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Abstract syntax is an interlingual representation used in compilers. Grammatical Framework
(GF) applies the abstract syntax idea to natural languages. The development of GF started in
1998, first as a tool for controlled language implementations, where it has gained an established
position in both academic and commercial projects. GF provides grammar resources for over
40 languages, enabling accurate generation and translation, as well as grammar engineering
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tools and components for mobile and Web applications. On the research side, the focus in the
last ten years has been on scaling up GF to wide-coverage language processing. The concept
of abstract syntax offers a unified view on many other approaches: Universal Dependencies,
WordNets, FrameNets, Construction Grammars, and Abstract Meaning Representations. This
makes it possible for GF to utilize data from the other approaches and to build robust pipelines. In
return, GF can contribute to data-driven approaches by methods to transfer resources from one
language to others, to augment data by rule-based generation, to check the consistency of hand-
annotated corpora, and to pipe analyses into high-precision semantic back ends. This article gives
an overview of the use of abstract syntax as interlingua through both established and emerging
NLP applications involving GF.

1. Introduction

Like many other computing tasks, Natural Language Processing (NLP) can be divided
to two phases: analysis and synthesis. The analysis phase involves Natural Language
Understanding (NLU), whereas the synthesis phase may serve different kinds of tasks,
such as Natural Language Generation (NLG), question answering, and conversion to
logical forms. Machine Translation (MT) is a representative example of NLP, which
can be structured as a combination of NLU from one language with NLG to another
language. This architecture is shown in the Vauquois triangle (Figure 1, adapted from
Vauquois 1968): The result of NLU is a meaning representation in an interlingua, and
NLG renders this meaning faithfully in the target language.

For Vauquois, interlingua-based translation was the ideal, because it guarantees
that the source language meaning is rendered faithfully in the target language, what-
ever differences there are in the surface syntax. At the same time, he was aware that
this method might not be realistic to implement in practice, and that approximations
might be needed. Thus his triangle includes shortcuts on different levels: word-to-word
transfer and syntactic transfer. Character-to-character transfer is a later approach used
in Neural Machine Translation (NMT; Lee, Cho, and Hofmann 2016).

We have annotated Figure 1 with labels indicating how problematic each phase
is. On the lowest level, lexical (morphological) analysis is well understood thanks to
a long tradition and reliable analyzers; exceptions are provided by languages that
do not mark word boundaries and by systems that have to recover from spelling
mistakes. Going one step higher, syntactic parsing, which we take to include part-of-
speech disambiguation, is uncertain, because natural languages are ambiguous and
also because syntactic grammars are usually incomplete. For similar but even stronger
reasons, semantic interpretation can be labeled as highly uncertain. Finally, the semantic
interlingua itself is problematic, and all known attempts to build one have remained
incomplete.

Target generation is in principle a solved problem if it starts from a formalized
interlingua, since it can be performed by a deterministic program. But the transfer from
source to target is less certain on the lower levels than on the higher levels; for example,
on the word-to-word level, the order of words in the target language is just a guess.

Most traditional MT methods operate on the lower levels: Statistical MT (SMT;
Koehn 2010) is usually either word-to-word or phrase-to-phrase transfer,! and so are

1 A “phrase” in SMT can be any sequence of words, not necessarily a grammatical phrase.
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Figure 1
The Vauquois triangle, annotated with estimates of how difficult or how reliable each translation
phase is.

rule-based systems such as Apertium (Forcada et al. 2011). More recently, NMT has
introduced character-to-character transfer, which Vauquois did not consider at all (Lee,
Cho, and Hofmann 2016) . But in a system where all steps are uncertain, ranking the
alternatives globally rather than separately in a pipeline actually does make sense, even
though it comes with the price of not being able to use linguistic knowledge and to
explain step by step how the translation is achieved.

At the same time as going down to the lowest possible level of transfer, NMT has
made claims of using an interlingua, just not of the kind that humans construct but
something that arises as an internal representation in a neural network (Lu et al. 2018).
The main advantage is the same as in traditional interlinguas: one does not need to
build n(n — 1) translation functions to cover all pairs of n languages, but it is enough
to have 2n (Figure 2). In the NMT world, this method has been given the name zero-
shot translation—translation between language pairs for which the system has not been
explicitly trained. Similar advantages can be shown in other NLP tasks: For instance,
the answer function in question answering can be defined uniformly in terms of the
interlingua, rather than for all languages separately (Zimina et al. 2018).

A universal interlingua that accurately expresses all meaning in natural languages
would be the ideal translation method. But no one has managed to build one, and it is
not sure if the concept even makes sense. Therefore it is useful to consider interlinguas
with less ambitious specifications:

*  deep interlinguas, covering fragments of language with high precision,
¢  shallow interlinguas, with wide coverage but lower precision, and

* layered interlinguas, using shallow interlinguas as backup for deep ones.

Examples of the first kind can be found in Controlled Natural Languages (CNL), where
the interlingua can be a domain-specific semantic structure or an “ontology”; see Kuhn
(2014) for a recent survey of CNL, and Hutchins and Somers (1992) for its potential in
translation. A deep interlingua can actually start with a semantic model and generate a

427



Computational Linguistics Volume 46, Number 2

Japanese
Italian Spanish

Hindi

Swedish

German

Chinese

French

Bulgarian

Finnish Thai

English

Figure 2
A translation system with 12 languages using transfer (left) vs. interlingua (right).

fragment of language that matches it, rather than starting with a language and trying to
find a semantic model.

Shallow interlinguas are representations of some aspects of language that help
translation, without going as deep as the full meaning to be rendered. A simple example
of a shallow interlingual representation would be a sequence of word senses, such as the
ones in multilingual WordNets. The translator would first map source language words
to these senses, and then map the senses as target language words in the same order.
The words would often appear in wrong senses, in wrong order, or in wrong forms, but
the translation could still be helpful.

A bit less shallow interlingua could add syntactic structure to the words, so that
it could reorder the words or even enforce agreement in accordance with the rules of
the target language. Such a system would still not always select correct word senses,
identify multiword constructions, or change the syntactic structure when needed (Dorr
1994). But it could guarantee the grammatical correctness of the output.

Figure 3 shows the architecture of a layered interlingua system, where the transfer-
based shortcuts of the original Vauquois triangle are replaced by interlinguas of varying
depth. Such a system enjoys some of the advantages of the original interlingua idea—in
particular, the linear scale-up as languages are added.

The main topic of this article is to show how to build and combine interlinguas
of different levels, by using Grammatical Framework (GF; Ranta 2004b, 2011a), a tool
designed for this very purpose. More precisely, GF is a special-purpose programming
language for defining interlinguas (abstract syntaxes) and reversible mappings from
them to individual languages (concrete syntaxes). GF has no single interlingua or fixed
set of languages, but a set of tools for building new ones and reusing old ones.

GF was originally intended as a tool for CNL implementations, and it has been
widely used in both academic and commercial CNL projects. But many research efforts
in the last ten years have been devoted to scaling up beyond CNL. This has often
happened by combining GF grammars with other approaches.

This article is an overview of the interlingua idea as implemented in GF, with focus
on recent wide-coverage work.
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Figure 3
The Vauquois triangle, with transfer shortcuts replaced by interlinguas on various levels.

*  Section 2 outlines the background of GF and its development from CNL to
open domain tasks.

. Section 3 gives a quick tutorial on GF, with a focus on how linguistic
variation can be modeled in terms of abstract and concrete syntax.

*  Section 4 gives a summary of GF’s Resource Grammar Library (RGL),
which aims to formalize the main syntactic structures of the world’s
languages and plays a major role in both CNL and wide-coverage
applications.

*  Section 5 shows how NLP systems can be built by combining interlinguas
of different levels, ranging from chunks of words to logical formulas.

*  Section 6 relates GF to dependency parsing, in particular showing the
close correspondence between RGL and Universal Dependencies (UD).

*  Section 7 summarizes recent work where GF is related to other
approaches: WordNet, FrameNet, Construction Grammar, and Abstract
Meaning Representation (AMR).

*  Section 8 concludes and outlines suggestions for future work.
Table 1 shows how Sections 2-7 depend on each other.
2. The Background and Evolution of GF

Grammatical Framework (GF) was born at Xerox Research Centre Europe in 1998
within the project Multilingual Document Authoring (Dymetman, Lux, and Ranta 2000;
Méenpédd and Ranta 1999). The target was Controlled Natural Language (CNL): pre-
cisely defined language fragments for specific domains. The first domains addressed
were pharmaceutics, mathematics, and tourist phrasebooks.

GF was expected to enable high-quality translation via semantic interlinguas. The
semantic interlingua would define the meaning to be preserved in translation. The
translation itself would be done by parsing the source language into the interlingua,
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Table 1
Dependencies between Sections 2 to 7. Sections 2, 3, 4 should be read in sequence, while 5, 6, 7
only depend on these and not on each other.

Section Topic Prerequisites
Section2  GF background n/a

Section3  GF tutorial Section 2
Section4 RGL Section 2, 3
Section5 Levels of interlingua  Section 2, 3, 4
Section6 UD and GF Section 2, 3, 4

Section7  Other approaches Section 2, 3, 4

and generating the target language from it. Such systems had been built before GF, but
they were considered expensive to develop and maintain. Rosetta (1994) was perhaps
the most comprehensive system of this kind, using semantic structures inspired by
Montague grammar (Montague 1974) as interlingua.

The mission of GF was to make it cheaper to build multilingual CNL systems.
This was to be achieved by developing a declarative, high-level formalism, from which
the actual processing components (parsing, generation, interactive editor) could be
derived automatically. The overall design of GF software was inspired by another
system previously developed at Xerox: the Xerox Finite State Tool (XFST; Beesley and
Karttunen 2003). The common features include

a high-level programming language for grammar writers,

. a low-level but efficient run-time format,

¢ automatic compilation from high to low level,

¢ mathematical theory underlying compilation and run-time algorithms,
*  neutrality with respect to linguistic theories, and

¢ development tools for grammar engineering.

In XFST, the high-level language is regular expressions, extended with abstraction
mechanisms such as user-definable macros and built-in custom operators. The compiler
converts this language to finite state transducers, for which there are portable run-time
systems that can be embedded in NLP pipelines.

GF needed more expressive power than finite state transducers, but the same design
principles were followed to make the formalism portable, adaptable, and supported
by a mathematical metatheory. The starting point was to build GF on top of a Logical
Framework (LF; Harper, Honsell, and Plotkin 1993), based on the Constructive Type
Theory of Martin-Lof (1984). The LF origin also explains the name:

GF = LF + grammar rules

LF had a purpose analogous to GF: declarative definition of different logics, such
as classical, constructive, temporal, modal, dynamic, and so forth. In computerized

2 Ranta (2019) contains more comparisons between GF and XFST.
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mathematics and in software verification, it is often better to work with such special-
purpose logics than with one monolithic logic. Implementing them became much more
feasible as a generic framework provided algorithms for inference, proof checking, and
proof search, together with a notation supporting declarative definitions of logics.

The price to pay for a uniform treatment of logics in LF was that the notation was
likewise uniform. The basic framework used prefix notation and ASCII identifiers for
all logical operators. For instance, the conjunction of A and B is expressed

(Conj A B)

similarly to the LISP programming language. Later versions of LF introduced “pretty-
printing rules” to convert such formulas to more user-friendly notations—for instance,

(Conj X Y) ==>X &Y

The grammar rule notation of GF arose as a generalization of such pretty-printing rules,
adding mechanisms that enable the definition of natural language structures.

In GF, the LF part was to be used for interlinguas, whereas grammar rules would
define relations between interlinguas and natural languages (English, French, Finnish,
etc.). The grammar rules would be powerful enough to define formal languages as
well, such as logics and query languages; one important application area of GF has in-
deed been translations between formal and natural languages (Johannisson 2005; Ranta
2011b). The interlingua/LF part in GF was called abstract syntax, and the language
parts concrete syntaxes, following familiar compiler terminology. A GF grammar con-
sists of one abstract syntax and any number of concrete syntaxes, and is thus inherently
a multilingual grammar.

The abstract syntax can be vastly different in domains ranging from mathematics
to tourist phrasebooks. However, the linguistic mechanisms needed in the concrete
syntax—morphology, agreement, word order—are largely the same in all areas of dis-
course. It would be tedious to implement these mechanisms over and over again in
different applications. The solution to this problem was to develop a library of basic
linguistic structures. The library, called the Resource Grammar Library (RGL), started
to develop in 2001. It was inspired primarily by the Core Language Engine (Alshawi
1992), where a similar need had been identified. It is also related to Xerox ParGram (Butt
et al. 2002) and the LINGO Matrix (Bender and Flickinger 2005), which are collections
of grammars for different languages.

The RGL implements morphology and syntax rather than semantics. It was not
meant to be a translation interlingua in itself, but to boost the development of domain-
specific semantic CNLs by taking care of linguistic details. Not only does it save the
work of implementing morphology and syntax again and again. It also has its own
common abstract syntax, which provides a common Application Programming Inter-
face (API) enabling a CNL implementation for many languages simultaneously, sharing
almost all of the source code except content words (see Section 5).

But does GF scale up to mainstream NLP tasks? Its original mission is expressed
in the diagram of the coverage/precision trade-off (Figure 4). Although it seems im-
possible to achieve complete coverage and complete precision at the same time, it is
possible to opt for either of them and make progress by improving the other. Much of

3 Incidentally, GF started at Xerox about the same time as ParGram, but their goals were different, with GF
focusing on interactive document authoring, ParGram on more traditional translation.
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The precision—coverage trade-off, as correlated with producer vs. consumer translation tasks.
High precision can be achieved in tasks where a producer of content wants to translate a limited
kind of content. High coverage is needed when consumers of content want to translate any kind
of content.

NLP opts for 100% coverage, but tries to improve precision, as measured, for instance,
by the BLEU score in translation (Papineni et al. 2002). The state of the art in machine
translation achieves around 50% or less, depending on language pair, as shown by the
latest Workshop on Machine Translation (WMT) evaluations.* The philosophy of GF has
been orthogonal to this: Maintain full precision, and develop by increasing coverage.

Figure 4 relates the coverage-precision trade-off to typical NLP tasks. High cover-
age is needed in “consumer” tasks, where the input is unpredictable. The system must
be able to cope with millions of “concepts,” such as translation units (e.g., words and
multiwords). High precision, in contrast, is needed in “producer” tasks, such as the
publication of some content in different languages. Human translation is still the state
of the art in such tasks, but automation can be possible if the type of expected content
can be fixed. The METEO system (Chandioux 1976) is an early example of this. A typical
modern example is e-commerce Web sites selling to multiple countries. The size of such
tasks is typically just thousands of concepts, rather than millions.

