-specific labeled data
for such tasks are scarce or non-existent in Sanskrit. Even for syntax level tasks, such
as DP and SL, we observed that we have limited availability for task-specific labeled
data and this gets worse for tasks further down the processing pipeline for Sanskrit.

42 Our vectors need not necessarily be domain-agnostic as we use different edge vectors for morphosyntactic
and prosodic tasks.

831

Computational Linguistics Volume 46, Number 4

For all the tasks we experimented with in the framework, the models used a relatively
limited amount of task-specific labeled data for Sanskrit, in comparison to other neural
baselines. However, this is enabled due to the availability of a morphologically tagged
corpus, DCS, and the use of SHR, a lexicon driven shallow parser. SHR is beneficial to
our framework in multiple ways. One, its efficient implementation coupled with a wide
coverage lexicon enables us to exhaustively enumerate various possible word splits for
a given sequences. Two, the morphological analysis provided by SHR can be quite de-
tailed. This may involve additional information about derivational nouns, currently re-
stricted to nominals derived from verbs. A nominal derived from a verb, when derived
from specific derivational affixes, may act as a verbal head to other words in Sanskrit.*®
Three, it can also encode additional morphosyntactic information, in addition to the
grammatical categories for several words, particularly verbs.** Four, it may generate
only those inflected forms where the morphemes involved in the creation of the form
are compatible to each other as per rules of Sanskrit, thereby avoiding overgeneration
of candidates. To elaborate, preverbs are applied to a root or the stem of a derivational
noun (derived from verb), only after checking their mutual compatibility. Similarly, a
form ambarah will be invalid as per SHR because the stem ambara can form inflections
only for forms in neuter gender. However the compound pitambarah with component
stems pita and ambara is allowed.*® This is because pitambarah is an exocentric compound
(bahuvrihi), and an inflection in masculine gender is possible for the compound.

Our EBM framework is language-agnostic in general as evidenced from our exper-
iments in Sanskrit and Czech. Using our framework, we can train models for another
language, say for morphosyntactic tasks, provided we have access to a morphological
dictionary or a morphological analyzer for the language. Further, we also need access
to a morphologically tagged corpus to build our corpus graph for feature function
learning. It needs to be noted that a shallow parser like SHR might not be readily avail-
able for several languages. However, this necessarily need not limit the functionality
of our framework. We successfully trained highly competitive models in Czech using
the MorphoDita morphological dictionary (Strakovéa, Straka, and Haji¢ 2014), which is
limited in its functionality as compared to SHR. Further, we successfully constructed the
corpus graph for Czech using 1 million raw sentences with predicted morphological
information, along with 70,000 gold standard morphologically tagged sentences. For
Sanskrit, we used 350,000 morphologically tagged textlines from DCS. For the learning
of feature functions, the only domain knowledge we require is the knowledge of gram-
matical categories and what combinations of grammatical categories can form a lexical
category in the language. This information is used to define the types in the corpus
graph, and the typed paths (features) are automatically learned using FSPG. Probably
the most linguistically involved part of our framework is the use of constraints to prune
the candidates in the search space that we use for Sanskrit (in models marked with
a "*). However, this is an optional component, and we show that highly competitive
models can be trained, even without incorporating any such linguistic constraints, for
both Sanskrit and Czech.

We assume that the framework can be potentially useful for processing texts in
other free word order languages as well, as we demonstrated for Sanskrit and Czech.
However, when extending the framework for a new language, one needs to keep in

43 We mention such a case in footnote 20.
44 We mention such a case in footnote 21.
45 SHR analysis available at https://bit.ly/pitambara.

832

https://bit.ly/pitambara

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

mind that the framework uses non-sequential processing of input even for low-level
tasks such as word segmentation and morphological parsing. Further, we construct
dense graph structures as input. This makes the inference computationally costly. These
design decisions were made considering the relatively free word order nature of sen-
tences in Sanskrit, especially for verses. Owing to the computationally costly inference,
our framework may not be well suited for languages that tend to follow a relatively
fixed word ordering in their sentence constructions. Efficient and exact inferences that
perform sequential processing of the input are available for such languages. More im-
portantly, using our current input graph construction approach might result in ignoring
valuable grammatical information encoded using word order in such languages.

6. Related Work

The last couple of decades have shown considerable interests in computational process-
ing of Sanskrit texts, though mostly centered around formal language theory (Kiparsky
2009; Goyal and Huet 2016; Hyman 2009) and rule-based systems (Kulkarni 2013;
Kulkarni et al. 2015; Goyal et al. 2012). Due to the low-resource nature of the language,
attempts for developing data-driven models for processing Sanskrit texts has been less
common, with a possible exception for the task of word segmentation. While early
models for segmentation (Natarajan and Charniak 2011; Mittal 2010) focused on shorter
sequences, typically with one or two split points, Krishna et al. (2016) proposed a
segmentation model that deals with sentence-level inputs. Their model, similar to ours,
use the search space from the Sanskrit Heritage Reader (Goyal and Huet 2016) and treats
the problem as an iterative query expansion task. Hellwig (2015) was the first to pose the
problem as a neural sequence labeling task, and later a considerably improved sequence
labeler was presented in Hellwig and Nehrdich (2018). In Hellwig and Nehrdich (2018),
the architecture incorporated recurrent and convolutional neural units, in addition to
the use of shortcut connections. Both Reddy et al. (2018) and Aralikatte et al. (2018)
proposed seq2seq models for the task. Aralikatte et al. (2018) considered the word
segmentation as a multitask problem, using a common encoder with two decoders,
where one decoder predicts the split location and the other is used to generate the
characters in the split word.

Both word segmentation and morphological parsing are low-level, yet non-trivial
tasks for multiple languages and are extensively researched in NLP. Traditionally, so-
lutions for these tasks were proposed using (Probabilistic/ Weighted) finite-state trans-
ducers (Kaplan and Kay 1981; Sproat et al. 1996; Mohri 1997; Beesley et al. 2003) and
using unsupervised pattern discovery approaches (Goldsmith 2001; Argamon et al.
2004; Johnson and Goldwater 2009). Broadly, these approaches could be categorized
as lexicon driven (Huet 2003; Chen and Liu 1992), purely statistical (Eisner 2002;
Sproat et al. 1994), or both (Sproat et al. 1996). Sequence labeling approaches such as
HMMs (Hakkani-Tur, Oflazer, and Tur 2000) and CRFs (Smith, Smith, and Tromble
2005; Xue 2003) were later proposed for these tasks. Further, lattice parsing-based
approaches, where the input search space was represented as word-level lattices, were
incorporated into CRFs (Smith, Smith, and Tromble 2005) for joint modeling of these
tasks (Kudo, Yamamoto, and Matsumoto 2004). Neural sequence labeling approaches
currently achieve state-of-the-art performance in word segmentation, especially for Chi-
nese, Korean, Japanese, and so forth (Wang, Voigt, and Manning 2014; Shao, Hardmeier,
and Nivre 2018). Similarly, higher-order CRFs (Miiller, Schmid, and Schiitze 2013) and
neural morphological taggers (Malaviya, Gormley, and Neubig 2018; Tkachenko and
Sirts 2018) are widely used for morphological parsing. Interestingly, lattice based

833

Computational Linguistics Volume 46, Number 4

structures and lattice-parsing techniques remain hugely popular for word segmentation
(Yang, Zhang, and Liang 2019) and in morphological parsing of morphologically rich
languages (Seeker and Cetinoglu 2015; More 2016; More et al. 2019).

Transition-based approaches (Kiibler, McDonald, and Nivre 2009) and graph-based
approaches (McDonald et al. 2005b) are primarily two approaches adopted for DP. The
majority of the methods proposed for joint morphosyntactic parsing also fall into one
of these categories. Such approaches have proven to be effective for a host of morpho-
logically rich languages such as Hebrew, Turkish, Czech, Finnish, Arabic, and so on.
(Cohen and Smith 2007; Goldberg and Tsarfaty 2008; Bohnet et al. 2013). Hatori et al.
(2012) formulated the problem of joint word segmentation, POS tagging, and DP in
Chinese using a transition-based framework. Seeker and Cetinoglu (2015) performed
the joint morphological segmentation and analysis along with DP for Hebrew and
Turkish. The approach constructs a sentence-level graph with word-level morphological
lattices and performs a dual decomposition wherein the predicted dependency tree
and the morphological paths need to be arrived at an agreement for the final solution.
Recently, More et al. (2019) proposed a transition-based framework (Zhang and Clark
2011), which encompasses a joint transition system, training objective, and inference
for the morphological processing and syntactic parsing tasks. The system outperforms
their previous standalone transition-based system for morphological analysis (More
and Tsarfaty 2016), emphasizing their benefits of joint morphosyntactic parsing.