Producer and consumer tasks are known as dissemination and assimilation, re-
spectively, in machine translation terminology (Hutchins and Somers 1992). The distinc-
tion has gone roughly parallel to the use of symbolic vs. statistical methods. But early
MT systems often used symbolic methods for assimilation as well, and this tradition
continues in Apertium (Forcada et al. 2011). The advantages of symbolic methods
include

¢  explainability: the system can show why it yields a certain result, by for
instance showing a syntax tree;

e  programmability: it is possible to fix bugs without breaking everything
else and

e  data austerity: no large amounts of data are needed.

4 In EuroMatrix evaluation matrix, http://matrix.statmt.org/, the best result in Newstest 2019 was 45.2
for English-German.

5 Ranta, Unger, and Vidal Hussey (2015) describe a commercial GF project involving around 1,000 concepts
collected from a database about properties of buildings, whereas Section 5.4 discusses a later project
involving over 3,000 concepts from the European law.
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Data austerity is particularly important for low-resource languages, which may be un-
likely ever to have enough data for statistical methods. Writing linguistic rules can then
be a way out. Another aspect is the possibility to use additional knowledge: Statistical
methods typically learn translation from parallel texts, whereas correct translation can
also require knowledge that is impossible to extract from the texts alone (Kay 2017).

It is natural to ask whether GF could be used for wide-coverage tasks by sacrificing
some precision but maintaining explainability, programmability, and data austerity.
This question has been the focus of much of GF research for the last ten years. It was
first enabled by efficient and scalable parsing techniques (Ljunglof 2004; Angelov 2009;
Angelov and Ljunglof 2014). The first experiments addressed full-scale morphology
implementations (Forsberg and Ranta 2004; Détrez and Ranta 2012), hybrid GF-SMT
translation (Enache et al. 2012), and multilingual lexicon extraction (Virk et al. 2014;
Angelov 2014). Much of the focus has been on machine translation, with an early mobile
demo (Angelov, Bringert, and Ranta 2014) and an emphasis on explainability rather than
optimized BLEU scores. The prospects for Explainable Machine Translation (XMT) are
studied in Ranta (2017), and the general name for all the approaches described in this
paper could be Explainable NLP.

Figure 5 shows the architecture of a GF-based explainable MT system as an instance
of Explainable Artificial Intelligence: an Al system which, in addition to the output,
also gives an explanation of why this output is produced: For instance, that an image
is recognized as a cat because it has a tail and whiskers and four legs (Gunning 2017).
The user can inspect the explanation to judge whether the output is correct or plausible.
Such explanations are clearly desirable in MT, where the user typically knows just one
of the languages and cannot judge correctness when only seeing the input and output.
The architecture shown in Figure 5 is inspired by the notion of certifying algorithms
(McConnell et al. 2011), where the explanation, a certificate, can be inspected by an
independent checker program. In the case of GF-based XMT, the certificate is the
interlingual representation (abstract syntax tree), which specifies the meaning that has
been extracted from the source utterance by the analyzer and rendered in the target
language. This tree can be inspected independently by the user, and also translated

XMT

parsing
source ——Imorphology and generation [ target+

semantics explanation
(interlingua)

k back-linearization j

Figure 5

XMT with interlingual representation as explanation. The interlingua can be translated back to
the source language for comparison. The “black box” lies between “white” parts that are well
performed by grammars. The black part takes care of parser error recovery and semantic
disambiguation, where grammars might not be sufficient.
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back to the source language by the grammar (“linearization”). Because of this, the tree
could actually be produced by a black box such as a neural parser, and still be used with
confidence.

3. Modeling Languages with Abstract Syntax

Abstract syntax is a tree representation used in compilers and in programming lan-
guage semantics. Its purpose is to abstract away from details considered irrelevant for
semantics:

¢ the shape of tokens, for example, if one uses != or <> as inequality
symbol;

. the order of constituents, for example, if one uses infix (2 + 3), postfix
(2 3 +)or prefix (+ 2 3) notation; and

. the number of tokens, for example, if one includes the keyword then in
“if-then-else” statements or not.

Putting these abstractions together makes it possible to build common abstract syntax
representations for languages that look totally different. A typical example is the transla-
tion of high-level programming languages to machine languages in a compiler. Figure 6
shows an abstract syntax tree for an arithmetic expression in Java and its translation to
Java Virtual Machine assembly language, illustrating variation in the shape, order, and
number of tokens.

The place of abstract syntax in a compiler is intermediate between the front end
and the back end. A chief component in the front end is parsing, which converts the
input source code (string of tokens) to an abstract syntax tree (AST). The back end
applies the opposite procedure of linearization to convert the AST into a string in the
target language. The back end can also involve semantic analysis such as mapping
the variable symbols into memory addresses or registers, or perform optimizations on
the code, for instance to minimize the size of the target code or its memory usage. Such
back-end operations are implemented by syntax-directed translation, which means
recursive functions operating on ASTs (Aho et al. 2006).

Add
/ \ bipush13 —» 13
Const Mul iconst_2
‘ ‘ \ iload 8
i_ 13 Const Va imul

‘ ‘ iadd X
i 2 X

Figure 6
An abstract syntax tree and word alignment for infix to postfix (Java to Java Virtual Machine)
translation.
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In the early days of compilers, back-end operations were often performed directly
in the parser, without explicitly building abstract syntax trees. The purpose was to
minimize the usage of the scarce computational resources. Synchronous grammars are
a method designed for such direct translation, and have also inspired natural language
translation (Shieber and Schabes 1990). In modern compilers, building an AST and
storing it separately is considered best practice, as it enables more powerful semantic
analysis and optimizations (Appel 1998). It also enables sharing compiler components
between different source and target languages, because much of the semantic analysis
and optimizations can be performed on the AST level. A prime example is the GNU
Compiler Collection, which is a “multi-source multi-target compiler” (Stallman 2001).

One reason to use abstract syntax in NLP is similar to compilers: the possibility to
share processing components between languages. The back-end part of a compiler cor-
responds to what in NLP is called downstream applications. For instance, linearization
corresponds to surface generation in systems like question answering, summarization,
and interlingual translation. Optimizations share similarities with NLG operations such
as aggregation and search of language-specific idioms. Semantic analysis is performed
when syntax trees are converted to meaning representations: Doing this on the AST
rather than parse trees enables shared syntactic analysis of multiple languages.

The question is now: How well does the AST-centered compiler model apply to
NLP? This question has two aspects, which we will consider separately:

e Isit possible to share AST representations between natural languages?

e  Can we always interpret informal natural language as formalized ASTs?

The GF was developed primarily to answer the first question: to define systems where
shared ASTs are mapped to different natural languages. The answer is amply covered
by earlier GF publications, but is summarized here to make this article self-contained
and open the way to discussing the second question.

3.1 Modeling Natural Language with Abstract Syntax

Abstract syntax abstracts away from the features listed above: the shape, order, and
number of tokens. These features get us started with natural languages as well. Figure 7
shows an example relating English, Dutch, Latin, and Arabic. In this example,

e the words are, obviously, different in each language,

e  English and Dutch are SVO (Subject-Verb-Object), Latin is SOV, Arabic is
VSO, and
e Dutch uses two words to express the verb “love.”®

The sentences in Figure 7 also provide examples of phenomena that are not known in
compilers but essential for natural language:

e  morphological variation,

6 This is not the most common way to express “love” in Dutch, but chosen here for the sake of illustration;
particle verbs are otherwise ubiquitous in Dutch, just like in German.
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Figure 7
Parse trees for English, Latin, Dutch, and Arabic (above); abstract syntax tree and word
alignment (below). Words in the Arabic tree are shown left to right to illustrate their VSO order.

Table 2
Division of a phrase structure grammar for English into abstract and concrete syntax. The

division makes it possible to vary the concrete syntax while maintaining the abstract tree
structure.

Phrase structure Abstract (fun) Concrete (1in)

S ::= NP VP Pred : NP -> VP -> S Pred np vp = np ++ vp
VP ::= V2 NP Compl : V2 -> NP -> VP Compl v np = v ++ np
V2 ::= "loves" Love : V2 Love = "loves"

NP ::= "John" John : NP John = "John"

NP ::= "Mary" Mary : NP Mary = "Mary"

*  agreement using morphological variation, and

e  discontinuous constituents, manifested by crossing branches in parse trees.

The trees and the word alignment in Figure 7 are generated by GF software from the
grammar partially outlined in Table 2. We will now explain the main features of GF
notation (Sections 3.2, 3.3), and then discuss some issues encountered when modeling
the full complexity of natural languages (Section 3.4).

3.2 Abstract Syntax: Categories and Functions

An abstract syntax is defined by a set of categories together with a set of functions that
construct trees in these categories. These concepts are implicit in context-free phrase
structure grammar, which defines simultaneously an abstract syntax and its linearization
to a particular language, namely, a concrete syntax. The leftmost set of rules in Table 2
uses the BNF (Backus-Naur Form) notation for context-free phrase structure grammars.
The middle set of rules is the abstract syntax extracted from this grammar, using the
notation of GF, and introducing function names for each BNF rule. The rightmost set of
rules is the concrete syntax.
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The categories in abstract correspond to the nonterminals of the BNF grammar. The
functions correspond to rules, which determine their types, with zero or more argument
types and one value type. The value type comes from the left-hand sides of the rule, and
the argument types from the right-hand side. GF uses the usual notation of functional
programming languages, such as Haskell, where the argument types come first and the
value type last, all separated by arrows. Thus the Pred function

fun Pred : NP -> VP -> §
can be paraphrased as follows:
The function Pred takes an NP and a VP as its arguments and returns an S as its value.

Applications of functions are written without commas or parentheses, as in Pred np
vp, but surrounded by parentheses in nested applications.

3.3 Concrete Syntax: Linearization Types, Records, and Tables

Splitting a context-free grammar to abstract and concrete syntax enables us to vary
the shape, order, and number of words while keeping the abstract trees constant. In
natural language, we also need variations in morphology, agreement, and discontin-
uous constituents. To enable all this, GF extends concrete syntax with two constructs:
tables and records. These constructs are used for defining the linearization types of
abstract syntax categories: Linearization rules are, technically, functions that operate on
the linearization types of abstract syntax categories.”

A table is a map-like data structure listing alternative items of the same type—for
example, inflection tables, as shown in Table 3. Tables operate on parameter types, such
as number or case, which are defined in concrete syntax separately for each language.
Thus Table 3 shows a type of case with two values, representing the nominative and
the accusative; a complete Latin grammar would have six cases, a Finnish grammar 15
cases, and a Chinese grammar would not need the case type at all.

A record is an object-like data structure (as in object-oriented programming) that
stores pieces of information used in combination. One example in Table 3 is the record
for the Dutch particle verb heeft + lief. Another one is the linearization type of noun
phrases (NP), suitable for languages like Latin, which contains an inflection table and a
parameter for agreement features.

Tables and records make GF concrete syntax equivalent to Parallel Multiple
Context-Free Grammars (PMCFG; Seki et al. 1991), as shown in Ljunglof (2004).8 This
establishes GF as a mildly context-sensitive grammar formalism, with polynomial
parsing complexity.’

7 These functions are moreover compositional, in a sense to be explained in Section 3.5.

8 In PMCEFG, both tables and records are represented by tuples, but in different ways; see Ljunglof (2004)
for the compilation of GF to PMCFG.

9 A more restrictive notion of mild context-sensitivity is used in the original definition (Joshi 1985),
forbidding among other things reduplication.
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Table 3
Reading guide for GF notation. The first six rows list the kinds of rules. The rest are expressions
for types and objects. The notation e || v means that expression ¢ is computed to value v.

Construct Notation Example

Abstract syntax category  cat cat NP

Abstract syntax function ~ fun fun Pred: NP -> VP -> S

Linearization type lincat lincat NP = {s: Case => Str; a: Agr}
Linearization rule lin lin Pred np vp = np.s!Nom ++ vp!np.a
Parameter type param param Case = Nom | Acc

Auxiliary operation oper oper d1 s = table {Nom=>s; Acc=>s+"m"
String concatenation ++ "loves" ++ "Mary"

Token concatenation + "Maria" +"m" "Mariam"

Function type -> NP -> VP -> S

Function application fab Pred np vp

Table type => Case => Str

Table table table {Nom =>"Maria" ; Acc =>"Mariam"}
Selection from table ! Mary ! Acc |} "Mariam"

Record type {...:...}  {s: Str; p: Str}

Record {...=...} {s = "heeft" ; p = "lief"}

Projection from record . Love.p | "lief"

Comment - --this is a comment

3.4 A Linguistic Perspective

We have summarized the main features of GF seen as a programming language. Now
we will take a linguistic point of view and see how GF models phenomena like mor-
phology, agreement, and discontinuous constituents. The main point is to show that
they can be accurately described in concrete syntax but ignored in abstract syntax.

3.4.1 Inflectional Morphology. The “words” in abstract syntax can be seen as word senses,
which the concrete syntax can realize by different word forms. Thus the abstract func-
tion Love in Figure 7 corresponds to words in different languages used for expressing
a certain sense of the English word love. In English, only the form loves is needed in
this small example, but a full grammar would also cover love, loved, loving. In Latin, the
corresponding verb amare has over 100 forms: amo, amas, amat, amabam,....

To describe a language in isolation from other languages, one could come far with
a context-free grammar that has a separate rule for every form of every word. But if we
want to share an abstract syntax, we must abstract away from morphological variation.
We want to have just one abstract syntax function for each word sense, and leave it
to the concrete syntax to list the forms needed in each language. In GF, we do this
by generalizing the linearization types (1incat) from strings (Str) to the table data
structure. The tables, as well as the parameters used in them, can be different in every
language, so that the abstract syntax can ignore morphological variation.

Actually populating the morphological tables is an engineering effort of its own.
The GF programming language provides tools for automating much of this task. A
powerful method is smart paradigms, which are concrete syntax functions that con-
struct an inflection table from just one or a few forms. For instance, the regular verbs of
English can be built with a smart paradigm that inspects the infinitive form and adds
slightly different endings depending on the verb, for example, walk-walks-walked-walking
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as contrasted to wash-washes-washed-washing or cry-cries-cried-crying. Regular expres-
sion pattern matching is used for identifying inflection types. For instance, verbs
ending with a sibilant produce forms where the third person present ending is es instead
of s:

s@(7+(llsll|Ilzlllllshlllllchll)) => fOI‘IIlS s(s+"es")(s+"ed")(s+"ing")

A smart paradigm can take more than one form as its arguments to infer the rest. For
instance, the five forms of an irregular English verb can usually be built from three,
which are the same as in usual descriptions of irregular verbs in dictionaries.
Morphology with smart paradigms was the first example of GF scaling up to full-
scale language processing tasks. Détrez and Ranta (2012) performed an evaluation for a
few languages, showing that complete inflection tables can usually be inferred from
just a bit more than one form on the average, even in languages like Finnish that
have hundreds of word forms in total. As a practical benefit, this makes it efficient
to build morphological dictionaries from word lists that do not include morphological
information. The multilingual WordNet lexicon (Section 7.1) is an example of this.