For dependency parsing, Kiperwasser and Goldberg (2016a) proposed replacing the
traditional feature engineering approach with vector representations of tokens obtained
from BiLSTM-based neural architectures. Several neural parsing models have extended
this idea (Kuncoro et al. 2017; Dozat and Manning 2017) and report competitive results
for languages such as English. Nevertheless these models have shown to be of limited
effectiveness as compared to feature engineered models for morphologically rich lan-
guages (More et al. 2019). In our framework, we do not use any hand-crafted features.
Instead, we automate the learning of the feature function and formulate it as learning
of horn clauses (Lao and Cohen 2010; Gardner and Mitchell 2015). The task of obtaining
the features for the edge vector is similar to obtaining a distributional composition
between two words (Weir et al. 2016). Our work stands close to the attempts such as
algebraic formulation for feature extraction by Srikumar (2017) or the Monte Carlo Tree
Search-based feature selection approach by Gaudel and Sebag (2010). In Krishna et al.
(2018) we used the Path Ranking Algorithm (Lao and Cohen 2010), a random walk
based approach for learning horn clauses across a heterogeneous information network
(HIN). The type of horn clauses mentioned in PRA is widely known as metapaths
(Sun 2010) in HINs (Shi et al. 2017). Traditionally, metapaths, like feature engineering,
were manually constructed. But, recent approaches such as PRA and FSPG (Meng et al.
2015) automate the generation of metapaths.

Word linearization has been used in various Natural Language Generation tasks for the
past three decades. Linearization tasks are generally solved by incorporating syntactic
information (He et al. 2009), semantic information (Puduppully, Zhang, and Shrivastava
2017), or by using language models (Hasler et al. 2017). Syntactic linearization can
further be categorized into full tree linearizaton (Zhang and Clark 2015; He et al.
2009) or partial tree linearization (Zhang 2013) depending on the amount of syntactic
information used in the method. In language model-based linearization approaches,
purely distributional information is used for the task. Recently, such approaches have
been shown to outperform syntax-based linearization approaches in English (Schmaltz,
Rush, and Shieber 2016; Wiseman and Rush 2016). Similar to Wiseman and Rush (2016),
Krishna et al. (2019) propose a seq2seq model for syntactic linearization in Sanskrit.

834

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

The sequence-level model, along with two of its accompanying pretraining steps,
have shown to outperform other linearization models, which were originally proposed
for English.

7. Conclusion

Our work presents a generic search-based structured prediction framework for numer-
ous structured prediction tasks in Sanskrit. As shown by our additional experiments in
Czech, in addition to the experiments in Sanskrit, our framework is language-agnostic.
In Czech, we outperform all the participating systems in Zeman et al. (2018) and we
report the third best score in McCarthy et al. (2019). In Sanskrit, we either achieve state-
of-the-art results or ours is the only data-driven model for all the tasks we experiment
with. In fact, we introduce the task of prosodification. The framework, though language-
agnostic, still enables us to encode language-specific constraints, which helps to prune
the input search space as well as to filter the candidates during inference. It also facili-
tates joint modeling of multiple tasks, which we plan to extend to further downstream
semantic tasks as well. But more importantly, we achieve substantial reduction in task-
specific training data requirements for all the tasks by incorporating rich linguistic
information, both in the form of pruning the search space as well as in designing our
feature function. This is particularly important for a low resource language like Sanskrit.
Another novel aspect in this work is the automated learning of feature function. For one,
this shifts the burden of designing effective features for each task from human domain
experts and automates it. The only domain information required here is to define the
literals required for the generation of horn clauses. This makes it adaptable to different
scenarios, as witnessed in the case of morphosyntactic and prosodic tasks in our case.
The use of FSPG-based feature generation not only improved the system performance
but it also substantially reduced the time taken, as this does not require an exhaustive
enumeration of the features.

Acknowledgments
We are grateful to Oliver Hellwig for

DOL: https://doi.org/10.3115/1119355
.1119374

providing the DCS Corpus, Amba Kulkarni
for providing the STBC corpus, Anupama
Ryali for providing the Sisupalavadha
corpus, and Gérard Huet for providing the
Sanskrit Heritage Engine, to be installed at
local systems. We extend our gratitude to
Amba Kulkarni, Peter Scharf, Gérard Huet,
and Rogers Mathew for their helpful
comments and discussions regarding the
work. We thank the anonymous reviewers
for their constructive and helpful comments,
which greatly improved the article.

References

Altun, Yasemin, Mark Johnson, and Thomas
Hofmann. 2003. Investigating loss
functions and optimization methods for
discriminative learning of label sequences.
In Proceedings of the 2003 Conference on
Empirical Methods in Natural Language
Processing, pages 145-152, Sapporo.

Apte, Vaman Shivaram. 1965. The Practical
Sanskrit-English Dictionary: Containing
Appendices on Sanskrit Prosody and
Important Literary and Geographical Names of
Ancient India, Motilal Banarsidass
Publications.

Aralikatte, Rahul, Neelamadhav Gantayat,
Naveen Panwar, Anush Sankaran, and
Senthil Mani. 2018. Sanskrit sandhi
splitting using seq2(seq)2. In Proceedings of
the 2018 Conference on Empirical Methods in
Natural Language Processing,
pages 49094914, Brussels. DOL: https://
doi.org/10.18653/v1/D18-1530

Argamon, Shlomo, Navot Akiva, Amihood
Amir, and Oren Kapah. 2004. Efficient
unsupervised recursive word
segmentation using minimum description
length. In Proceedings of Coling 2004,
pages 1058-1064, Geneva. DOL: https://
doi.org/10.3115/1220355.1220507

835

https://doi.org/10.3115/1119355.1119374
https://doi.org/10.3115/1119355.1119374
https://doi.org/10.18653/v1/D18-1530
https://doi.org/10.18653/v1/D18-1530
https://doi.org/10.3115/1220355.1220507
https://doi.org/10.3115/1220355.1220507

Computational Linguistics

Beesley, K. R. and L. Karttunen. 2003. Finite
State Morphology. Number v. 1 in CSLI
studies in computational linguistics:
Center for the Study of Language and
Information. CSLI Publications.

Belanger, David. 2017. Deep Energy-Based
Models for Structured Prediction. Ph.D.
thesis, University of Massachusetts
Ambherst.

Belanger, David, Bishan Yang, and Andrew
McCallum. 2017. End-to-end learning for
structured prediction energy networks. In
Proceedings of the 34th International
Conference on Machine Learning-Volume 70,
pages 429-439.

Bengio, Yoshua, Réjean Ducharme, Pascal
Vincent, and Christian Jauvin. 2003. A
neural probabilistic language model.
Journal of Machine Learning Research,
3(Feb):1137-1155.

Bharati, Akshar and Rajeev Sangal. 1993.
Parsing free word order languages in the
Paninian framework. In 31st Annual
Meeting of the Association for Computational

Linguistics, pages 105-111, Columbus, OH.

DOL: https://doi.org/10.3115
/981574.981589.

Bhatta, Vinayak P. 1990. Theory of verbal
cognition (Sabdabodha). Bulletin of the
Deccan College Research Institute, 49:59-74.

Bishop, Christopher M. 1995. Neural
Networks for Pattern Recognition, Oxford
University Press, Inc.

Bohnet, Bernd. 2010. Top accuracy and fast

dependency parsing is not a contradiction.

In Proceedings of the 23rd International
Conference on Computational Linguistics
(Coling 2010), pages 89-97, Beijing.

Bohnet, Bernd, Joakim Nivre, Igor
Boguslavsky, Richdrd Farkas, Filip Ginter,
and Jan Haji¢. 2013. Joint morphological
and syntactic analysis for richly inflected
languages. In Transactions of the Association
for Computational Linguistics, 1:415-428.