3.4.2 Derivational Morphology. Inflectional morphology in GF uses tables and smart
paradigms. The same mechanisms also work for derivational morphology—the for-
mation of new words from given ones. For example, turning an English adjective into
a noun with the suffix ness can be performed by a smart paradigm that among other
things turns happy to happiness. In Finnish, the corresponding function must make some
more distinctions to use the suffix [u]us: paha-pahuus “bad,” keltainen-keltaisuus “yellow,”
hyvi-hyvyys “good,” rikas-rikkaus “rich,” and so forth.

It is not enough just to define the morphology of derivational suffixes, because
semantically similar derivations may be performed by different suffixes. For example,
the noun resulting from aquailable is availability rather than availableness. This information
must be recorded in the lexicon, for instance, in a record field attached to each adjective,
if a productive rule for adjective to noun conversion is to be included in the grammar.

Unlike inflectional morphology, derivational morphology is not completely produc-
tive. The approach usually followed in GF is therefore not to use general abstract syntax
functions for things like adjective-noun derivations, but just to provide paradigms that
can be used whenever a derivation is mandated by the abstract syntax.

3.4.3 Segmentation and Compounding. Large inflection tables can become unpractical
when the lexicon grows. Thanks to smart paradigms, the GF source code can still be
kept small. But when their applications are compiled to full tables, run-time grammars
can grow very large.

This problem can be solved by treating agglutinated morphemes as separate tokens.
For example, Finnish verbs have over 10,000 forms, if all combinations with clitics are
taken into account. But they can all be formed by concatenating suffixes to one of 14
stems.!? Therefore, it is sufficient to store these 14 stems in the inflection tables and add
suffixes at runtime. For example, the equivalent of “did we walk” is kivelimmekd, which
is produced from kiveli+mme+ko (“walk(past)+1personPlural+question”).

10 These stems were identified by analyzing the full inflection tables of a comprehensive set of verbs. For a
large majority of verbs, much fewer stems would be enough.
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In running Finnish text, the morpheme boundaries are not visible. The parser
hence has to restore the boundaries in order to match the original grammar rules. An
algorithm for this is presented in Angelov (2015). It is an essential ingredient in enabling
GF to parse morphologically rich languages with large lexica.

Segment analysis is also used when forming compound words in languages like
Finnish, German, and Swedish. Thus English summer time translates compositionally to
Swedish sommar+tid, which is rendered as sommartid. The algorithm of Angelov (2015)
separates these tokens when analyzing the Swedish word. In addition, the Swedish
lexicon (as well as Finnish and German) must keep track of the special forms that
are used in compounding, so that for instance response time becomes svars+tid and not
svar+tid.

Segmentation can be ambiguous and resolvable only by clues from syntax and
semantics. This is yet another way in which natural languages differ from programming
languages: In compilers, segmentation is performed by (usually) deterministic prepro-
cessing known as lexing. The algorithm in Angelov (2015) performs segmentation as
a part of parsing and can therefore use syntactic clues to resolve ambiguities. It can
also use semantic clues, if the abstract syntax encodes them (Section 5). In this sense,
GF supports holistic end-to-end processing similar to neural networks, and not only
compiler-like pipelines neatly divided into distinct components.

Another example of holistic segmentation is the GF resource grammar for Chinese
(Ranta, Tian, and Qiao 2015), where each character is treated as a separate token.
Inserting word boundaries is left to the parser, which can therefore use all the clues
available in the grammar.

3.4.4 Agreement and Government. In addition to inflection tables, lexical information in
a concrete syntax defines inherent features, such as the gender of nouns in many
languages. An example in Table 3 is the linearization type of noun phrases,

lincat NP = s : Case => Str ; a : Agr

Agreement is an interplay between inherent and inflectional features. Assuming that
verb phrases are tables on the agreement features, !

lincat VP = Agr => Str

we can express the NP-VP agreement in predication, where the inherent features of the
NP are passed to the VP:

1lin Pred np vp = np.s ! Nom ++ vp ! np.a

Government is, similarly to agreement, treated in terms of inherent and inflectional
features. One example is the case government of two-place verbs, V2. V2 has an inherent
case, which determines the case inflection of the complement NP. Besides the case itself,
the “complement case” may indicate a preposition, as a part of the lexical information
(valency) of a verb. The abstract syntax does not specify complement cases, but only
the number of complements and their abstract syntax types. This is why we use the

11 VP can also depend on other features such as tense, but we omit the details here.
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category symbol V2 rather than transitive verb (TV): transitivity, which governs a direct
object case, is a language-dependent feature that can be left to the concrete syntax.

3.4.5 Discontinuous Constituents. GF implements discontinuous constituents as records
that contain more strings or inflection tables than just one. Figure 7 shows two examples:

¢ the Dutch verb for “love,” where heeft and lief can be separated by the
object; and

e the Arabic VP, which has separate fields for the verb and its complement to
enable the VSO order.

In general, a concrete syntax record may have to contain several fields in order to match
a given abstract syntax. For example, VP in German and Scandinavian can have fields
for all of the positions in the topological structure (Diderichsen 1962), which permits
the reordering of constituents in different syntactic contexts (main clause, question,
subordinate clause, topicalizations).

3.4.6 Linguistic Generalizations. Plain PMCFG is a low-level language, where grammar
rules are encoded in ways that are unintuitive and repetitive for humans. At the same
time, it is well-suited for data-driven parsing, and the models can be directly used in
GF’s run time. An example is Kallmeyer and Maier (2013), whose model was used in
Angelov and Ljunglof (2014), showing that the run-time performance of a GF parser is
competitive even in large-scale statistical parsing.'?

The source language of GF has a very different look and feel: It follows the design
of modern functional programming language with abstraction mechanisms that enable
the grammarian to express many kinds of linguistic generalizations. The goal has been
to give the linguist a “freedom of speech” and help avoid repetitive coding both inside
and between languages. Here is a summary of some of these mechanisms:

*  The abstract syntax itself, expressing constituent structure in a crosslingual
way.

*  Parameterized modules (functors), enabling sharing of concrete syntax
code within language families. For example, most syntax rules in Romance
languages can be uniformly described in shared modules, from which the
rules for individual languages are obtained by fixing the values of some
parameters (Section 4).

*  Regular expression pattern matching, enabling smart paradigms and
one-line definitions of lexical items, which list only one or a couple of
characteristic forms.

. Function libraries, enabling the composition of grammars on different
levels. For instance, the details of NP-VP predication can be expressed in a
single function, which is reused in linearizing different logical
propositions (Section 5).

12 The original model is in the closely related formalism of Linear Context-Free Rewriting Systems
(Vijay-Shanker, Weir, and Joshi 1987), which is easily convertible to PMCFG.
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3.5 Compositionality and Semantics

One inspiration for GF was Montague grammar (Montague 1974), which sees syntax
as just a preparation for semantics. The semantics is designed to be compositional:
Every syntactic rule must have a corresponding semantic rule. Compositionality can be
defined in a simple and general way: a tree operation is compositional, if its application
on every tree is a function of its applications on the immediate subtrees. More formally:
a tree operation * is compositional, if, for every abstract syntax function F with n
arguments, there is an n-place function F* such that

(Ftp...t,)" = FtF ...t

This means that every subtree is a meaningful unit, that is, has an independent meaning
that is the same in all larger trees of which it is a part.

In addition to semantic rules, Montague grammar has operations that convert
syntax trees (“analysis trees”) to strings, but these rules are informal and follow no
special format. In GF, these rules are formalized as linearization functions, which are
compositional in the same sense as Montague’s semantics. Thus, in the rule

lin Ftltn = tlt”

the variables f; ...t, stand for the linearizations of the subtrees, not for the subtrees
themselves. The operations on the right-hand sides of these rules are restricted to a few
operations on strings, tables, and records. The important thing is that every subtree is
a linguistically meaningful unit, that is, has an independent “linguistic meaning” (built
from strings, records, and tables). This implies that the claim of a common abstract
syntax is not vacuous: to share an abstract syntax function, a language must have a
compositional linearization function for it.

The abstract syntax trees of GF also support Montague-style semantics (Ranta
2004a, 2011b), extended by Bernardy and Chatzikyriakidis (2017) to cover the entire
abstract syntax of the GF RGL. It has thereby become usable in pipelines that convert
open-domain text to logical formulas (of course partially, since RGL parsing is not total).
Because of the common abstract syntax, this semantics is in principle defined for all RGL
languages.

GF abstract syntax inherits from LF the full power of dependent types and variable
bindings, which enables a compositional model of anaphora, even between sentences in
a text (Ranta 1994). This possibility was in fact the main initial reason to develop a type-
theoretical version of Montague grammar in Ranta (1994). It is possible to build abstract
syntax trees that cover entire texts, and where variables bound in some sentences can
be referenced in other sentences. What is needed is a higher-order function that takes
two arguments: an initial sentence and a continuation, which is a function forming the
rest of the text in the context created by the first sentence:

fun MkText : (A : Sentence) -> (Context A -> Text) -> Text

Longer texts can be built by iterated applications of MkText, where each sentence adds to
the context in which the next one is formed. This mechanism has been used, for instance,
in a CNL for software specifications (Johannisson 2005), but not yet in large-scale NLP.
The main problem with text grammars is that treating complete texts as parsing
units is computationally heavy. In practical implementations, it is often useful to relax
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compositionality—for instance, to perform anaphora resolution in a separate pass after
grammar-based parsing. The technique of almost compositional functions (Bringert
and Ranta 2008) enables such programs to be written with minimal effort.

Several applications of GF include a back end in logical semantics or translation
to query languages. Examples include multilingual question answering (Zimina et al.
2018) as well as commercial projects on financial contracts and software specifications.'?

3.6 Limitations of GF
The expressivity of a grammar has two senses:

*  Weak generative capacity: to define what sentences belong to a language.

. Strong generative capacity: to give all sentences an intended structural
analysis.

In GF, the focus is clearly on the strong capacity: How to make languages match a given
abstract syntax. The use of tables and records has usually proven to be sufficient for this
when matching the abstract syntax of GF RGL (Section 4).

A more common problem has to do with the computational resources required by
PMCFG-based parsing. If linearization were the only operation needed, it could be per-
formed easily by evaluating expressions by usual functional programming techniques.
In particular, tables would rarely need to be expanded to their full forms, because each
use of them would need only one form, which could be found by lazy evaluation
without expanding the entire table. But the compilation to PMCFG needs to expand
the tables at compile time and store them for the run time. Huge tables can sometimes,
but not always, be avoided by using segmentation (Section 3.4.3). Complex PMCFG
grammars can be problematic both for memory usage and for parsing speed.

The heart of the problem is the static type system of concrete syntax—in particular,
that all trees of the same category must have the same linearization type. This means
that the linearization type must always cover the worst case, which may be relevant for
just one word in the category. To give an example, the Spanish word contigo (‘with you’,
familiar ‘you’) is a fusion of the preposition con (‘with”) and the pronoun t7 (‘you’). The
word conmigo (‘with me’) is a similar fusion. No other pronoun, let alone noun phrase,
fuses with a preposition. Now, if we want to implement the resource grammar function
forming adverbials as prepositional phrases,

fun PrepNP : Prep -> NP -> Adv

we need to cover the combination of the preposition con with these two pronouns. With
other prepositions, the pronoun would just follow the preposition in the oblique case,
as in sin ti ("without you’). But because of contigo and conmigo, Prep and NP must have a
parameter in their Spanish linearization type indicating that these combinations have an
exceptional behavior. Because of static typing, this leads to redundancies in a majority
of tables.

A related problem due to static typing is defective paradigms: words that lack some
forms required by the linearization type. A technical solution is to use the GF construct

13 See http://digitalgrammars.com for some commercial projects.
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nonExist, which is returned as a value for nonexistent forms. It is actually a special
case of the GF construct variants, which can handle words that have several forms
matching a given form description. However, as shown in Ljunglof (2004), variants is
not a standard PMCFG construct, and its inclusion in GF is not straightforward.

An important limit of GF comes from the (widely held) assumption that mild
context sensitivity is sufficient for natural languages (Kallmeyer 2010). This assump-
tion has recently been challenged by an analysis of hyperbatic constructions in Latin,
which make it possible to interleave any words contained in discontinuous constituents
(Spevak 2010). The analysis suggests that such constructions require more expressive
power than PMCFG or in fact any mildly context-sensitive formalism.'*

4. The GF Resource Grammar Library

Is it really possible to map all languages to a common interlingual structure? Rather
than arguing about this on a priori grounds, GF has approached the question in an
experimental way: try to build a common abstract syntax and see how far you get. The
result is the GF RGL (Ranta 2009b). Its goal is to cover the morphology and syntax
of languages, without going too deep into semantics but trying to formalize what is
implicit in the tradition of grammars: that languages tend to have categories such as
nouns and verbs, and combination rules such as predication and complementation. The
syntactic combinations have a shared abstract syntax in the RGL, whereas morphology
is defined separately for each language.

The original goal of the RGL was to serve as a library for controlled language
grammars, in the sense of a software library, as further explained in Section 5 (see
also Ranta 2007, 2009a). But it turned out later that the RGL can also be used on its
own for wide-coverage translation and parsing. This was done first in a pure GF system
(Angelov, Bringert, and Ranta 2014). Later, as the shared dependency structure that was
built in UD turned out to be close to the abstract syntax of the RGL, it became possible
to combine UD and GF into a robust pipeline (Section 6).

4.1 The RGL Languages

The development of the RGL started in 2001, with grammars for English, Swedish,
French, and Russian (Khegai 2006). Finnish was soon added, showing the adequacy
of the abstract syntax outside the Indo-European family. By the end of the European
MOLTO project (2010-2013),'> a majority of the 27 official languages of the European
Union had been covered. As of 2019, the RGL has “complete” implementations of
35 languages—complete in the sense of covering the common abstract syntax and a
set of inflectional morphology paradigms able to produce all word forms. The non-
Indo-European languages are Arabic (Dada and Ranta 2006), Basque, Chinese (Ranta,
Haiyan, and Tian 2015), Estonian (Listenmaa and Kaljurand 2014), Finnish, Japanese
(Zimina 2012), Maltese (Camilleri 2013), Mongolian (Erdenebadrakh 2015), and Thai.
At least 20 more languages are under construction, many of them Bantu languages (e.g.,
Ng’ang’a 2012, Pretorius, Marais, and Berg 2017, Kituku, Nganga, and Muchemi 2019).16

14 The argument is presented in a paper submitted by Frangois Hublet (2019), which also suggests an
extension of GF by constructs that would enable such rules.