Bojanowski, Piotr, Edouard Grave, Armand
Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword
information. Transactions of the Association
for Computational Linguistics, 5:135-146.
DOI: https://doi.org/10.1162/tacl_a
-00051

Boros, Tiberiu, Stefan Daniel Dumitrescu,
and Ruxandra Burtica. 2018. NLP-cube:
End-to-end raw text processing with
neural networks. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal
Dependencies, pages 171-179, Brussels.
https://www.aclweb.org/anthology
/K18-2017.

836

Volume 46, Number 4

Bron, Coen and Joep Kerbosch. 1973.
Algorithm 457: Finding all cliques of an
undirected graph. Communications of the
ACM, 16(9):575-577. DOI: https://doi
.org/10.1145/362342.362367

Carreras, Xavier. 2007. Experiments with a
higher-order projective dependency
parser. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational
Natural Language Learning
(EMNLP-CoNLL), pages 957961, Prague.

Cen, Yukuo, Xu Zou, Jianwei Zhang,
Hongxia Yang, Jingren Zhou, and Jie Tang.
2019. Representation learning for
attributed multiplex heterogeneous
network. In Proceedings of the 25th ACM
SIGKDD International Conference on
Knowledge Discovery & Data Mining,
pages 1358-1368, New York. DOI:
https://doi.org/10.1145/3292500
.3330964

Che, Wanxiang, Yijia Liu, Yuxuan Wang, Bo
Zheng, and Ting Liu. 2018. Towards better
UD parsing: Deep contextualized word
embeddings, ensemble, and treebank
concatenation. In Proceedings of the CONLL
2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies,
pages 55-64, Brussels. https://www
.aclweb.org/anthology/K18-2005.

Chen, Keh Jiann and Shing-Huan Liu. 1992.
Word identification for Mandarin Chinese
sentences. In Proceedings of the 14th
Conference on Computational Linguistics-
Volume 1, pages 101-107. DOL: https://
doi.org/10.3115/992066.992085

Chu, Yoeng Jin and T. H. Liu. 1965. On the
shortest arborescence of a directed graph.
Scientia Sinica, 14:1396-1400.

Cohen, Shay B. and Noah A. Smith. 2007.
Joint morphological and syntactic
disambiguation. In Proceedings of the 2007
Joint Conference on Empirical Methods in
Natural Language Processing and
Computational Natural Language Learning
(EMNLP-CoNLL), pages 208-217, Prague.
http://www.aclweb.org/anthology
/D/D07/D07-1022.

Collobert, Ronan, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. 2011. Natural language
processing (almost) from scratch. Journal o
Machine Learning Research, 12:2493-2537.

Coulson, Michael. 1976. Sanskrit: An
Introduction to the Classical Language, Teach
yourself books, Hodder and Stoughton.
https://books.google.co.uk/books
?7id=CASFbwAACAAJ.

https://doi.org/10.3115/981574.981589
https://doi.org/10.3115/981574.981589
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://www.aclweb.org/anthology/K18-2017
https://www.aclweb.org/anthology/K18-2017
https://doi.org/10.1145/362342.362367
https://doi.org/10.1145/362342.362367
https://doi.org/10.1145/3292500.3330964
https://doi.org/10.1145/3292500.3330964
https://www.aclweb.org/anthology/K18-2005
https://www.aclweb.org/anthology/K18-2005
https://doi.org/10.3115/992066.992085
https://doi.org/10.3115/992066.992085
http://www.aclweb.org/anthology/D/D07/D07-1022
http://www.aclweb.org/anthology/D/D07/D07-1022
https://books.google.co.uk/books?id=CASFbwAACAAJ
https://books.google.co.uk/books?id=CASFbwAACAAJ

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

Das, Monali. 2017. Discourse Analysis of
Sanskrit Texts: First Attempt Towards
Computational Processing. Ph.D. thesis,
University of Hyderabad, Hyderabad.
https://shodhganga.inflibnet.ac.in
/bitstream/10603/219349/1/01 title
.pdf

Dong, Yuxiao, Nitesh V. Chawla, and
Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for
heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining, pages 135-144. DOLI: https://
doi.org/10.1145/3097983.3098036

Doppa, Janardhan Rao, Alan Fern, and
Prasad Tadepalli. 2014. Hc-search: A
learning framework for search-based
structured prediction. Journal of Artificial
Intelligence Research, 50(1):369—-407. DOI:
https://doi.org/10.1613/jair.4212

Dozat, Timothy and Christopher D.
Manning. 2017. Deep biaffine attention for
neural dependency parsing. In 5th
International Conference on Learning
Representations, pages 1-8, Toulon.
https://openreview.net/forum?id
=Hk95PK91e.

Dror, Rotem, Gili Baumer, Segev Shlomov,
and Roi Reichart. 2018. The hitchhiker’s
guide to testing statistical significance in

natural language processing. In Proceedings

of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1:
Long Papers), pages 1383-1392, Melbourne.
DOI: https://doi.org/10.18653/v1
/P18-1128

Edmonds, Jack. 1967. Optimum branchings.
Journal of Research of the National Bureau of
Standards B, 71(4):233-240. DOL: https://
doi.org/10.6028/jres.071B.032

Edunov, Sergey, Myle Ott, Michael Auli,
David Grangier, and Marc’Aurelio
Ranzato. 2018. Classical structured
prediction losses for sequence to sequence
learning. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long Papers), pages 355-364. DOL:
https://doi.org/10.6028/jres.071B
.032

Efron, Bradley, Trevor Hastie, Iain Johnstone,
Robert Tibshirani, and others. 2004. Least
angle regression. The Annals of Statistics,
32(2):407-499. DOLI: https://doi.org
/10.1214/009053604000000067

Eisner, Jason. 2002. Parameter estimation for
probabilistic finite-state transducers. In

Proceedings of 40th Annual Meeting of the
Association for Computational Linguistics,
pages 1-8, Philadelphia, PA. DOI:
https://doi.org/10.3115/1073083
.1073085

Fu, Xinyu, Jiani Zhang, Zigiao Meng, and
Irwin King. 2020. Magnn: Metapath
aggregated graph neural network for
heterogeneous graph embedding. In
Proceedings of The Web Conference 2020,
WWW 20, pages 2331-2341, New York.
DOI: https://doi.org/10.1145/3366423
.3380297, PMID: 32303395, PMCID:
PMC7156245

Gardner, Matt and Tom Mitchell. 2015.
Efficient and expressive knowledge base
completion using subgraph feature
extraction. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing, pages 1488-1498,
Lisbon.

Gardner, Matt, Partha Talukdar, and Tom
Mitchell. 2015. Combining vector space
embeddings with symbolic logical
inference over open-domain text. In 2015
AAAI Spring Symposium Series, pages 61-65.

Gaudel, Romaric and Michele Sebag. 2010.
Feature selection as a one-player game.
International Conference on Machine
Learning, pages 359-366.

Gehring, Jonas, Michael Auli, David
Grangier, Denis Yarats, and Yann N.
Dauphin. 2017. Convolutional sequence to
sequence learning, In Proceedings of
Machine Learning Research, pages 1243-1252,
Sydney. http://proceedings.mlr.press
/v70/gehringl7a.html

Gibson, Edward. 1998. Linguistic complexity:
Locality of syntactic dependencies.
Cognition, 68(1):1-76. DOI: https://doi
.org/10.1016/50010-0277(98) 00034-1

Gibson, Edward, Richard Futrell, Steven T.
Piandadosi, Isabelle Dautriche, Kyle
Mahowald, Leon Bergen, and Roger Levy.
2019. How efficiency shapes human
language. Trends in Cognitive Sciences,
23(5):389—407. DOL: https://doi.org/10
.1016/j.tics.2019.02.003, PMID: 31006626

Gibson, Edward, Steven T. Piantadosi,
Kimberly Brink, Leon Bergen, Eunice Lim,
and Rebecca Saxe. 2013. A noisy-channel
account of crosslinguistic word-order
variation. Psychological Science,
24(7):1079-1088.

Gildea, Daniel and David Temperley. 2010.
Do grammars minimize dependency
length? Cognitive Science, 34(2):286-310.