15 http://www.molto-project.eu.

16 See http://www.grammaticalframework.org/lib/doc/synopsis.html and
https://github.com/GrammaticalFramework/gf-rgl for an updated view.
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More than 60 people have contributed to building the RGL, ranging from masters
students to senior professors. The effort of building the RGL for a new language is
typically from 2 to 6 person-months, requiring between 1,000 and 3,000 lines of GF
source code. Table 4 gives an overview and some statistics of the RGL languages.

Some groups of languages are implemented by using functors, also known as
parameterized modules, which means source code depending on a set of parameters,

Table 4

The complete languages of the GF Resource Grammar as of February 2019. ISO = ISO-639-3 code
(so-called B code when this makes a difference). Dict = number of lemmas in the dictionary (500
means that there is just a basic lexicon of around 500 lemmas). Transl = used in wide-coverage
translation. Appl = used in applications, ++ means also in commercial applications. Publ =
publications available, ++ means international publications in addition to academic theses. LoC =
lines of GF code (non-empty, non-comment), excluding the dictionary. The sum of two figures
means shared functor+language-specific code. The asterisk * means that there is an additional
set of low-level morphological paradigms extracted from external sources. Year = when the main
part of the grammar was released.

ISO Language Dict Transl Appl Publ LoC Year
Afr Afrikaans 500 — — — 1200 2009
Ara Arabic 500 — ++ ++ 3300 2006
Bul  Bulgarian 53k  + ++ ++ 4500% 2008
Cat Catalan 18k + + — 900+1300* 2006
Chi Chinese 37k + ++ ++ 900 2012
Dan  Danish 500 — ++ — 800+1100 2002
Dut  Dutch 23k + ++ — 1600 2009
Eng  English 65k + ++ — 1600 2001
Est Estonian 84k + + ++ 2600 2013
Eus Basque 10k — — — 1400 2018
Fin Finnish 42k + ++ ++ 2900 2003
Fre French 93k + ++ — 1100+1300 2002
Ger German 44k + ++ + 1900 2002
Gre Greek 500 — — ++ 2600 2012
Hin  Hindi 36k + + ++ 800+1100 2012
Ice Icelandic 500 — — + 2800 2015
Ita Ttalian 30k + ++ — 800+1300* 2003
Jpn  Japanese lek  + + ++ 3100 2012
Lav  Latvian 63k — + ++ 1300 2011
Mit Maltese 4k — — ++ 4600 2014
Mon Mongolian 24k — — ++ 1700 2015
Nep Nepali 500 — — + 2100 2013
Nno Norwegian(n) 500 — — — 600+1100 2016
Nor  Norwegian(b) 500 — ++ — 600+1100 2002
Pes Persian 500 — ++ ++ 1200 2013
Pnb  Punjabi 500 — — ++ 1600 2012
Pol Polish 500 — ++ ++ 5700* 2010
Por Portuguese 129k — ++ + 1000+1300* 2018
Ron  Romanian 500 — ++ ++ 3800* 2009
Rus  Russian 136k + — ++ 3000 2001
Snd  Sindhi 500 — — + 1500 2013
Spa  Spanish 43k + ++ + 800+1300* 2003
Swe  Swedish 111k + ++ ++ 700+1100 2002
Tha  Thai 44k + + — 600 2011
Urd Urdu 15k — + ++ 800+1100 2012
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from which the compiler produces different run-time code via different values given
to the parameters. The most comprehensive functor covers five Romance languages—
Catalan, French, Italian, Portuguese, and Spanish. Functors are also used for Scandina-
vian (Danish, Norwegian Bokmal and Nynorsk, Swedish) and for Hindustani (Hindi,
Urdu). In all these cases, around 90% of the code for syntax is shared within the family.
A functor is also used in the emerging Bantu grammars.

No effort is known to us trying to share the morphology or the lexicon, even though
this could be an interesting typological exercise. It could also be an interesting typolog-
ical task to create hierarchies of functors, such as Germanic on top of Scandinavian.
However, most RGL developers have had ultimately practical goals and used functors
only when they clearly ease the effort of language implementation or maintenance. The
practical benefit of functors is that they enable adding rules and fixing bugs simultane-
ously in many languages.

4.2 The Economics of Grammar Writing

Grammar writing can be contrasted with another way to create language resources:
by annotating corpora to create data for machine learning (Sharoff and Nivre 2011).
A common view is that corpus annotation is “cheaper,” in terms of both time and
skills required. In our experience, writing a resource grammar indeed requires more
programming skills than corpus annotation, and the human labor is therefore “more
expensive.” But grammarians usually see it as an enjoyable intellectual challenge, which
they do voluntarily. It has attracted people who would probably not volunteer for large-
scale corpus annotation—for instance, professors of mathematics and computer science.

Grammar writing vs. corpus annotation is not an exclusive choice. Using a grammar-
based parser as the first step for building a treebank is a proven method (Marcus,
Santorini, and Marcinkiewicz 1993; Oepen and Manning 2004). Because natural lan-
guage grammars typically yield ambiguous results and have limited coverage, a human
is needed to disambiguate and complete the parser output. But this method can still
save work compared with fully manual annotation. It can also improve the consistency
of the resulting treebanks, by mechanically analyzing the same structures always in the
same way.

What is more, a computational grammar is in many ways a richer resource than an
annotated corpus. A GF grammar, in particular, gives

*  anaccurate method to generate language and not only to analyze it,
e  aprecise definition of crosslingual relations via the shared abstract syntax.

We will see in Section 6.3 that a resource grammar can even replace much of the work
of hand-annotating corpora, because it enables the generation of synthetic corpora that
come a long way in providing data for machine learning without any additional cost.
So what does it cost to build a GF grammar? For a complete resource grammar
(in the sense of Table 4), a typical development time is 2 to 6 months of one person’s
work (?). This is an appropriate size for a master’s thesis; examples include Japanese
(Zimina 2012), Greek (Papadopoulou 2013), Maltese (Camilleri 2013), and Icelandic
(Traustason 2016). To extend this to a shallow wide-coverage grammar, such as used
in Angelov, Bringert, and Ranta (2014), just a few weeks more is needed, if the lexicon
can be extracted from available resources (cf. Sections 5.2 and 7.1). However, there is
no GF experience yet from a wide-coverage deep and precise grammar comparable
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Figure 8

The categories of the common abstract syntax of the RGL, showing their main dependencies. The
full dependency graph has several cycles. The rectangles show lexical categories subcategorized
by their complement lists, such as V2 for two-place verbs taking one NP complement. V* and
V2* mean sets of verb categories taking other complements as well, such as VP, AP, or S.

to the head-driven phrase structure grammar (HPSG) English Resource Grammar
(Flickinger 2010).

4.3 The Common Abstract Syntax

The common abstract syntax of the GF RGL has a set of categories, summarized in
Figure 8. Figure 9 shows an example that uses many of the categories. Some of the
functions combining these categories are shown in Table 5. The table shows all of the
RGL functions that are used in the examples of this paper and serves therefore as a quick
reference. The total figures are (rounded to nearest tens):

. 90 categories,

o 200 combination functions,

. 140 function words (pronouns, determiners, numerals, etc.),
o 350 content words in a test lexicon.

The common abstract syntax also features a content word test lexicon, designed for
testing the morphology and syntax. It includes the Swadesh list (Swadesh 1955) as well
as a set of common modern words.!” As shown in Table 4, many languages also have a

17 The Swadesh list has around 200 lemmas. The modern words are selected from elementary language
teaching material with no particular source.
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Figure 9
An example of RGL abstract syntax trees (above), with corresponding phrase structure trees for

English and Italian (below). The phrase structure trees show two differences in word order:
AP-CN and V2-Pron.

larger lexicon, which is either just a monolingual morphological lexicon, or also gives
links to other languages by implementing a common abstract syntax of word senses;
languages of the latter kind are those that have been used in wide-coverage translation.

Figure 8 and Table 5 suggest that the RGL follows a Western grammar tradition, as
formalized by Chomsky (1957) and later in different grammar formalisms in numerous
variations. The most important inspiration at the early stage was Montague’s “PTQ
grammar” (“Proper Treatment of Quantification in Ordinary English,” Montague 1974)
and its extension in the Core Language Engine, particularly as described in Rayner et al.
(2000). The mechanism of “slash categories” to deal with “wh movement” was inspired
by Generalized Phrase Structure Grammar (Gazdar et al. 1985), although in a restricted
form conformant to PMCFG.!®

18 The restriction is that each category must correspond to a tuple of a fixed size. Similar reasons made it
impossible to reproduce the full power of Montague’s “quantifying in” rules, in which an unlimited
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Table 5

A sample of the syntactic combination functions in the common abstract syntax, covering the
functions used in the examples in this paper. The “UD labels” column refers to the dependency
label associated with each argument place of the function, to be discussed in Section 6.

Function Type Example UD labels
AdAP AdA — AP — AP very warm advmod head
AdjCN AP — CN — CN big house amod head
AdvVP VP — Adv — VP sleep here head advmod
ComplSlash  VPSlash — NP — VP love it head obj
ComplVV VV = VP — VP want to run head xcomp
DetCN Det — CN — NP these men det head
DetQuant Quant — Num — Det  these five head nummod
PositA A — AP black head

PredVP NP — VP — Cl John walks nsubj head
SlashV2a V2 — VPSlash love (it) head

UseCl Temp — Pol - Cl =S  shewon’t have slept ~ aux advmod head
UseN N — CN cat head

UsePron Pron — NP we head

UttS S — Utt she sleeps head

The main proof for the abstract syntax is that “it works”—at least, has been found
to work so far. No claims are made that it should continue to work for all languages
of the world and be “universal” in the most pregnant sense of the word. However, the
recent advances of UD (Nivre et al. 2016) have not only shown that it is possible to
assign the same syntactic structures to vastly different languages, but also ended up
with structures very similar to the RGL (Kolachina and Ranta 2016). We will return to
the GF-UD correspondence in Section 6.

4.4 Dealing with Structural Differences

The abstract syntax of the GF Resource Grammar is, in the technical sense, an interlin-
gua, which implements a certain linguistic theory of crosslingual syntax. However, it is
not good enough to serve as a semantic interlingua that guarantees meaning-preserving
translation. The reason is that translation often has to change the syntactic structure to
render the original meaning. Here are some simple and well-known examples:'

e English I am a teacher, French je suis professeur: no indefinite article in
French.

*  English I like this, Italian questo mi piace (“this pleases me”): swap of subject
and object.

number of slots must be available for pronouns corresponding to a bound variable. The full power of
Chomsky’s transformations is beyond the reach of PMCFG as well. Slash propagation in GF is
implemented as function composition, following the tradition in categorial grammars; cf. Steedman
(1988).

19 Many more can be found in, e.g., Dorr (1994) and Kay (2017).
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e English there is money, German es gibt Geld (“it gives money”), Swedish def
finns pengar (“money is found”), Finnish rahaa on (“money is”): existentials
expressed in numerous ways.

*  English he swims across the river, French il traverse la riviere en nageant (“he
crosses the river by swimming”): the mode and direction of movement
distributed in different ways.

. English my name is John, German ich heiffe John (“I have-name John”),
French je m’appelle John (“I call myself John”): different constructions
where even the subject changes.

The RGL could of course in principle cope with all this by adding more and more
constructions on a more abstract level. From the above examples, the existentials are
actually handled in the RGL by special functions that enable compositional translation.
But in general, there are too many constructions to keep track of, and special domains
of language use come with their own constructions. For example, English be subject to
X can in legal language be expressed in French as faire I'objet de X (“make the object
of X”; see Table 7 later in this article for some more examples). The strategy adapted
for this is to use domain-specific application grammars for precision translation tasks.
The RGL is then used as a library for building these grammars, so that the authors of
application grammars (such as lawyers) do not need to write linearization rules on the
level of records and tables, but can use RGL functions to take care of linguistic details
(Ranta 2009a).

Using RGL as a library, rather than as a run-time grammar, was its original purpose.
The users of the library would only need to know its abstract syntax, and leave the
details of linearization to the linguists who have implemented the RGL. We shall return
to the library use of the RGL in Section 5, where we look closer into grammar compo-
sition: a way to combine grammars of different levels (semantics, syntax) by function
composition.

4.5 Extensions of the RGL

The common abstract syntax of the RGL can be seen as an intersection of the struc-
tures available in different languages. There is no claim that it covers all the struc-
tures of all languages: On the contrary, the library has a standard set of modules for
language-specific extensions. These were originally defined in separate modules for
each language or family (where, for instance, Romances language have a common set of
extensions).

Later development has led to a “matrix” of extensions, which is the union of all
language-specific functions and their optional implementations in other languages.
Each language has a column indicating the concrete syntax of each such function, either
by a genuine rule or by a paraphrase. A typical example is the ProDrop function, which
drops the string part of a subject pronoun but retains its agreement features. It has
genuine entries for some languages (Italian, Spanish, Finnish), whereas languages that
do not have pro-drop are just given a paraphrase—an identity function to the effect that
the pronoun is not dropped.?

20 In Finnish, pro-drop is restricted to the first and second persons, which is of course a part of the
linearization rule.
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4.6 Limitations of the RGL

The RGL was originally designed to cater to the needs of NLG. For this purpose, it is
enough to express all desired content in one way: One does not need to cover all possible
ways to express things. However, in wide-coverage parsing, this is a serious limitation.
The first experiment in this direction was the conversion of the Penn Treebank (Marcus,
Santorini, and Marcinkiewicz 1993) to GF RGL. It showed that over 90% of the nodes
could be interpreted as RGL functions, but only 5% of the sentences had complete
translations (Angelov 2011). This led to a series of extensions as described in Section 4.5,
first meant to cover the missing English structures. However, if the ultimate goal is to
build an interlingual grammar, the structures designed for English are not necessarily
adequate for other languages—in particular, they might not allow for compositional
linearizations. Extending the RGL is therefore a slow process by design, and different
languages proceed at different speeds.