Gillon, Brendan and Benjamin Shaer. 2005.
Classical Sanskrit, ‘wild trees’, and the

837

https://shodhganga.inflibnet.ac.in/bitstream/10603/219349/1/01_title.pdf
https://shodhganga.inflibnet.ac.in/bitstream/10603/219349/1/01_title.pdf
https://shodhganga.inflibnet.ac.in/bitstream/10603/219349/1/01_title.pdf
https://doi.org/10.1145/3097983.3098036
https://doi.org/10.1145/3097983.3098036
https://doi.org/10.1613/jair.4212
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.6028/jres.071B.032
https://doi.org/10.6028/jres.071B.032
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
https://doi.org/10.3115/1073083.1073085
https://doi.org/10.3115/1073083.1073085
https://doi.org/10.1145/3366423.3380297
https://doi.org/10.1145/3366423.3380297
https://europepmc.org/article/MED/32303395
https://www.pubmed.ncbi.nlm.nih.gov/PMC7156245
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.1016/S0010-0277(98)00034-1
https://doi.org/10.1016/S0010-0277(98)00034-1
https://doi.org/10.1016/j.tics.2019.02.003
https://doi.org/10.1016/j.tics.2019.02.003
https://doi.org/10.1016/j.tics.2019.02.003
https://europepmc.org/article/MED/31006626

Computational Linguistics

properties of free word order languages. In

Katalin E. Kiss, editor, Universal Grammar
in the Reconstruction of Ancient Languages.
De Gruyter Mouton, pages 457-494.

Ginter, Filip, Jan Haji¢, Juhani Luotolahti,
Milan Straka, and Daniel Zeman. 2017.
CoNLL 2017 shared task - automatically
annotated raw texts and word
embeddings. LINDAT/CLARIAH-CZ
digital library at the Institute of Formal
and Applied Linguistics (UFAL), Faculty
of Mathematics and Physics, Charles
University.

Goldberg, Yoav and Michael Elhadad. 2010.
An efficient algorithm for easy-first
non-directional dependency parsing. In
Human Language Technologies: The 2010
Annual Conference of the North American
Chapter of the Association for Computational
Linguistics, pages 742-750, Los Angeles, CA.

Goldberg, Yoav and Reut Tsarfaty. 2008. A
single generative model for joint
morphological segmentation and syntactic
parsing. In Proceedings of ACL-08: HLT,
pages 371-379, Columbus, OH.

Goldsmith, John. 2001. Unsupervised
learning of the morphology of a natural
language. Computational Linguistics,
27(2):153-198.

Goyal, Pawan and Gerard Huet. 2016.
Design and analysis of a lean interface for
Sanskrit corpus annotation. Journal of
Language Modelling, 4(2):145-182. DOI:
https://doi.org/10.15398/j1lm.v41i2.108

Goyal, Pawan, Gérard Huet, Amba Kulkarni,
Peter Scharf, and Ralph Bunker. 2012. A
distributed platform for Sanskrit
processing. In Proceedings of COLING 2012,
pages 1011-1028.

Guyon, Isabelle, Jason Weston, Stephen
Barnhill, and Vladimir Vapnik. 2002. Gene
selection for cancer classification using
support vector machines. Machine
Learning, 46(1-3):389-422.

Hakkani-Tur, Diiek Z., Kemal Oflazer, and
Gokhan Tur. 2000. Statistical
morphological disambiguation for
agglutinative languages. COLING 2000
Volume 1: The 18th International Conference
on Computational Linguistics,
pages 285-291. DOI: https://doi.org
/10.3115/990820.990862

Hasler, Eva, Felix Stahlberg, Marcus Tomalin,
Adria de Gispert, and Bill Byrne. 2017. A
comparison of neural models for word
ordering. In Proceedings of the 10th
International Conference on Natural Language
Generation, pages 208-212. DOIL:
https://doi.org/10.18653/v1/W17-3531

838

Volume 46, Number 4

Hatori, Jun, Takuya Matsuzaki, Yusuke

Miyao, and Jun’ichi Tsujii. 2012.
Incremental joint approach to word
segmentation, POS tagging, and
dependency parsing in Chinese. In
Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 1045-1053,
JejuIsland. http://www.aclweb.org
/anthology/P12-1110.

He, Wei, Haifeng Wang, Yuqing Guo, and

Ting Liu. 2009. Dependency based Chinese
sentence realization. In Proceedings of the
Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint
Conference on Natural Language Processing of
the AFNLP, pages 809-816, Suntec. DOI:
https://doi.org/10.3115/1690219
.1690260

Heigold, Georg, Guenter Neumann, and

Josef van Genabith. 2017. An extensive
empirical evaluation of character-based
morphological tagging for 14 languages. In
Proceedings of the 15th Conference of the
European Chapter of the Association for
Computational Linguistics: Volume 1, Long
Papers, pages 505-513. DOI: https://doi
.org/10.18653/v1/E17-1048

Hellwig, Oliver. 2010-2016. DCS - The Digital

Corpus of Sanskrit. Berlin. http://kjc
-sv013.kjc.uni-heidelberg.de/dcs/

Hellwig, Oliver. 2015. Using recurrent neural

networks for joint compound splitting

and Sandhi resolution in Sanskrit. In
Proceedings of the 7th Language & Technology
Conference, pages 289-293.

Hellwig, Oliver and Sebastian Nehrdich.

2018. Sanskrit word segmentation using
character-level recurrent and
convolutional neural networks. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 2754-2763. DOIL:
https://doi.org/10.18653/v1/D18
-1295

Hirakawa, H. 2001. Semantic dependency

analysis method for Japanese based on
optimum tree search algorithm. In
Proceedings of the PACLING2001,

pages 117-126.

Hock, Hans Henrich. 2015. Some issues in

Sanskrit syntax. In Peter Scharf, editor,
Sanskrit Syntax, Sanskrit Library,
Université Paris Diderot, pages 1-52.

Horvat, Matic and William Byrne. 2014.

A graph-based approach to string
regeneration. In Proceedings of the Student
Research Workshop at the 14th Conference of
the European Chapter of the Association for

https://doi.org/10.15398/jlm.v4i2.108
https://doi.org/10.3115/990820.990862
https://doi.org/10.3115/990820.990862
https://doi.org/10.18653/v1/W17-3531
http://www.aclweb.org/anthology/P12-1110
http://www.aclweb.org/anthology/P12-1110
https://doi.org/10.3115/1690219.1690260
https://doi.org/10.3115/1690219.1690260
https://doi.org/10.18653/v1/E17-1048
https://doi.org/10.18653/v1/E17-1048
http://kjc-sv013.kjc.uni-heidelberg.de/dcs/
http://kjc-sv013.kjc.uni-heidelberg.de/dcs/
https://doi.org/10.18653/v1/D18-1295
https://doi.org/10.18653/v1/D18-1295

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

Computational Linguistics, pages 85-95,
Gothenburg. DOL: https://doi.org/10
.3115/v1/E14-3010

Huet, Gérard. 2003. Zen and the art of
symbolic computing: Light and fast
applicative algorithms for computational
linguistics, In Practical Aspects of Declarative
Languages, pages 17-18, Springer, Berlin,
Heidelberg. DOI: https://doi.org/10
.1007/3-540-36388-2_3

Huet, Gérard. 2005. A functional toolkit for
morphological and phonological
processing, application to a Sanskrit
tagger. Journal of Functional Programming,
15(4):573-614. DOL: https://doi.org/10
.1017/50956796804005416

Huet, Gérard and Amba Kulkarni. 2014.
Sanskrit linguistics Web services. In
Proceedings of COLING 2014, the 25th
International Conference on Computational
Linguistics: System Demonstrations,
pages 48-51, Dublin.

Hyman, Malcolm D. 2009. Sanskrit
computational linguistics. PaNinian Sandhi
to Finite State Calculus, Springer,
pages 253-265, Dublin.

Ishikawa, Hiroshi. 2011. Transformation of
general binary MRF minimization to the
first-order case. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
33(6):1234-1249. DOL: https://doi
.org/10.1109/TPAMI.2010.91, PMID:
20421673

Johnson, Mark and Sharon Goldwater. 2009.
Improving nonparameteric Bayesian
inference: experiments on unsupervised
word segmentation with adaptor
grammars. In Proceedings of Human
Language Technologies: The 2009 Annual
Conference of the North American Chapter of
the Association for Computational Linguistics,
pages 317-325, Boulder, CO. DOL: https://
doi.org/10.3115/1620754.1620800

Kanerva, Jenna, Filip Ginter, Niko Miekka,
Akseli Leino, and Tapio Salakoski. 2018.
Turku neural parser pipeline: An
end-to-end system for the CoNLL 2018
shared task. In Proceedings of the CoONLL
2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies,
pages 133-142, Brussels.