One example of variation is word order. English has an exceptionally rigid word
order, but even the Penn Treebank presented variation in the order of complements
and adjuncts not previously covered in the RGL. The situation is much more serious in
languages like Finnish. Word order is often free only from the weak generative point of
view (what strings are grammatical). From the strong generative perspective, Finnish
word order often expresses different structures, for instance definiteness (as Finnish has
no articles) and focus (Karttunen and Kay 1985). Such structures should be covered
by distinct abstract syntax functions, which in turn should be implemented for other
languages. Just some small experiments have been made in this direction (Ranta 2012).

The abstract syntax of RGL can sometimes look too superficial even for syntax-
based translation purposes. One example is the tense system. There is a common
abstract tense system, which works well for English and Scandinavian languages, but
is insufficient for many other languages. For instance, Romance languages make an
aspectual distinction between continuous and “simple” past. This is implemented in
the Romance extensions to RGL, but there is no support for selecting the right tense
when translating English to French: this has to be done on an additional semantic level.

A GF-inherent problem, rather than an RGL-specific one, is that the need to imple-
ment a common abstract syntax can require complex record and table systems, which
leads to heavy run-time grammars (cf. Section 3.6). For instance, the slash constructions
(Section 4.3) in Romanian become so heavy that the grammar cannot be used for parsing
in its entirety, but only as a library.

A general consequence of a common abstract syntax is that spurious parsing am-
biguities result in almost all individual languages. For instance, indefinite and definite
nouns are mostly indistinguishable in Finnish and Slavic languages, which means that
a noun used as an NP typically gets two parse trees. The same happens with the tense
system, where for instance Finnish does not distinguish between the present and future
of verbs. A slightly more subtle ambiguity can be found in predicative constructions
involving interrogatives:

Who is the chairman?

has two analyses: one where who is the subject and another where it is the complement.
The resulting two trees have different linearizations in some languages, for example,
Finnish (kuka on puhemies vs. kuka puhemies on). And indeed, the ambiguity is not
spurious even in English, as shown by the subordinate forms of the questions (I don’t
know who the chairman is vs. I don’t know who is the chairman).
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In some cases, the common abstract syntax has turned out impossible to implement
for the reason that a language just does not have that construct. The clearest example
is Japanese, where the conjunction of relative clauses (included in the RGL) is possible
only for clauses where the relative pronoun is the subject. The grammar does linearize
trees for other clauses as well, but they are not grammatically correct (Zimina 2012). One
possible solution is a layer of non-compositional post processing that finds paraphrases
for inadequate trees (Section 3.5).

Similar reasons have led to a decision not to include a V2 conjunction (as in John
loves and hates Mary) in the RGL. The problem is that, in most languages, V2 conjunction
is only possible for verbs whose complement cases match. But the RGL does not indicate
complement case in the abstract syntax (Section 3.4.4).

5. Levels of Interlingua

Abstract syntax can formalize structures on different levels. The highest level conceived
by Vauquois, semantic interlingua, is a full representation of meaning. In GF terms this
means that if we find the correct tree matching the source language, then we can be sure
that its linearization into the target language renders the meaning correctly (given that
the linearization rules are correct).?! The next level down is a syntactic interlingua such
as the RGL, but it gives no guarantees of correctness: A translation can be syntactically
equivalent to the source sentence without being a correct expression of its meaning. At
the lowest level, one can construct a lexical interlingua, where translation is performed
by replacing words with their equivalents. Between syntactic and lexical, a chunk inter-
lingua works with segments that can be longer than single words. A chunk interlingua
can be used to implement a system similar to Apertium (Forcada et al. 2011). It can even
take into account morphology—for instance, translate plural genitive nouns into plural
genitives. It does not guarantee syntactic correctness, but it can still give good results
for closely related languages, such as Spanish-Catalan in Apertium, where word order,
morphology, and agreement are similar.

In GF, interlinguas of different levels have been used in two different ways. The
most common way, used in numerous CNL systems, is grammar composition: interlin-
guas of lower levels are used as libraries for implementing interlinguas of higher levels
(Section 5.1). A more experimental way, used in wide-coverage translation, is to use
layered interlinguas, where lower levels serve as backups of higher levels (Section 5.2).

5.1 Grammar Composition

The idea of grammar composition is related to NLG pipelines such as the Meaning-Text
Theory of Mel’cuk (Mel’cuk 1997). Instead of writing linearization rules directly from
a semantic interlingua to strings, tables, and records, we write them in terms of RGL
functions that build syntactic structures.

Let us consider a simple example: A social media application might need a semantic
predicate expressing that “someone likes something.” The abstract syntax function uses
semantic categories:

21 Semantics is here understood in the wide sense of including various aspects of pragmatics, i.e., encoding
all relevant information about a speech act in a relevant situation. Ranta, Détrez, and Enache (2012) is an
example of semantics in GF in such a wide sense.
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Like /y la birra

/ \ you I ti
like piace

YouSg Beer beer _J
PredVP
/ \ PredVP
UsePron ~ ComplSlash re
| N /N
youSg_Pron  SlashV2a  MassNP DetCN  ComplSlash
like_V2 UseN DetQuant  UseN SlashV2a UsePron
| S | | \
beer_ N DefArt NumSg  birra N  piacere_V2 youSg_Pron

Figure 10
Semantic interlingua and word-alignment (top), followed by syntactic interlingua (bottom), for
English and Italian.

fun Like : Person -> Object -> Fact

The categories Person and Object are both implemented as NP in the RGL, whereas
Fact is implemented as clause (Cl).?? Distinguishing the types Person and Object,
even though syntactically the same, imposes a semantic control of well-formedness:
We can express the fact John likes beer but exclude beer likes John. But because of
the use of NP and Cl, we can use RGL functions to implement the predicate in
different languages:*

lin Like x y = mkCl x (mkV2 like V accusative) y -- Eng
lin Like x y = mkCl x (mkV2 gilla V accusative) y -- Swe
lin Like x y = mkCl x (mkV2 tykata.V elative) y -- Fin

lin Like x y = mkCl y (mkV2 piacere V dative) x -- Ita

In English and Swedish, the construction with direct transitive verb (V2 with the ac-
cusative case) is used, with appropriate verbs from the lexicon of each language. In
Finnish, the verb tykiti takes its complement in the elative case (the “from inside” case),
rather than as a direct object. In Italian, the verb piacere takes a dative object (either a
clitic pronoun or a noun phrase with the preposition a), but its syntactic dative object
expresses the logical “subject,” and the syntactic subject expresses the logical “object.”
The effect of the levels of interlingua can be seen by comparing the syntax trees and the
word alignment. Figure 10 shows the shared semantic tree as well as the language-
specific syntactic trees for English and Italian. It also shows the word alignment constructed

22 “Implemented” means that semantic categories use RGL categories as linearization types.
23 The definitions use the RGL API, where almost every function forming a tree of type C has the
overloaded name mkC, and word lemmas have names of the form word_C.
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by linking words that correspond to the same subtrees in the abstract syntax: Here, the
components you, like, and beer. In addition to the subject—object swap, Italian differs
from English by adding the definite article to the mass noun birra when used as a
subject. A grammar using the RGL as a library resembles an NLG pipeline that goes via
different levels of representation: semantic, syntactic, and lexical. However, in typical
GF systems, the intermediate representations are not visible at run time: All that remains
are the semantic trees and the concrete strings. Making this possible in the grammar
compiler was a major challenge in the development of GF, using compilation techniques
such as partial evaluation (Ranta 2004b; Angelov, Bringert, and Ranta 2009).

GF grammar composition is analogous to transducer composition in the finite-
state world (Kaplan and Kay 1994), where grammar writers can structure their source
code into smaller components, but this structure is optimized away from the run-time
system, which works as a single end-to-end transducer. Borrowing the notation of
XFST, we could express the implementation of a semantic grammar for a language, say
Hindji, as

SemanticAbstract .o. SemanticHin .o. SyntacticHin

While grammar composition is an appealing idea linguistically, it also has the practical
advantage that it enables a division of labor between linguists, who write syntactic gram-
mars, and domain experts, who write semantic grammars. The linguists typically do
not know the semantic structures in different domains, which can be very specialized,
whereas domain experts do not know the concrete details of languages.

Grammar composition is not restricted to a fixed number of levels, but can exploit
any intermediate levels of abstractions, such as the FrameNet, which lies between the
RGL API and the final application, as described in Section 7.2.

5.2 Layered Translation

A semantic grammar can only deal with expressions that are interpretable in the se-
mantic model. It can therefore be expected to be partial. To change this behavior, one
can use a syntactic grammar as a backup for everything that cannot be interpreted in
the semantics. The syntactic grammar can in turn be backed up by a chunk grammar.
In general, a grammar can consist of layers of less and less precise grammars, giving
fewer and fewer guarantees of translation equivalence, but with the advantage of being
robust in the sense of always returning something.

Four layers have been used in Angelov, Bringert, and Ranta (2014), Ranta (2014),
and Ranta, Unger, and Vidal Hussey (2015):

¢ semantic interlingua (a CNL abstract syntax),

*  syntactic interlingua (the RGL abstract syntax),

e  chunk interlingua (sequences of RGL phrases), and

*  verbatim string literals.
Semantic and syntactic interlinguas have been discussed before, whereas verbatim
strings need little explanation: An unknown word in the source language is returned
as itself in the target language. But what is the chunk interlingua?

Just like the semantic interlingua, a chunk interlingua can be implemented in terms
of the RGL. It consists of an extension of the RGL with two new categories: chunks and
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lists of chunks. Chunks can be built from different phrase categories, such as NP, AP, VP.
The upper limit is an entire sentence, the lower limit a single word. The parser tries to
build chunks of maximal lengths. Its output is a list of chunks, which are independent
of each other. Linearization renders the chunks into their translations in the same order.

The main difference between full syntactic trees and chunk lists is that chunk lists
do not impose any dependencies between the phrases—in particular, no agreement,
and no syntactic clue that could change the order of chunks. Thus a chunking parser
can recover from agreement errors and return a target sentence, which often has similar
agreement errors (here translating from English to Italian):

he sleep here — [he_NP, sleep_V, here_Adv] — Iui dormire qui

The middle term is a list of three chunks belonging to different categories.

Inside each chunk, agreement works. This means that longer chunks are better than
shorter ones, provided that the chunk limits are correct. The following examples show
how both agreement and word order get corrected when chunks get longer:

this yellow house

— [this_Det, yellow_A, house_N] — questo giallo casa

— [this_Det, (mkCN yellow_A house_N)] — questo casa gialla

— [mkNP (this_Det (mkCN yellow_A house_N))] — questa casa gialla

This effect is similar to smoothing in n-gram based language models, where longer
n-grams are preferred but can be backed up by shorter ones. In grammar-based ap-
proaches, GF chunks resemble the fragments in lexical functional grammar (LFG)
(Riezler et al. 2002), with the expected difference that chunks in GF have a language-
independent abstract syntax.

5.3 Evaluations of Layered Translation

GF systems built for CNLs usually aim for a precision of 80% or more, when measured
as BLEU scores using post-edited machine translations as reference. Post-edited refer-
ences are laborious to produce, but they solve one problem typical of rule-based MT,
which is that it often produces translations that are, although correct, not the same as in
a static reference. Static references are also unfair for statistical and neural translations,
but do make more sense when the test set and the training set are selected from the same
material. Below, when we compare GF translation with other methods, we always work
on separate references for all systems in order to guarantee a fair comparison. Even with
post-edited reference, 100% is hard to reach, because human post-editors tend to make
changes to improve the style or idiomacy of the translation.

A comprehensive CNL evaluation campaign was made within the European
MOLTO project (Rautio and Koponen 2013).** The results confirmed BLEU scores
mostly above 80%—sometimes under this, sometimes above 90%—for the main CNL
applications, such as a tourist phrasebook (Ranta, Détrez, and Enache 2012) and a GF
implementation of Attempto-controlled language (Kaljurand and Kuhn 2013).

Going down to lower levels of interlingua expectedly lowers the quality of trans-
lation. The first comprehensive experiment in this direction was a translation system

24 Multilingual Online Translation, FP-ICT-247914.
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Table 6

Quality evaluation for layered translation in Ranta, Unger, and Vidal Hussey (2015). “CNL”
means translation with the semantic grammar, “robust” means CNL with other layers. The
“correct” percentage indicates that no changes were made in post-editing.

Language Correct BLEU, GF BLEU, Google
Finnish, CNL 48% 77 31
Finnish, robust 0% 31 20
Finnish, all 46% 73 28
German, CNL 44% 75 37
German, robust 0% 33 34
German, all 42% 73 37
Spanish, CNL 34% 76 28
Spanish, robust 0% 39 25
Spanish, all 32% 74 28

for descriptions of buildings from a text database, with Swedish as source and Finnish,
German, and Spanish as target languages (Ranta, Unger, and Vidal Hussey 2015). The
input was not pure CNL, but free texts written by many different humans, containing
typos and often in telegraphic style dropping articles, etc. Table 6 shows BLEU scores
above 75 for semantic translations and 30 to 40 for the chunk-based back-ups. Even the
latter were better on the average than Google Translate, except for German.?

The size of the system in Table 6 is in the order of thousands of concepts. Sec-
tion 7.1.5 goes up one order of magnitude and reports the most recent results from
translation by using the RGL in combination with WordNet for English and Bulgar-
ian. The proportion of necessary chunking and its effect on BLEU is reported later in
Table 12.

The next step is a full-scale open domain task. The GF entry in the WMT contest in
2015 was the first attempt in this direction. It showed very low BLEU scores for a generic
English-Finnish translation grammar not adapted to the domain (Kolachina and Ranta
2015).%6 Using the training data of the WMT task to build a specialized lexicon for words
and multiword constructions would probably have helped. An interesting question for
future work is to develop alignment techniques that can use parallel data to extend
grammars with constructions usable as translation units.

5.4 Constructions as Translation Units

Many recent GF projects have addressed “semi-wide-coverage” tasks, which involve
legacy texts that are from limited domains but not CNL. The largest such project known
to us is a lexicon for the concepts in the General Data Protection Regulation (GDPR)
of the European Union (EU).%” It is a commercial project carried out by a language

25 Google translation at the time was still phrase-based and not neural, at least for Swedish and Finnish. It
was chosen as comparison because the customer had used it before ordering the GF system. To guarantee
fair comparison, Google translations were evaluated against their own post-edited references.

26 The BLEU score for the GF system was 4.8 according to the EuroMatrix evaluation matrix,
http://matrix.statmt.org/, whereas the best system in the competition achieved 16.0.

27 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32016R0679.
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Table 7
Example of the GDPR lexicon, showing a part of the search results for the word subject. Every
line corresponds to a different abstract syntax construction involving this word.