Kaplan, Ronald M. and Martin Kay. 1981.
Phonological rules and finite-state
transducers. In Linguistic Society of America
Meeting Handbook, Fifty-Sixth Annual
Meeting, pages 27-30.

Kiela, Douwe, Changhan Wang, and
Kyunghyun Cho. 2018. Dynamic
meta-embeddings for improved sentence

representations. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 1466-1477. DOLI:
https://doi.org/10.18653/v1/D18-1176

Kiparsky, P. and J. F. Staal. 1969. Syntactic
and semantic relations in Paini.
Foundations of Language, 5(1):83-117.

Kiparsky, Paul. 1995. Painian linguistics. In
Concise History of the Language Sciences,
Elsevier, pages 59-65. DOI: https://
doi.org/10.1016/B978-0-08-042580
-1.50012-X

Kiparsky, Paul. 2009. On the architecture of
Paini’s grammar. Sanskrit Computational
Linguistics, pages 33-94, Springer, Berlin,
Heidelberg.

Kiperwasser, Eliyahu and Yoav Goldberg.
2016a. Simple and accurate dependency
parsing using bidirectional LSTM feature
representations. Transactions of the
Association for Computational Linguistics,
4:313-327. DOLI: https://doi.org/10
.1162/tacl_a 00101

Kiperwasser, Eliyahu and Yoav Goldberg.
2016b. Simple and accurate dependency
parsing using bidirectional LSTM feature
representations. Transactions of the
Association for Computational Linguistics,
4:313-327. DOL: https://doi.org
/10.1162.1162/tacl_a_00101

Kohavi, Ron and George H. John. 1997.
Wrappers for feature subset selection.
Artificial Intelligence, 97(1-2):273-324. DOI:
https://doi.org/10.1016/50004-3702
(97)00043-X

Kondratyuk, Dan. 2019. Cross-lingual
lemmatization and morphology tagging
with two-stage multilingual BERT
fine-tuning. In Proceedings of the 16th
Workshop on Computational Research in
Phonetics, Phonology, and Morphology,
pages 12-18, Florence. DOL: https://doi
.org/10.18653/v1/W19-4203

Kraskov, Alexander, Harald Stogbauer, and
Peter Grassberger. 2004. Estimating mutual
information. Physical Review E, 69(6):69-85.
DOI: https://doi.org/10.1103
/PhysRevE.69.066138, PMID: 15244698

Krishna, Amrith, Bishal Santra, Sasi Prasanth
Bandaru, Gaurav Sahu, Vishnu Dutt
Sharma, Pavankumar Satuluri, and Pawan
Goyal. 2018. Free as in free word order:

An energy based model for word
segmentation and morphological tagging
in Sanskrit. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 2550-2561. DOLI:
https://doi.org/10.18653/v1/10
x-12768

839

https://doi.org/10.3115/v1/E14-3010
https://doi.org/10.3115/v1/E14-3010
https://doi.org/10.1007/3-540-36388-2_3
https://doi.org/10.1007/3-540-36388-2_3
https://doi.org/10.1017/S0956796804005416
https://doi.org/10.1017/S0956796804005416
https://doi.org/10.1109/TPAMI.2010.91
https://doi.org/10.1109/TPAMI.2010.91
https://europepmc.org/article/MED/20421673
https://doi.org/10.3115/1620754.1620800
https://doi.org/10.3115/1620754.1620800
https://doi.org/10.18653/v1/D18-1176
https://doi.org/10.1016/B978-0-08-042580-1.50012-X
https://doi.org/10.1016/B978-0-08-042580-1.50012-X
https://doi.org/10.1016/B978-0-08-042580-1.50012-X
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.18653/v1/W19-4203
https://doi.org/10.18653/v1/W19-4203
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://europepmc.org/article/MED/15244698
https://doi.org/10.18653/v1/D18-1276
https://doi.org/10.18653/v1/D18-1276

Computational Linguistics

Krishna, Amrith, Bishal Santra, Pavankumar
Satuluri, Sasi Prasanth Bandaru, Bhumi
Faldu, Yajuvendra Singh, and Pawan
Goyal. 2016. Word segmentation in
Sanskrit using path constrained random
walks. In Proceedings of COLING 2016,
the 26th International Conference on
Computational Linguistics: Technical Papers,
pages 494-504.

Krishna, Amrith, Pavan Kumar Satuluri, and

Pawan Goyal. 2017. A dataset for Sanskrit
word segmentation. In Proceedings of the
Joint SIGHUM Workshop on Computational
Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature,
pages 105-114, Vancouver. DOL:
https://doi.org/10.18653/v1/W17
-2214

Krishna, Amrith, Vishnu Sharma, Bishal
Santra, Aishik Chakraborty, Pavankumar
Satuluri, and Pawan Goyal. 2019. Poetry
to prose conversion in Sanskrit as a
linearisation task: A case for low-resource

languages. In Proceedings of the 57th Annual

Meeting of the Association for Computational

Linguistics, pages 1160-1166, Florence. DOI:
https://doi.org/10.18653/v1/P19-1111
Kiibler, Sandra, Ryan McDonald, and Joakim

Nivre. 2009. Dependency parsing.
Synthesis Lectures on Human Language
Technologies, 1(1):1-127. DOL: https://

doi.org/10.2200/S00169ED1V01Y200901HLTO02

Kudo, Taku. 2006. Mecab: Yet another
part-of-speech and morphological
analyzer. http://mecab.sourceforge. jp

Kudo, Taku, Kaoru Yamamoto, and Yuji
Matsumoto. 2004. Applying conditional
random fields to Japanese morphological
analysis. In Proceedings of EMNLP 2004,
pages 230237, Barcelona.

Kulkarni, Amba. 2013. A deterministic
dependency parser with dynamic

programming for Sanskrit. In Proceedings of

the Second International Conference on
Dependency Linguistics (DepLing 2013),
pages 157-166.

Kulkarni, Amba, Sheetal Pokar, and
Devanand Shukl. 2010. Designing a
constraint based parser for Sanskrit. In
International Sanskrit Computational
Linguistics Symposium, pages 70-90. DOI:
https://doi.org/10.1007/978-3-642
-17528-2.6

Kulkarni, Amba and K. V.
Ramakrishnamacharyulu. 2013. Parsing
Sanskrit texts: Some relation specific
issues. In Proceedings of the 5th International
Sanskrit Computational Linguistics
Symposium.

840

Volume 46, Number 4

Kulkarni, Amba and Dipti Sharma. 2019.
Painian syntactico-semantic relation labels.
In Proceedings of the Fifth International
Conference on Dependency Linguistics
(Depling, SyntaxFest 2019), pages 198-208,
Paris. DOL: https://doi.org/10.18653
/v1/W19-7724, PMCID: PMC6699228

Kulkarni, Amba, Preethi Shukla,
Pavankumar Satuluri, and Devanand
Shukl. 2015. How free is free word order in
Sanskrit. The Sanskrit Library, USA,
269-304, https://goo.gl/7GnXus

Kulkarni, Malhar, Chaitali Dangarikar,
Irawati Kulkarni, Abhishek Nanda, and
Pushpak Bhattacharyya. 2010. Introducing
Sanskrit wordnet. In Proceedings on the 5th
global wordnet conference (GWC 2010),
pages 287-294, Mumbai.

Kuncoro, Adhiguna, Miguel Ballesteros,
Lingpeng Kong, Chris Dyer, Graham
Neubig, and Noah A. Smith. 2017. What
do recurrent neural network grammars
learn about syntax? In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics:
Volume 1, Long Papers, pages 1249-1258,
Valencia.