English German French Italian Spanish

be subject to X X unterliegen étre soumise a X essere sottoposta a X ser sujeta a X

be subject to X X unterworfen sein  faire I’objet de X essere soggiogataa X  ser sujeta a X

subject betroffen concerné soggetto sujeto

subject Gegenstand sujet soggetto objeto

subject-matter ~ Gegenstand objet oggetto objeto

subject to X vorbehaltlich X sous reserve de X  soggetto a X siempre que se den X
subject to X fallend unter X soumis a X soggetto a X interesados a X
Table 8

Statistics of the GDPR grammar and corpus. The numbers of different types of abstract syntax
functions are independent of language. “Pure syntax” means combination rules with no content
words inserted. “Constructions” means mixtures of syntax and content words. “Multiword
functions” means linearizations that introduce more than one token; one can see clearly that
German is a compounding language. “Multiword frequency” gives two figures: how many
lexical items in the corpus are multiwords, and how many tokens are parts of multiwords.

Abstract English German French Italian Spanish

functions, total 3,525 - - - - -
functions, atomic 3,272 - - - - -
functions, pure syntax 139 - - - - -
functions, constructions 114 - - - - -
word tokens - 55,186 54903 62,198 55,296 57,383
word types - 2,625 4,153 3,206 3,520 3,498
lemma types - 2,555 3,053 2,467 2,689 2,478
multiword functions - 590 227 574 559 594
multiword frequency % - 8-13 3-10 10-21 10-20 11-21

technology and a law technology company, but has a publicly available demo.?® Table 7
shows an output of the demo, with constructions containing the word subject in English
with their translations to German, French, Italian, and Spanish. Every line corresponds
to a different abstract syntax function, where those with the letter X are constructions
that take arguments.

All correspondences in the GDPR grammar are attested in the corpus used. They
have concrete syntax rules in all languages addressed, which makes it possible to both
generate and recognize them in all of their occurrences (inflected forms, discontinuities).
Every phrase shown in the Web demo has hyperlinks to the passages where the term
occurs. Table 8 gives some statistics of the size of the corpus and the grammar.

The GDPR grammar was built on top of GF-ACE (Ranta and Angelov 2010), a GF
implementation and multilingual generalization of Attempto Controlled English (ACE,
Fuchs, Kaljurand, and Kuhn 2008). It was designed to be used for generating, analyzing,
and translating legal documents in the data protection domain.

28 See https://gdprlexicon.com for the demo and more details.
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The GDPR corpus shows a large number of multiword constructions that are not
translated word to word. A similar observation was made in the WordNet translation
experiment (Section 7.1.5) as well as earlier, in a different context, in the hybrid machine
translation experiment on patent claims (Enache et al. 2012). The patent translation
project developed some techniques to extract grammatical rules for multiwords from
parallel corpora via SMT phrase tables. But this method did not work equally well in
the GDPR case, probably because of the much smaller amount of data.

6. Abstract Syntax and Universal Dependencies

UD (Nivre et al. 2016) is an approach to dependency parsing that uses the dependency
labels and part of speech tags for different languages. In that sense, UD can be seen as
an abstract syntax approach. In this section, we will study the relations between GF and
UD in some detail. We will start with a more general discussion of the relations between
abstract syntax trees and dependency trees: The right level of comparison is not GF-UD,
but either RGL-UD or GF-dependency parsing, because RGL is just one grammar in the
GF format, in the same way as UD is just one annotation scheme using the dependency
format.

6.1 From Abstract Syntax Trees to Dependency Trees

We need to distinguish between three kinds of trees:

®  abstract syntax trees, which are built from typed constructor functions,

e  phrase structure trees, which are built from categories (non-terminals) and
tokens (terminals), and

*  dependency trees, which are built from tokens (words) and labeled
dependency arcs.

The labels in dependency trees are meant to stand for grammatical functions, such as
subject, object, and modifier. This is not the same notion of function as abstract syntax
functions in GF. But the notions are related: Grammatical functions in dependency trees
correspond to argument places of abstract syntax functions. Some such correspondences
are shown in Table 5. To repeat an example, the predication function together with its
type and dependency labels is

fun PredVP : NP -> VP -> C1 -- nsubj head

which means that the first argument, an NP, contains the subject, whereas the second
argument, a VP, contains the head. In dependency trees, the subject and the head are
not phrases like NP and VP, but individual words in them, namely, the ones that are
reached by following the head paths (the spines) down to the leaves. In a noun phrase
the head is typically a noun; in a verb phrase, it is often a verb.? The precise algorithm
for deriving a dependency tree from an abstract syntax tree is the following;:

29 UD deviates from the latter rule by letting content words be heads if the verb is a copula; this is in fact
analogous to the way it is done in the RGL, where the copula has no abstract syntax function of its own.
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PredVP

AN

DetCN AdvVP

% | wa

DetQuant AdjCN ComplSlash  today_ Adv

A

DefArt NumSg PostA UseN Slashv2a UsePron e ﬁ’d\v
o | | oo
DET AD) NOUN VERB PRON  ADV
black A cat N see V2  we Pron the black cat sees us today
root
nsubj
det amod obj advmod
CNOONY Y
PET NOUN ADJ PFfON VERB ADV .
il gatto nero ci vede oggi
Figure 11

An RGL abstract syntax tree annotated with dependency labels, and the corresponding
dependency trees for English and Italian. The thick red path from DefArt to cat_N shows how
the dependency tree algorithm finds the head of a word by walking up the tree until a label is
reached, and then walking down along the head spine.

1. Mark the subtrees of each function node with the corresponding labels.

2. Linearize the tree to the desired language, retaining a link from each leaf
node to the corresponding word in the linearization.

3.  For each word W,
(a)  follow the path up the tree until you encounter a label L.

(b)  from the function node dominating L, follow the spine (head path)
down to a word U,

()  draw an arrow from U to W labeled by L.

This algorithm together with the dependency label annotations for UD is called gf2ud.
It is the way the dependency trees have been derived in Figure 11.

The algorithm makes an assumption that holds in Figure 11 but not in general: that
the leaf nodes in abstract syntax trees are in one-to-one correspondence with words in
linearizations. There are three exceptions to this:

*  Aleaf node has no word attached, as, e.g., in the case of pro-drop.
. A leaf node has many words attached, as in multiword expressions.

*  There are words not corresponding to any leaf node.

The first exception is mostly harmless: Some edge is just not created, resulting in the
same tree as in standard UD. This can be a problem if the node is a head; however, the
UD convention of using content words as heads usually avoids this situation.
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The second exception, multiwords, is a problem even inside UD, solved by more
or less established ways to impose some internal structure, for instance, on multiword
prepositions such as in accordance with, on behalf of.

The third exception is the most serious one. It has to do with syncategorematic
words: words that do not belong to categories, but are introduced in connection to
syntactic combination rules. In the RGL, this includes copulas, negation words, tense
auxiliaries, and infinitive marks. For example, the copula in sentences like the cat is black
is often missing in Arabic, Russian, and Chinese (depending on tense and some other
factors). Therefore it is not considered to be a universal meaning-bearing unit, and it is
introduced in the linearization rules of adjectival and other non-verbal predication, for
those languages that need it.

The dependency configurations such as given in Table 5 and used in the above
algorithm are called abstract configurations. They apply to all RGL languages and
produce UD labels for all words that correspond to abstract syntax leaf nodes. The rest of
the words—the syncategorematic ones—are by default given the label dep and linked to
the head of the closest dominating phrase node. However, this labeling can be changed
by using concrete configurations, which are rules referring not only to abstract syntax
but also to the words produced in linearization. For example, the following concrete
configuration marks the finite forms of the English verb be with the label cop when
used as copula with a predicative complement, links them to the head of the UseComp
function, and marks them with the part of speech tag VERB:

UseComp "is","are","am","was","were" VERB cop head

With appropriate shorthands and abstractions, a dozen or two concrete configurations
are enough to label all words of a language with an informative UD label (i.e., other than
the dummy label dep). Looking from another perspective, about 80% of text words on
the average get correct labels by the abstract configurations alone (Kolachina and Ranta
2016). These statistics become relevant when we consider GF as a tool for generating
dependency trees automatically from grammars (Section 6.3).

Abstract and concrete configurations, as described above, are local in the sense that
they refer only to one function and its immediate subtrees. They could also be called
compositional in a sense related to Section 3.5. However, if we want to match the
standard UD treebanks exactly, local rules are not always enough. This is often due
to language-specific variations. For instance, the combination of VP-complement verbs
(VV) has two alternative configurations,

fun ComplVV : VV -> VP -> VP -- head xcomp | aux head

depending on whether the VV is considered auxiliary or main verb. The RGL does not
make this distinction, because being auxiliary is not universal in the same way as being
a VP-complement verb is. In some languages, such as Finnish, this distinction hardly
makes any sense, because there is no corresponding difference in syntactic behavior.
In some languages, such as the related Germanic languages English and Swedish, the
distribution is different: The translation of I want to sleep, where want is a head verb, is
jag vill sova, where vill is an auxiliary. In the RGL, auxiliarity is just a parameter in the
concrete syntax, and only in those languages where it makes sense.

One possibility is to ignore some details of current UD, and work with dependency
trees that are a better match to RGL abstract syntax and, in this technical sense, also
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. UD parse ud2gf GF linearize
English UD tree GF tree French

UD par: d2gf f2tt
English i UD tree i GF tree i IT

formula

TT
formula

gf2tl

(gf+tt)2gf

. UD parse ud2gf GF linear.
English UD tree GF tree GF tree’ French

Figure 12
Three pipelines combining UD with GF: direct translation, type-theoretical semantics (gf2tt),
translation instructed by semantics.

more universal. Another possibility is to use non-local rules to satisfy the current UD
conventions, which means more work specific to individual languages.

6.2 From Dependency Trees to Abstract Syntax

Converting abstract syntax trees to dependency trees is a deterministic procedure that
can be carried out by a set of rules. But how is the opposite direction: Can we retrieve
GF trees from dependency trees? The utility of such a procedure for GF applications
would be high, because parsing in GF can be slow and brittle (Section 3.6), whereas
dependency parsing is fast and robust. On the other hand, dependency parsing has
no obvious way to generate language—in particular, to convert a tree to a string in a
different language. This makes UD trees alone insufficient as a translation interlingua.

Combining dependency parsing with GF generation can be used as a translation
pipeline. Figure 12 shows three variants of it. The first one is direct translation: UD
parsing piped into GF generation. The second one uses the semantic back end of GF to
produce a logical form, here a type-theoretical formula (Section 3.5). The third one uses
the logical analysis to guide translation.

Guidance from logical analysis can be used, for instance, in the translation of
anaphoric expressions, to guarantee that no ambiguities are created in translation. For
example, the English sentences (1) and (2) below are both translated to French (3), if
pronouns are compositionally rendered as pronouns. But a logical analysis that first
finds the referents of the English pronouns (via bound variables in the logical formula)
can replace them by the unambiguous translations (4) and (5), as described in Ranta
(1994):

1. ifa man owns a donkey he beats it
2. ifaman owns a donkey it beats him

3. siun homme possede un dne il le bat
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4. siun homme posséde un dne I’homme le bat

5. siun homme posséde un dne I'dne le bat

In order to build pipelines like those in Figure 12, we need a ud2gf component to
retrieve abstract syntax from dependency trees. An algorithm for this is presented in
Ranta and Kolachina (2017). Its core is the same kind of dependency configurations as
in gf2ud, which are now used in a search mode: Given a UD tree, find all GF trees
that can generate it. The ud2gf conversion is not deterministic, since gf2ud is a lossy
operation. For instance, the order of adjectival modifiers is not preserved in UD: The
French phrase (6) has just one UD tree, whereas the RGL gives two trees corresponding
to two different English translations:

6.  petit animal carnivore
7. (petit animal) carnivore—"carnivorous small animal”

8. petit (animal carnivore)—"small carnivorous animal”

Another problem is even more serious in practice: that many existing UD trees have no
corresponding RGL trees. This can have many reasons:

¢  GF grammars do not cover everything.
¢ UD treebanks have annotation errors.

e  UD parsers return wrong parses.

The way to cope with this in Ranta and Kolachina (2017) is to introduce backup rules,
which interpret unknown parts of UD trees as adverbial modifiers of closest possible
subtrees. This makes it possible to build an RGL tree from any UD tree, but some
subtrees are interpreted as modifiers with unclear grammatical status. This idea is
related to chunk grammars (Section 5.2), but it has better accuracy, since the backup
phrases are attached to local subtrees, and their presence does not need to break the
overall structure of the sentence. Table 9 gives statistics of the coverage of nodes in
terms of how much such backups are needed in parallel UD treebanks. Figure 13 gives
an example of a partially interpreted UD tree and the generated GF-RGL tree.

Using gf2ud as a front end to GF generation is an example of explainable machine
translation (XMT), which uses a neural parser as a black box (Straka and Strakova 2017),
but returns an explanation—the interlingual tree—which makes it possible to assess the
reliability of the translation (cf. Figure 5 in Section 2).

6.3 Data Augmentation and Bootstrapping

We saw in the previous section how dependency parsing can be used as a component in
GF pipelines. GF generation can, conversely, be useful in dependency parsing projects.
Here are three obvious ways how to use GF to save manual work:

1.  Data augmentation: Extend a dependency treebank by new trees derived
from given trees.

2. Data transfer: Translate a treebank from one language to another.
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Table 9

Coverage of nodes in test sets from the PUD treebanks for English, Swedish and Finnish. L*
(Swedish*, Finnish*) is with language-independent configurations only. #conf’s is the number of
language-specific configurations.

Language #Trees # Confs % Interpreted trees % Interpreted nodes

English 1,000 59 77 96

Finnish 1,000 49 69 95

Finnish* 1,000 0 62 84

Swedish 1,000 62 71 94

Swedish* 1,000 0 64 83
PredVP

UsePron  BackupVP

| |

i_Pron ComplSlash NPBackup
\
SlashV2a DetCN MassNP
/ /N \
have V2 DetQuant AdvCN AdiCN
\ / O\ RN
IndefArt  NumSg UseN PrepNP PositA  UseN
ROOT S /N \ \
nmod:tmod change N in_Prep DetCN next A week N
obj nmod / \
nsubj m m amod DetQuant UseN
"2 ¥ ) Y "2 - \
PRON VERB DET NOUN ADP NOUN  ADJ NOUN IndefArt  NumPl  plan_ N

| have a change in plans next week

I have a change in plans [next week]
minulla on muutos suunnitelmissa [seuraava viikko]
jag har en dndring i planer [nista vecka]

Figure 13

A tree from the UD English training treebank interpreted in GF with a backup node, and the
resulting linearizations to English, Finnish, and Swedish, where the backup part is enclosed in
brackets. The grammar used here does not recognize the prepositionless noun phrase as an
adverbial. The Swedish translation happens to be acceptable, whereas the Finnish translation
would require a different case to make sense.