Lample, Guillaume, Miguel Ballesteros,
Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. 2016. Neural
architectures for named entity recognition.
In Proceedings of of NAACL-HLT,
pages 260-270. DOI: https://doi.org/10
.18653/v1/N16-1030

Lao, Ni and William W. Cohen. 2010.
Relational retrieval using a combination of
path-constrained random walks. Machine
Learning, 81(1):53-67. DOL: https://doi
.org/10.1007/s10994-010-5205-8

Lapata, Mirella. 2003. Probabilistic text
structuring: Experiments with sentence
ordering. In Proceedings of the 41st Annual
Meeting of the Association for Computational
Linguistics, pages 545-552, Sapporo. DOI:
https://doi.org/10.3115/1075096
.1075165

LeCun, Yann, Léon Bottou, Yoshua Bengio,
and Patrick Haffner. 1998. Gradient-based
learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278-2324.
DOI: https://doi.org/10.1109/5
.726791

LeCun, Yann, Sumit Chopra, Raia Hadsell,
Marc’ Aurelio Ranzato, and Fu-Jie Huang.
2006. A tutorial on energy-based learning.
In Gokhan Baklr, Thomas Hofmann,
Bernhard Schoélkopf, Alexander J. Smola,
Ben Taskar, and S. V. N. Vishwanathan,
editors, Predicting Structured Data. MIT
Press, pages 191-241.

https://doi.org/10.18653/v1/W17-2214
https://doi.org/10.18653/v1/W17-2214
httphttps://doi.org/10.18653/v1/P19-1111
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
http://mecab.sourceforge.jp
https://doi.org/10.1007/978-3-642-17528-2_6
https://doi.org/10.1007/978-3-642-17528-2_6
https://doi.org/10.18653/v1/W19-7724
https://doi.org/10.18653/v1/W19-7724
https://www.pubmed.ncbi.nlm.nih.gov/PMC6699228
https://goo.gl/7GnXuS
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.3115/1075096.1075165
https://doi.org/10.3115/1075096.1075165
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

Krishna et al.

LeCun, Yann, Sumit Chopra, Marc’ Aurelio
Ranzato, and Fu-Jie Huang. 2007.
Energy-based models in document
recognition and computer vision. In
Proceedings of International Conference on
Document Analysis and Recognition
(ICDAR), pages 337-341, Curitiba. DOL
https://doi.org/10.1109/ICDAR.2007
.4378728

Liu, Yijia, Yue Zhang, Wanxiang Che, and
Bing Qin. 2015. Transition-based syntactic
linearization. In Proceedings of the 2015
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies,
pages 113-122, Denver, CO. DOL:
https://doi.org/10.3115/v1/N15
-1012

Malaviya, Chaitanya, Matthew R. Gormley,
and Graham Neubig. 2018. Neural
factor graph models for cross-lingual
morphological tagging. In Proceedings of the
56th Annual Meeting of the Association for
Computational Linguistics (Volume 1:

Long Papers), pages 2653-2663. DOL:
https://doi.org/10.18653/v1
/P18-1247

Matthews, P. H. 2007. The Concise Oxford
Dictionary of Linguistics, Oxford Paperback
Reference, Oxford University Press.

McCarthy, Arya D., Ekaterina Vylomova,
Shijie Wu, Chaitanya Malaviya, Lawrence
Wolf-Sonkin, Garrett Nicolai, Christo
Kirov, Miikka Silfverberg, Sabrina J.
Mielke, Jeffrey Heinz, Ryan Cotterell, and
Mans Hulden. 2019. The SIGMORPHON
2019 shared task: Morphological analysis
in context and cross-lingual transfer for
inflection. In Proceedings of the 16th
Workshop on Computational Research in
Phonetics, Phonology, and Morphology,
pages 229-244, Florence. https: //wuw
.aclweb.org/anthology/W19-4226

McDonald, Ryan, Fernando Pereira, Seth
Kulick, Scott Winters, Yang Jin, and Pete
White. 2005a. Simple algorithms for
complex relation extraction with
applications to biomedical IE. In
Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics
(ACL'05), pages 491-498.

McDonald, Ryan, Fernando Pereira,

Kiril Ribarov, and Jan Hajic. 2005b.
Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of
Human Language Technology Conference and
Conference on Empirical Methods in Natural
Language Processing, pages 523-530,
Vancouver. DOL: https://doi.org/10
.3115/1220575.1220641

A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

Melnad, Keshav S., Pawan Goyal, and Peter
Scharf. 2015. Meter identification of
Sanskrit verse. In Sanskrit Syntax, Sanskrit
Library, Université Paris Diderot,
pages 325-346.

Meng, Changping, Reynold Cheng, Silviu
Maniu, Pierre Senellart, and Wangda
Zhang. 2015. Discovering meta-paths in
large heterogeneous information
networks. In Proceedings of the 24th
International Conference on World Wide Web,
WWW "15, pages 754-764, Geneva. DOLI:
https://doi.org/10.1145/2736277
.2741123, PMCID: PMC4632928

Mittal, Vipul. 2010. Automatic Sanskrit
segmentizer using finite state transducers.
In Proceedings of the ACL 2010 Student
Research Workshop, pages 85-90.

Mohri, Mehryar. 1997. Finite-state
transducers in language and speech
processing. Computational Linguistics,
23(2):269-311.

More, Amir. 2016. Joint morpho-syntactic
processing of morphologically rich
languages in a transition-based
framework. Master’s thesis. The
Interdisciplinary Center, Herzliya, Israel.

More, Amir, Amit Seker, Victoria Basmova,
and Reut Tsarfaty. 2019. Joint
transition-based models for
morpho-syntactic parsing: Parsing
strategies for MRLs and a case study from
modern Hebrew. Transactions of the
Association for Computational Linguistics,
7:33-48. DOI: https://doi.org/10
.1162/tacl_a_00253

More, Amir and Reut Tsarfaty. 2016.
Data-driven morphological analysis and
disambiguation for morphologically rich
languages and universal dependencies. In
Proceedings of COLING 2016, the 26th
International Conference on Computational
Linguistics: Technical Papers, pages 337-348,
Osaka.

Miiller, Andreas C. and Sven Behnke. 2014.
Pystruct: Learning structured prediction in
Python. Journal of Machine Learning
Research, 15(1):2055-2060.

Miiller, Thomas, Helmut Schmid, and
Hinrich Schiitze. 2013. Efficient
higher-order CRFs for morphological
tagging. In Proceedings of the 2013
Conference on Empirical Methods in Natural
Language Processing, pages 322-332.

Nair, Sivaja S. and Amba Kulkarni. 2010. The
knowledge structure in Amarakosa. In
Sanskrit Computational Linguistics,
pages 173-189, Springer, Berlin,
Heidelberg. DOI: https://doi.org/10
.1007/978-3-642-17528-2_13

841

https://doi.org/10.1109/ICDAR.2007.4378728
https://doi.org/10.1109/ICDAR.2007.4378728
https://doi.org/10.3115/v1/N15-1012
https://doi.org/10.3115/v1/N15-1012
https://doi.org/10.18653/v1/P18-1247
https://doi.org/10.18653/v1/P18-1247
https://www.aclweb.org/anthology/W19-4226
https://www.aclweb.org/anthology/W19-4226
https://doi.org/10.3115/1220575.1220641
https://doi.org/10.3115/1220575.1220641
https://doi.org/10.1145/2736277.2741123
https://doi.org/10.1145/2736277.2741123
https://www.pubmed.ncbi.nlm.nih.gov/PMC4632928
https://doi.org/10.1162/tacl_a_00253
https://doi.org/10.1162/tacl_a_00253
https://doi.org/10.1007/978-3-642-17528-2_13
https://doi.org/10.1007/978-3-642-17528-2_13

Computational Linguistics

Natarajan, Abhiram and Eugene Charniak.
2011. S3-statistical samdhi splitting. In
Proceedings of the 5th International Joint
Conference on Natural Language Processing,
pages 301-308.

Nichols, Johanna. 1986. Head-marking and
dependent-marking grammar. Language,
62(1):56-119. DOI: https://doi.org/10
.1353/1an.1986.0014

Nivre, Joakim, Mitchell Abrams, Zeljko Agic,
Lars Ahrenberg, Lene Antonsen et al. 2018.
Universal dependencies 2.3. LINDAT
/CLARIAH-CZ digital library at the
Institute of Formal and Applied
Linguistics (UFAL), Faculty of
Mathematics and Physics, Charles
University, http://hdl.handle.net
/11234/1-2895

Papineni, Kishore, Salim Roukos, Todd
Ward, and Wei-Jing Zhu. 2002. Bleu: A
method for automatic evaluation of
machine translation. In Proceedings of 40th
Annual Meeting of the Association for
Computational Linguistics, pages 311-318,
Philadelphia, PA. DOL: https://doi
.org/10.3115/1073083.1073135

Pollock, Sheldon. 2003. Sanskrit literary
culture from the inside out. In Literary
Cultures in History: Reconstructions from
South Asia. University of California Press,
pages 39-130. DOL: https://doi.org/10
.15625/9780520926738

Puduppully, Ratish, Yue Zhang, and Manish
Shrivastava. 2017. Transition-based deep
input linearization. In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics:
Volume 1, Long Papers, pages 643—654,
Valencia. DOI: https://doi.org/10
.18653/v1/E17-1061

Qi, Peng, Timothy Dozat, Yuhao Zhang, and
Christopher D. Manning. 2018. Universal
dependency parsing from scratch. In
Proceedings of the CONLL 2018 Shared Task:
Multilingual Parsing from Raw Text to
Universal Dependencies, pages 160-170,
Brussels.

Qi, Peng, Yuhao Zhang, Yuhui Zhang, Jason
Bolton, and Christopher D. Manning. 2020.
Stanza: A Python natural language
processing toolkit for many human
languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations,
pages 101-108. DOI: https://doi.org/10
.18653/v1.18653/v1/2020.acl-demos. 14

Ramkrishnamacharyulu, K. V. 2009.
Annotating Sanskrit texts based on
$§abdabodha systems. In International

842

Volume 46, Number 4

Sanskrit Computational Linguistics
Symposium, pages 26-39. DOL: https://
doi.org/10.1007/978-3-540-93885-9_3

Ratliff, Nathan D., J. Andrew Bagnell, and
Martin A. Zinkevich. 2007. (online)
Subgradient methods for structured
prediction. In Proceedings of the Eleventh
International Conference on Artificial
Intelligence and Statistics (AlStats),
pages 380-387, JMLR.org, San Juan.

Reddy, Vikas, Amrith Krishna, Vishnu
Sharma, Prateek Gupta, Vineeth M. R., and
Pawan Goyal. 2018. Building a word
segmenter for Sanskrit overnight. In
Proceedings of the Eleventh International
Conference on Language Resources and
Evaluation (LREC 2018), pages 1666-1671,
European Language Resources
Association (ELRA), Miyazaki.

Rother, Carsten, Vladimir Kolmogorov,
Victor Lempitsky, and Martin Szummer.
2007. Optimizing binary MRFS via
extended roof duality. In 2007 IEEE
Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2007),
pages 1-8, Minneapolis, MN. DOI: https://
doi.org/10.1109/CVPR.2007.383203

Sahin, Gozde Gul and Mark Steedman. 2018.
Data augmentation via dependency tree
morphing for low-resource languages. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 5004-5009, Brussels.
DOL: https://doi.org/10.18653/v1
/D18-1545

Scharf, Peter, Anuja Ajotikar, Sampada
Savardekar, and Pawan Goyal. 2015.
Distinctive features of poetic syntax
preliminary results. In Sanskrit Syntax.
pages 305-324.

Scharf, Peter M. 2013. Linguistics in India.
The Oxford Handbook of the History of
Linguistics. pages 227-257. DOIL
https://doi.org/10.1093/oxfordhb
/9780199585847.013.0012

Schaufele, Steven William. 1991. Free
Word-Order Syntax: The Challenge from Vedic
Sanskrit to Contemporary Formal Syntactic
Theory. Ph.D. thesis, University of Illinois
at Urbana-Champaign.

Schmaltz, Allen, Alexander M. Rush, and
Stuart Shieber. 2016. Word ordering
without syntax. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing, pages 2319-2324,
Austin, TX. DOIL: https://doi.org/10
.18653/v1/D16-1255

Seeker, Wolfgang and Ozlem Cetinoglu.
2015. A graph-based lattice dependency

https://doi.org/10.1353/lan.1986.0014
https://doi.org/10.1353/lan.1986.0014
http://hdl.handle.net/11234/1-2895
http://hdl.handle.net/11234/1-2895
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1525/9780520926738
https://doi.org/10.1525/9780520926738
https://doi.org/10.18653/v1/E17-1061
https://doi.org/10.18653/v1/E17-1061
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.1007/978-3-540-93885-9_3
https://doi.org/10.1007/978-3-540-93885-9_3
https://doi.org/10.1109/CVPR.2007.383203
https://doi.org/10.1109/CVPR.2007.383203
https://doi.org/10.18653/v1/D18-1545
https://doi.org/10.18653/v1/D18-1545
https://doi.org/10.1093/oxfordhb/9780199585847.013.0012
https://doi.org/10.1093/oxfordhb/9780199585847.013.0012
https://doi.org/10.18653/v1/D16-1255
https://doi.org/10.18653/v1/D16-1255

Krishna et al.

parser for joint morphological
segmentation and syntactic analysis.
Transactions of the Association for
Computational Linguistics, 3:359-373.
DOLI: https://doi.org/10.1162
/tacl_a 00144

Seeker, Wolfgang and Jonas Kuhn. 2013.
Morphological and syntactic case in
statistical dependency parsing.
Computational Linguistics, 39(1):23-55.

Seker, Amit, Amir More, and Reut Tsarfaty.
2018. Universal morpho-syntactic parsing
and the contribution of lexica: Analyzing
the ONLP lab submission to the CoNLL
2018 shared task. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal
Dependencies, pages 208-215, Brussels.

Shao, Yan, Christian Hardmeier, and Joakim
Nivre. 2018. Universal word segmentation:
Implementation and interpretation.
Transactions of the Association for
Computational Linguistics, 6:421-435.

DOI: https://doi.org/10.1162
/tacl_a_00033

Shi, Chuan, Yitong Li, Jiawei Zhang, Yizhou
Sun, and S. Yu Philip. 2017. A survey of
heterogeneous information network
analysis. IEEE Transactions on Knowledge
and Data Engineering, 29(1):17-37. DOL
https://doi.org/10.1109/TKDE.2016
.2598561

Smith, Noah A., David A. Smith, and Roy W.
Tromble. 2005. Context-based
morphological disambiguation with
random fields. In Proceedings of Human
Language Technology Conference and
Conference on Empirical Methods in Natural
Language Processing, pages 475482,
Vancouver. DOI: https://doi.org/10
.3115/1220575.1220635

Socher, Richard, Christopher D. Manning,
and Andrew Y. Ng. 2010. Learning
continuous phrase representations and
syntactic parsing with recursive neural
networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature
Learning Workshop, pages 1-9.

Sproat, Richard, Chilin Shih, William Gale,
and Nancy Chang. 1994. A stochastic
finite-state word-segmentation algorithm
for Chinese. In Proceedings of the 32nd
Annual Meeting of the Association for
Computational Linguistics, pages 66-73, Las
Cruces, NM. DOI: https://doi.org
/10.3115/981732.981742

Sproat, Richard W., Chilin Shih, William
Gale, and Nancy Chang. 1996. A stochastic
finite-state word-segmentation algorithm

A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

for Chinese. Computational Linguistics,
22(3):377-404.

Srikumar, Vivek. 2017. An algebra for feature
extraction. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 1891-1900, Vancouver.

Srinivasa Aiyankar. 1910. The Ramayana
of Valmiki, Madras : Little Flower Co.
Book.

Staal, F. 2008. Discovering the Vedas: Origins,
Mantras, Rituals, Insights, Penguin books.

Staal, Johan Frederik. 1967. Word Order in
Sanskrit and Universal Grammar,
Foundations of Language Supplementary
Series, 5, Springer Science & Business
Media. DOI: https://doi.org/10
.1007/978-94-010-9947-9, PMID:
5586986

Straka, Milan and Jana Strakova. 2017.
Tokenizing, POS tagging, lemmatizing
and parsing UD 2.0 with UDpipe. In
Proceedings of the CONLL 2017 Shared Task:
Multilingual Parsing from Raw Text to
Universal Dependencies, pages 88-99,
Vancouver. DOL: https://doi.org/10
.18653/v1/K17-3009

Straka, Milan, Jana Strakové, and Jan Hajic.
2019. UDPipe at SIGMORPHON 2019:
Contextualized embeddings,
regularization with morphological
categories, corpora merging. In Proceedings
of the 16th Workshop on Computational
Research in Phonetics, Phonology, and
Morphology, pages 95-103, Florence.