3.  Data bootstrapping: Synthesize a treebank from a grammar with no
previously given trees.

Data augmentation (Figure 14) uses both ud2gf and gf2ud. The “augment” step is
carried out at the level of GF trees. It can be a simple process such as generating all
tense and polarity variants of a clause. But it can also vary the subject, the verb, and
the object, as well as add or remove modifiers. A handful of simple tree operations
can multiply the size of the treebank by several orders of magnitude. Only a part of
this makes significant difference when training a parser by machine learning, and there
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ROOT
nsubj
det aux
amo: neg obj
utts
Pres DET  ADJ NOUN AUX  PART  VERB PRON
Neg the black cat does not see us
ROOT
aux
ROOT det
det amo nsubj obj
amodN  nsubj | obj uttQs VR | VAN
¢ \4/ ) |ud2gf | UHS augment EaSt gf2ud | aux per  ap) NOUN VERB  PRON
DET AD) NOUN VERB  PRON Pres 0s did the black cat see us
the black cat sees us Pos
ROOT
aux
uttQS nsubj
Cond det neg
Ant amo aux obj
Neg '
AUX DET ADJ NOUN  PART AUX VERB PRON
would the black cat not have seen us
Figure 14

Data augmentation: The tree for a sentence is transformed to trees in other tenses, polarities, and
question/declarative forms. In the generated trees, morphological tags (in the UD notation) can
be included to improve the training, even though not shown here.

English Finnish
LAS LAS
60 60
40 40
20 20
5000 10,000 15,000 20,000 5000 10,000 15,000 20,000
. #trees #trees
Figure 15

Data bootstrapping: learning curves with synthetic (red) vs. natural (blue) treebanks for English
and Finnish, showing the Labeled Attachment Score (LAS) as a function of training corpus size.
Models trained on synthetic data need approximately twice the size of the real examples to
achieve comparable scores in delexicalized parsing tasks. The results are from Kolachina and
Ranta (2019).

are computational limits to how much data the learning can actually cope with. 3° The
potential of the method is to help cover all grammatical variations in the language
(especially morphologically complex and/or under-resourced ones). Such potential has
previously been shown by Sahin and Steedman (2018), whose methods are based on
string-level edits of trees; the advantage of grammar-based augmentation is that it
can guarantee the well-formedness of the resulting trees. Initial experiments on data
augmentation show improvements of 1% to 2% units in the performance of labeled
attachment scores (LAS).

Data transfer is related to augmentation, because it uses in a similar way both ud2gf
and gf2ud. But the linearization involved in the gf2ud phase targets a language different

30 A naive approach to augmentation increases the size of the treebank by a factor of 1,000.
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from the source. The augmentation phase can adapt the data to the target language,
for instance, by adding examples of morphological variation not found in the source
language. This method is an instance of crosslingual treebanking, which in Tiedemann
and Agic¢ (2016) is approached by statistical machine translation methods. Just like in
data augmentation, one could expect better precision if grammatical knowledge is used
in the generation phase. Kolachina and Ranta (2016) give some examples of this, but a
large-scale evaluation remains to be done.

Data bootstrapping is the most radical method, of particular interest for languages
that have grammars but no treebanks. The method produces a set of trees from a GF
grammar and converts them to UD. No ud2gf is needed, but only gf2ud. Figure 15
shows, following Kolachina and Ranta (2019), that 20,000 synthetic trees can be as good
as 10,000 manually annotated trees, both in English and Finnish. As the process is
fully automatic, no extra work is required to produce any number of trees—millions or
billions. However, as noticed in Kolachina and Ranta (2019), the learning curves flatten
on a lower accuracy level than manual treebanks, as soon as the variations covered
by the grammar are exhausted. An obvious next question is what combinations of
bootstrapping, manual annotation, and augmentation are the best ways to build parsers
with the minimum of manual work.

All three methods share a general problem of synthesized data: how to guarantee
not only that all relevant variation is covered, but also that the distribution of data
is realistic. When training a statistical parser, wrong distributions can lead to wrong
behavior. Data of natural origin, if sampled in a proper way;, is expected not to have this
problem (although even there the distribution may vary from one domain or genre to
the other).

Interlingual representations such as GF and UD suggest a simple solution: One
can transfer a probability distribution of syntactic structure (that is, abstract syntax
functions or dependency labels) from one language to another, and expect it to be, if not
optimal, much better than a random distribution. In the bootstrapping experiment of
Kolachina and Ranta (2019), the distribution from the RGL version of the English Penn
Treebank was used. The results showed some drop of performance from English to the
other languages, but even Finnish ended up above 60 LAS points just below English.

6.4 The Goals of UD and RGL

To conclude the comparison between UD and the GF-RGL, let us take a look at “Man-
ning’s Law,” a set of rules followed by the developers of UD.?! We annotate each rule
(in italics) with a comment on how it is followed in the GF-RGL.

1. UD needs to be satisfactory for analysis of individual languages. RGL tries to
follow this rule as well, moreover with an explicit concrete syntax for each
language.

2. UD needs to be good for linguistic typology. RGL enables typological
comparisons, by sharing structures on different levels.

3. UD must be suitable for rapid, consistent annotation. This was not among the
goals of RGL, but can be done—for example, by post-processing UD
annotations.

31 Not found in publications, but stated, e.g., in http://universaldependencies.org/introduction.html.
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4. UD must be suitable for computer parsing with high accuracy. Parsing with
RGL is in principle more accurate in details, but its coverage is worse and
its speed lower.

5. UD must be easily comprehended and used by a non-linguist. This is the goal
we have set to the RGL AP]I, but not to the RGL itself. However, the gf2ud
mapping can be used to communicate RGL analyses to those who
understand UD.

6.  UD must provide good support for downstream NLP tasks. Definitely one of the
main goals, even though the typical downstream tasks are different from
those with UD.

7. An Abstract Syntax View on Other Approaches

In most grammar formalisms used for natural language (HPSG, LFG, TreeAdjoining
Grammar [TAG], Combinatory Categorial Grammar [CCG]), abstract syntax is closely
coupled with concrete syntax.*? Thus for instance the F-structures of LFG contain both
semantic and morphological features. Grammars are written separately for different
languages, even when packages of parallel grammars are maintained (LinGO, ParGram).
There is no common abstract syntax or other kind of interlingua.

Some data-driven approaches, such as UD, can be easier to relate to GF, because they
typically have abstract representations defined separately from relations to concrete
languages; these relations are often established by machine learning techniques rather
than grammatical rules. In this section, we will give an overview of some approaches
that have established connections with GFE.

7.1 WordNet

WordNet (Fellbaum 1998) started as an effort to enumerate the senses of all English
words, and to organize those senses into a network of interrelations. Soon after, the
effort was applied to other languages. First the EuroWordNet (Bloksma, Diez-Orzas,
and Piek 1996) for Dutch, Italian, Spanish, French, German, Czech, and Estonian, and
later the BalkaNet (Stamou et al. 2004) for Bulgarian, Czech, Greek, Romanian, Serbian,
and Turkish. There are also a multitude of similar projects for other languages. In partic-
ular, all publicly available WordNet resources are aggregated by the Open Multilingual
WordNet project (Bond and Paik 2012).

What is interesting about WordNet from the GF perspective is that most of these
resources for other languages are also linked to the English WordNet. In WordNet, a set
of words that can be used interchangeably (synonyms) to express a particular meaning
are grouped together. Each of these synsets (synonym sets) has a unique identifier in
the English WordNet. For example, Princeton WordNet has the following synset:

(08094856-n) family, household, house, home, menage

(a social unit living together)

32 See Pollard and Sag (1994) for HPSG, Bresnan (1982) for LFG, Joshi and Schabes (1997) for TAG, and
Steedman (2000) for CCG.
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When a WordNet for a new language is developed, the developers usually keep a link
between the English synset and the one in the new language. Thus for Swedish for
example (Borin, Forsberg, and Lonngren 2013; Viberg et al. 2002), one could find the
corresponding synset:

(08094856-n) hus, hushdll, familj, hem

(a social unit living together)

From the outside it seems as if the WordNet initiative is building an interlingual
lexicon, which fits very well with GF’s mission to build an interlingual grammar. This
was attempted for instance in Virk et al. (2014). There, every synset corresponds to one
abstract function and then the function’s linearization in each language produces all
words in the language as variants.

However, a more detailed analysis shows that this is not ideal. For instance, with
the above assumption it is equally likely that a translation of “family” to Swedish could
be either of “hus,” “hushall,” “hem,” or “familj.” In reality, this is true only if we are
very sure about the right sense used in a particular sentence. On the other hand if we
restrict “familj” to be the only translation of “family” then that choice will be valid even
if the actual sense was:

(08124465-n) family

((biology) a taxonomic group containing one or more genera)

where candidates like “house,” “household,” and so forth, would be inappropriate.
Another problem is that very often the entries in one and the same synset might be
synonyms but can be used only in very different regimes. For instance, we have:

(12654755-n) apple, orchard apple tree, Malus pumila
(native Eurasian tree widely cultivated in many varieties

for its firm rounded edible fruits)

Here the Latin name “Malus pumila” is used only in botany, and would be inappropri-
ate as an everyday term for an apple tree.

A third problem is that the authors of different WordNets are prolific to different
extents. For instance the synset above includes “orchard apple tree” which may or may
not be included in the other languages, even if literal translation of the expression might
work equally well. In fact, from the point of view of optimality of the lexicon, multiword
expressions should be included only if they lead to a non-compositional translation
in another language. Despite this, examples like these occur in many languages, but
whether or not the equivalents in other languages are included is not consistent.

These examples suggest that translation equivalence is both more fine-grained and
a more coarse-grained relation than synset equivalence. For example, the translation
equivalence “family-familj” is more coarse because it can be reused for both synsets
08094856-n and 08124465-n. On the other hand, the translation equivalence should be
more fine-grained in order to avoid producing “Malus pumila” in Swedish as a response
to “apple.” At least in the Finnish WordNet (Lindén and Carlson 2010) that equivalence
was explicitly preserved because the whole database was created by manual translation.
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Abstract Bulgarian Engl-ish |Finnish |[Portuguese|Slovenian  |Spanish Swedish
household_N| gomaxuHcTBo|household|kotitalous|casa gospodinjstvo|casa Swedish
house_10_N |kbija house suku casa hisa casa Swedish
home_8_N |zom home perhe lar dom hogar |Swedish
family 1 N |cemeiictBo |family |talous [familia druZina familia [Swedish
Figure 16

A snapshot of a synset from the search interface for GF WordNet.

An attempt to automatically recover the equivalence from already existing linked
WordNets is presented in Angelov and Lobanov (2016). The method, however, is limited
by the quality and the size of the original resource. In general, the algorithm tends to
produce very good results when the input data is already clean from mistakes and it
covers many synsets. Post validation of the result can still be necessary.

7.1.1 A WordNet in GF. There is an ongoing effort to build an interlingual WordNet
for Bulgarian, Catalan, Chinese, Dutch, English, Estonian, Finnish, Italian, Portuguese,
Slovenian, Spanish, Swedish, Thai, and Turkish® that is consistent with GF by design.
Because of the wide range of languages, we decided to focus on a few languages first
for which there is in-house expertise: Bulgarian, English, and Swedish, whereas for
the other languages the lexicon is bootstrapped using the method in Angelov and
Lobanov (2016) with very little post-validation. The exception is Finnish, where we
used the translation data in FinnWordNet (Lindén and Carlson 2010). This means that
the translation choices for Finnish are mostly correct, but further work is needed for
multiword expressions and for correcting verb valencies. In order to compensate for
the limited coverage of most WordNet resources, additional data for all languages was
extracted from PanLex (Kamholz, Pool, and Colowick 2014).

In parallel with the lexicon, we build a corpus that is annotated with abstract
syntax trees where the lexical items in the trees are sense disambiguated. The corpus
is intended for training statistical parsing (Angelov and Ljunglof 2014) and sense dis-
ambiguation in GF.

A synset in our WordNet is a matrix as in Figure 16, where the rows of the matrix
represent the translation equivalence, and the columns represent the synsets of the
different languages. Note that each row also corresponds to a different abstract syntax
identifier. It is important to note that a single identifier like family 1 N* could in
principle be reused across synsets. For instance, it can also be used for the synset:

((biology) a taxonomic group containing one or more genera)

since all the chosen translations also fit in that sense. When identifiers are reused, this
reduces the size of the interlingual lexicon, but what is more important is that for
translation purposes it becomes enough to perform sense disambiguation only up to
the level of abstract identifiers and not the actual WordNet sense. This means that the
amount of ambiguity can be reduced to the level needed in translation, while the real
sense ambiguity is much higher.

The raw data for the synsets comes from existing resources such as Princeton WordNet
for English (Fellbaum 1998), Svenska OrdNit (Viberg et al. 2002) and WordNet-SALDO

33 https://github.com/GrammaticalFramework/gf-wordnet.
34 The identifiers are composed of an English lemma plus a GF category. When that is not enough, we add a
consecutive number to make the identifier unique.
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nom __[gen HeuleHyBaHO[KbI1ja yksikkojmonikko
sghouse [house's efl.u. [A7IeHyBaHO |KbIaTa| |[pominatiivi|talo talot
plihouseshouses’ [Tb/IeH "WIeH [KbIIATA| [genetiivi  |talon |talojen
M“-“-ﬂ;‘;ﬁezﬁiﬂolﬁmﬁfg partitiivi |taloa  |taloja
[obestbest Yy KpI translatiivi |taloksi [taloksi
sohus  huset 3Barenna opma  [kbIrj0
MOMiblhus  [husen Opoiina gopma [k
gen sghus |husets
plhus |husens|
Figure 17

Snapshots of morphological tables generated from GF WordNet.

(Borin, Forsberg, and Lénngren 2013) for Swedish, and BulTreeBank WordNet for Bul-
garian (Simov and Osenova 2010). The BalkaNet WordNet for Bulgarian (Koeva, S., and
Genov 2004) was not used because of its restrictive license. Both the Swedish and the
Bulgarian resources are incomplete (28,046 senses in Swedish and 8,936 in Bulgarian),
so additional translations are added from the Folkets Lexikon for Swedish (Kann and
Hollman 2011) and KBEDict for Bulgarian (Angelov 2014). The initial bootstrapped
resources are then subjected to an ongoing validation effort. The validation ensures that
the best translation pairs are chosen according to the criteria:

*  the two words should share as many senses as possible;
e each of the words should be commonly used as translation of the other;

¢ preserve morphological derivations as much as possible, that is, if science is
vetenskap then scientific is vetenskaplig;

*  whenever possible, preserve cognates between languages; and

*  when the data come from Folkets Lexikon or SA Dictionary, check that the
translation matches the actual WordNet sense.