DOI: https://doi.org/10.18653/v1
/W19-4212

Strakové, Jana, Milan Straka, and Jan Hajic.
2014. Open-source tools for morphology,
lemmatization, POS tagging and named
entity recognition. In Proceedings of 52nd
Annual Meeting of the Association for
Computational Linguistics: System
Demonstrations, pages 13-18, Baltimore,
MD. DOI: https://doi.org/10.3115/v1
/P14-5003

Sun, Weiwei. 2010. Word-based and
character-based word segmentation
models: Comparison and combination. In
COLING 2010: Posters, pages 1211-1219,
Beijing.

Sutton, Charles, Andrew McCallum, and
Khashayar Rohanimanesh. 2007. Dynamic
conditional random fields: Factorized
probabilistic models for labeling and
segmenting sequence data. Journal of
Machine Learning Research, 8(Mar):693-723.

843

https://doi.org/10.1162/tacl_a_00144
https://doi.org/10.1162/tacl_a_00144
https://doi.org/10.1162/tacl_a_00033
https://doi.org/10.1162/tacl_a_00033
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.1109/TKDE.2016.2598561
https://doi.org/10.3115/1220575.1220635
https://doi.org/10.3115/1220575.1220635
https://doi.org/10.3115/981732.981742
https://doi.org/10.3115/981732.981742
https://doi.org/10.1007/978-94-010-9947-9
https://doi.org/10.1007/978-94-010-9947-9
https://europepmc.org/article/MED/5586986
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/K17-3009
https://doi.org/10.18653/v1/W19-4212
https://doi.org/10.18653/v1/W19-4212
https://doi.org/10.3115/v1/P14-5003
https://doi.org/10.3115/v1/P14-5003

Computational Linguistics

Takahashi, Hiromitsu. 1980. An approximate
solution for Steiner problem in graphs.
Mathamatica Japonica, 24(6):573-577.

Taskar, Ben, Carlos Guestrin, and Daphne
Koller. 2003. Max-margin Markov
networks. In Proceedings of the 16th
International Conference on Neural
Information Processing Systems, NIPS'03,
pages 25-32, Cambridge, MA.

Tkachenko, Alexander and Kairit Sirts. 2018.
Modeling composite labels for neural
morphological tagging. In Proceedings of the
22nd Conference on Computational Natural
Language Learning, pages 368-379. DOI:
https://doi.org/10.18653/v1
/K18-1036

Tomita, Etsuji, Akira Tanaka, and Haruhisa
Takahashi. 2006. The worst-case time
complexity for generating all maximal
cliques and computational experiments.
Theoretical Computer Science, 363(1):28—-42.
DOLI: https://doi.org/10.1016/j.tcs
.2006.06.015

Tsarfaty, Reut. 2006. Integrated morphological
and syntactic disambiguation for modern
Hebrew. In Proceedings of the 21st
International Conference on Computational
Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics:
Student Research Workshop, COLING ACL
'06, pages 49-54, Stroudsburg, PA. DOIL
https://doi.org/10.3115/1557856
.1557867

Tsarfaty, Reut, Khalil Sima’an, and Remko
Scha. 2009. An alternative to head-driven
approaches for parsing a (relatively) free
word-order language. In Proceedings of the
2009 Conference on Empirical Methods in
Natural Language Processing, pages 842-851.
DOI: https://doi.org/10.3115/1699571
.1699622

Tubb, Garry and Emery Boose. 2007.
Scholastic Sanskrit: A Handbook for Students,
Treasury of the Indic sciences, American
Institute of Buddhist Studies, Center for
Buddhist Studies and Tibet House,
Columbia University.

Vickrey, David and Daphne Koller. 2008.
Sentence simplification for semantic role
labeling. In Proceedings of ACL-08: HLT,
pages 344-352, Columbus, OH.

Voss, Stefan. 1993. Worst-case performance of
some heuristics for Steiner’s problem in
directed graphs. Information Processing
Letters, 48(2):99-105. DOI: https://doi
.org/10.1016/0020-0190(93)90185-C

Wang, Menggqiu, Rob Voigt, and
Christopher D. Manning. 2014. Two knives
cut better than one: Chinese word
segmentation with dual decomposition. In

844

Volume 46, Number 4

ACL (2), pages 193-198. DOI: https://
doi.org/10.3115/v1/P14-2032

Wang, Wenhui, Baobao Chang, and Mairgup
Mansur. 2018. Improved dependency
parsing using implicit word connections
learned from unlabeled data. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 2857-2863. DOL: https://
doi.org/10.18653/v1/D18-1311

Weir, David, Julie Weeds, Jeremy Reffin, and
Thomas Kober. 2016. Aligning packed
dependency trees: A theory of composition
for distributional semantics. Computational
Linguistics, 42(4):727-761. DOI: https://
doi.org/10.1162/COLI_a_00265

Wiseman, Sam and Alexander M. Rush. 2016.
Sequence-to-sequence learning as
beam-search optimization. In Proceedings
of the 2016 Conference on Empirical
Methods in Natural Language Processing,
pages 1296-1306, Austin, TX. DOL https://
doi.org/10.18653/v1/D16-1137

Wolf, J. and W. Woods. 1977. The HWIM
speech understanding system. ICASSP '77.
IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2, 784-787.

Xue, Nianwen. 2003. Chinese word
segmentation as character tagging.
Computational Linguistics and Chinese
Language Processing, 8(1):29-48.

Yang, Jie, Yue Zhang, and Shuailong Liang.
2019. Subword encoding in lattice LSTM
for Chinese word segmentation. In
Proceedings of the 2019 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 2720-2725,
Minneapolis, MN.

Zeman, Daniel, Jan Haji¢, Martin Popel,
Martin Potthast, Milan Straka, Filip Ginter,
Joakim Nivre, and Slav Petrov. 2018.
CoNLL 2018 shared task: Multilingual
parsing from raw text to universal
dependencies. In Proceedings of the CONLL
2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies,
pages 1-21, Brussels.

Zhang, Xiang, Junbo Zhao, and Yann LeCun.
2015. Character-level convolutional
networks for text classification. In
Advances in Neural Information Processing
Systems, pages 649-657.

Zhang, Yue. 2013. Partial-tree linearization:
Generalized word ordering for text
synthesis. In I[JCAI, pages 2232-2238. DOI:
https://doi.org/10.1162/coli_a_00037

Zhang, Yue and Stephen Clark. 2011.
Syntactic processing using the generalized

https://doi.org/10.18653/v1/K18-1036
https://doi.org/10.18653/v1/K18-1036
https://doi.org/10.1016/j.tcs.2006.06.015
https://doi.org/10.1016/j.tcs.2006.06.015
https://doi.org/10.3115/1557856.1557867
https://doi.org/10.3115/1557856.1557867
https://doi.org/10.3115/1699571.1699622
https://doi.org/10.3115/1699571.1699622
https://doi.org/10.1016/0020-0190(93)90185-C
https://doi.org/10.1016/0020-0190(93)90185-C
https://doi.org/10.3115/v1/P14-2032
https://doi.org/10.3115/v1/P14-2032
https://doi.org/10.18653/v1/D18-1311
https://doi.org/10.18653/v1/D18-1311
https://doi.org/10.1162/COLI_a_00265
https://doi.org/10.1162/COLI_a_00265
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.1162/coli_a_00037

Krishna et al. A Graph-Based Framework for Structured Prediction Tasks in Sanskrit

perceptron and beam search. Computational Zhang, Yue and Jie Yang. 2018. Chinese NER

Linguistics, 37(1):105-151. using lattice LSTM. In Proceedings of the
Zhang, Yue and Stephen Clark. 2015. 56th Annual Meeting of the Association for
Discriminative syntax-based word Computational Linguistics (Volume 1: Long
ordering for text generation. Computational Papers), pages 1554-1564, Melbourne. DOI:
Linguistics, 41(3):503-538. DOI: https:// https://doi.org/10.18653/v1
doi.org/10.1162/C0OLI_a_00229 /P18-1144

845

https://doi.org/10.1162/COLI_a_00229
https://doi.org/10.1162/COLI_a_00229
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/P18-1144

	Introduction
	Computational Processing of Texts in Sanskrit and Its Challenges
	Tasks

	Energy-Based Framework for Structured Prediction in Sanskrit
	Graph Generator
	Edge Vector Generator
	Inference Procedure
	Design Decisions

	Experiments
	Data Set
	Baselines
	Results
	Experiments on Czech

	Discussion
	Related Work
	Conclusion