7.1.2 Morpho-syntactics. The original WordNet resources are all on the level of lemmas,
whereas, as discussed earlier, in GF we also need to have complete morphological
information for all languages. A large morphological lexicon for English and Bulgarian
already existed (Angelov 2014); to that we also added the morphology for Swedish from
SALDO (Borin and Lénngren 2009). The morphology for Finnish comes from Kotus.*
Whenever we encounter words that are not listed in any of the existing morpholog-
ical lexica, then those words are inflected by using the smart paradigms in the RGL
(Section 3.4.1). Figure 17 shows inflection tables for English, Swedish, Bulgarian, and
Finnish generated automatically from our grammar.

Morphology is not the only missing piece. In WordNet all lexical items are cate-
gorized as just nouns, verbs, adjectives, or adverbs, whereas the RGL requires finer
subcategorization. The most prominent need of subcategorization is for verbs, which
exhibit different valency patterns. The grammar, for instance, needs to know whether
a verb is intransitive, transitive, or a prepositional verb. Particle verbs are also treated
specifically since in translation the particle is often absorbed as a prefix or suffix in

35 http://kaino.kotus.fi/sanat/nykysuomi/, the free morphological dictionary of the Institute for the
Languages of Finland.
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the main verb, and thus, the phenomenon is treated in the concrete rather than in the
abstract syntax.

Another example is the adverbs, which in WordNet are treated uniformly, whereas
in the resource grammars they are categorized according to their syntactic functions. For
instance adverbs like “very,” which modify adjectival phrases, have different categories
than adverbs like, for example, “occasionally,” which typically modify verbs. There are
also adverbs like “instead,” which in one sense can be used on its own whereas in
another is followed by “of” to form the composite preposition “instead of.” In the latter
case the composite phrase has the category of a preposition in the grammar whereas in
the original WordNet it is treated as an adverb. Phrases like “instead of” are treated as
multiword expressions with non-compositional translation to other languages.

A third apparent example are numerals, which in WordNet are classified as both
nouns and adjectives according to their uses. In the RGL, there is a special category of
numerals, which can be used syntactically on their own (similar to nouns), as determin-
ers (the cardinals), or like adjectives (the ordinals).

Nouns are categorized separately depending on whether they are common nouns
or proper names.

In all these cases, the categorizations in GF WordNet differ from the categorization
in the ordinary WordNet. There is also an ongoing integration with VerbNet (Schuler
2005) that will make the verb subcategorization more stable. The current subcategoriza-
tion is based mostly on the uses of the verbs in the corpus of examples coming with
WordNet.

7.1.3 Examples Corpus. In WordNet, most of the synset glosses contain examples in
English showing typical uses of the particular senses. We extracted the examples, and
each example was associated with the word that it exemplifies. This corpus is then
parsed with GF and sense-annotated. Note that there is the Princeton WordNet Gloss
Corpus, which also contains sense annotations but only for some words—in order to
construct complete trees we had to annotate all senses.

Once we have an abstract tree for a particular English sentence, we can in principle
translate it to all languages for which the grammar is available. However, because the
lexicon is still under development, we cannot trust the translations. There are still a
lot of mistakes and gaps. To facilitate the development, we have also bootstrapped the
translations to Bulgarian and Swedish by using Google Translate. This gives us a corpus
of entries like this:

abs: DetCN (DetQuant IndefArt NumSg)
(AdjCN (PositA rare_1_A) (UseN word_1.N))
eng: a rare word
swe: ett s&dllsynt ord
bul: rjadka duma
key: 1 rare_1_A 00490548-a
Each abstract syntax tree is followed by its verbalizations in English, Swedish, and
Bulgarian. The English sentence is the original example, and for Swedish and Bulgarian

we have either the grammar generated sentence if the entry is already validated, or a
Google translation if the entry is still pending.
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Bulgarian |psigxa gyma

English  |a rare word

Finnish  |harvinainen sana
Portuguese|uma palavra pouco frequente
Slovenian |[redka beseda

Spanish  |una |palabra poco frecuente
Swedish |ett séllsynt jord

word_1_N: a unit of language that native
speakers can identify

Figure 18
Snapshots of an example from GF WordNet. The highlighting shows the word alignment and at
the bottom is shown the gloss for the selected word.

Table 10
State of GF WordNet in terms of number of senses and number of trusted translations.

Language Senses Trusted

Abstract 107,955 —
Bulgarian 81,728 35,906

Catalan 95,728 4,470
Chinese 41,412 93
English 107,826 107,826
Finnish 97,059 90,535

Portuguese 94,905 53,324
Slovenian 86,489 52,017

Spanish 98,255 5,066
Swedish 76,327 27,998
Thai 64,671 109
Turkish 88,954 3,611

From a user interface (Figure 18),% it is possible to find the already verified corpus
entries. Because the sentences are generated from a single abstract tree, it is possible to
automatically compute the word and phrase alignments. In the user interface, when the
user clicks any of the words in a sentence for one language, the corresponding words
(phrases) in the other languages are highlighted as well. If the current selection covers
only a single word, the user interface shows the gloss for that word below the corpus
example.

7.1.4 Current Status. The status of the WordNet lexicon in September 2019 is shown in
Table 10. As can be seen, the only complete language is English; this is because the
abstract syntax was constructed from English. The next almost-complete language is
Finnish, since the original data set had very good coverage. We are actively working
on Bulgarian and Swedish, and the coverage for our lexicon is already better than in
the original sources. All other languages are automatically aligned; for those languages
we marked as trusted only those entries that we spotted and for which we are very
sure. Because of the bigger sizes of the original Portuguese and Slovenian resources,
the alignment proved to be consistently good. For that reason, entries coming from

36 https://github.com/GrammaticalFramework/gf-wordnet.
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Table 11

BLEU scores for translation with RGL+WordNet versus Google Translate. RGL reference:
reference obtained by post-editing RGL output. Google reference: reference obtained by
post-editing Google output. RGL: output produced from manually disambiguated trees in the
treebank by RGL linearization. RGL+parse: output produced by parsing the trees with automatic
disambiguation and linearizing with RGL.

RGL reference Google reference
RGL RGL+parse Google RGL RGL+parse Google

Bulgarian  92.03 45.27 35.74 37.58 22.19 84.61
Swedish 72.69 40.74 52.88 65.49 38.86 65.04
Table 12

Coverage for English to Bulgarian and translation quality comparison between complete
syntactic parses and chunks.

Validated sentences: 4,375  (11%)
Parsed sentences: 29,376  (76%)
All sentences: 38,592

BLEU score for syntactic parses: ~ 45.27
BLEU score for chunks: 27.20

WordNet and not from PanLex for Portuguese and Slovenian are currently marked as
trusted.

The corpus of examples contains 38,592 sentences, of which 11% have been verified
(see Table 12). The verification ensures that the right abstract syntax tree is used, which
includes a correct choice for the word senses. We also check the translations to Swedish
and Bulgarian. Many of the translations sound native, but sometimes when English
idioms are used in the source, the translation is too literal. This leads to phrases that are
syntactically correct and understandable, but unidiomatic. As mentioned in Section 4.4,
idioms and special constructions can be handled in semantic grammars, or by adding
additional functions to the RGL. However, we limit ourselves to the lexical level in the
WordNet project.

7.1.5 Translation Experiments. Although work on the WordNet lexicon is still ongoing,
we did preliminary experiments to see how good RGL+WordNet are for the translation
of general text. We randomly selected 200 sentences from the section of the examples
corpus that is already validated. After that we asked speakers of Swedish and Bulgarian
to post-edit the translations that the RGL generates. From the automatic translation and
the post-edited output we computed the BLEU scores (Papineni et al. 2002), which can
be seen in Table 11.

The difference between “RGL” and “RGL+parse” scores suggests that the greatest
impact on GF translation quality comes from disambiguation. The drop is significant
but not surprising. The current disambiguation model in GF for both the syntax and the
word senses is context-free. This means that the ranking of the possible syntax trees is
not as good as it could be. Similarly, instead of real contextual sense disambiguation, for
every word we will just pick the most probable sense.

472



Ranta et al. Abstract Syntax as Interlingua

A contextual ranking and disambiguation based on distributional representation
models is under development. A pilot experiment is presented in the master’s thesis of
Kalldal and Ludvigsson (2017). Agirre et al. (2009) show that best results are achieved by
using WordNet for supervising the learning of distributional models from large corpora.
This is what we plan as well, except that in our case the vector space embedding must
be for abstract syntax functions instead of concrete words.

Another question is how the limited coverage of the RGL affects the translation
quality. The examples corpus contains 38,592 sentences (Table 12), but of those only
76% can be fully parsed. The rest can be analyzed only by using chunks as explained
in Section 5.2 and as applied in Angelov, Bringert, and Ranta (2014). Looking at the
examples, it seems as though at least some of the chunking was caused by missing or
wrong verb valency subcategorization in our lexicon. Integration with VerbNet (Schuler
2005) could potentially improve the results.

In any case, we want to be able to produce output even for malformed inputs.
This means that integration of some kind of chunking is indispensable. To see the
effect of that on the translation we selected 50 chunked sentences, post-edited the RGL
translation, and computed the BLEU score. As can be seen in Table 12, the result is
much lower. Part of the reason is that sometimes even the analysis of the individual
chunks might be the wrong one. This happens with or without chunking and is just
the effect of our context-free disambiguation. With chunks, however, the effect is even
worse because the agreement between different chunks gets lost.

7.2 FrameNet

The Berkeley FrameNet (BFN) (Fillmore, Johnson, and Petruck 2003; Fillmore and Baker
2009) is a lexico-semantic resource based on the theory of frame semantics (Fillmore
1985). An abstract semantic frame represents a cognitive scenario. A set of core frame
elements (FE) represents the conceptually required components of the frame and, thus,
uniquely characterizes the frame. Core FEs syntactically tend to correspond to verb
arguments. Non-core FEs are not specific to the frame and typically are adjuncts. In
a sentence, a frame is evoked by a target word which corresponds to a lexical unit
(LU)—a pairing of the word and the frame. An LU defines a word sense with respect
to the frame and, based on FrameNet-annotated corpus evidence, carries semantic and
syntactic valence information about the possible realization of FEs given the LU.

Following the BEN approach, there are framenets available for many languages,
which often reuse the BFN frame inventory (Gilardi and Baker 2018). Exploitation of
FrameNet-like resources has been appealing not only for linguistic studies but also for
a range of advanced natural language understanding and generation applications.

Although the more than 1,000 BFN frames are, to a large extent, language-
independent (Gilardi and Baker 2018) and can be seen as a robust semantic interlingua,
LUs and their valence patterns are language-specific. Moreover, when it comes to the
syntactic patterns, different framenets use different grammar models, categories, and
functions. This is where the GF abstract syntax as a FrameNet-complementary interlin-
gua comes into the picture, particularly regarding the multilingual NLG perspective.

A methodological approach for the extraction and generation of a computational
FrameNet-based GF grammar and lexicon has been proposed and tested by Gruzitis
and Dannélls (2017). The approach leverages FrameNet-annotated corpora to automat-
ically extract a set of crosslingual semantico-syntactic valence patterns (Dannélls and
Gruzitis 2014). The language-independent layer of FrameNet—the abstract frames and
their semantic valence—is defined in the abstract syntax of the GF FrameNet grammar
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mkC1l --mkCL : NP -> VP -> Cl
person
(mkVvP -- mkVP : VP -> Adv -> VP
(mkVP Live V) -- mkvP  : V -> VP
(mkAdv in_Prep place)) -- mkAdv : Prep -> NP -> Adv
Residence -- Residence : Resident -> Location -> V -> Cl
person -- Resident (NP)
(mkAdv in_Prep place) -- Location (Adv)
Live VvV -- lexical unit (V)
Figure 19

FrameNet functions as an abstraction layer above the syntax-oriented RGL API.

library, while the language-specific layer—the surface realization of LUs and their syn-
tactic valence—is defined in concrete syntaxes (one per language). The abstract syntax
of GF RGL, in turn, is used for generalizing and unifying the grammatical categories
and functions used in different framenets.

The resulting GF FrameNet grammar library has multiple effects. First, it pro-
vides a frame-semantic abstraction layer and API¥ over the syntactic abstraction
layer and API® provided by GF RGL. Thereby, application grammar developers can
primarily manipulate with plain semantic constructors in combination with some sim-
ple syntactic constructors for FE fillers, instead of comparatively complex and recursive
syntactic constructors for building verb phrases and gluing the clauses together. The
GF FrameNet grammar library also handles the language-specific order and agreement
of FEs in the generated sentence, based on dominant patterns found in the respective
FrameNet corpus. Also note that, from the GF application grammar development per-
spective, the GF frame constructors can often be specified for all languages at once: in
the shared concrete syntax (functor) of a GF application grammar, which even more
facilitates porting application grammars to other languages. Second, it provides a high-
level means for both relatively wide-coverage NLG and multilingual NLG. Third, it can
be used as a unified method for comparing and mapping semantic and syntactic valence
patterns and lexical units across framenets of different languages.

Figure 19 illustrates the use of the GF FrameNet grammar library in comparison to
the use of the standard GF RGL. Note that the application of the semantic constructor
Residence is flatter with respect to its arguments in comparison to the syntactic con-
structors mkC1 and mkVP.

The Residence constructor is one of 869 shared syntactico-semantic valence pat-
terns extracted from the BFN and Swedish FrameNet (SweFN) corpora (Gruzitis and
Dannélls 2017). These patterns cover 483 semantic frames. For both BFN and SweFN,
the concise set of 869 patterns covers 77.5% of the human-annotated examples (out
of 57,615 BEN examples and 3,348 SweFN examples). This indicates that the set of
shared constructors includes the most frequently used frames and their valence patterns
despite the modest amount of the annotated example sentences in SweFN.

There has been previous work on FrameNet-based NLG, which typically focuses
on narrow domains or specific applications, and is usually monolingual. For instance,

37 http://remu.grammaticalframework.org/framenet/.
38 http://www.grammaticalframework.org/lib/doc/synopsis/.
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Roth and Frank (2009) have developed an application that generates walking direc-
tions based on a set of rules that map route segments to certain semantic frames, and
landmarks within the segments to frame elements. Another example is template-based
verbalization of certain facts stored in a knowledge base that has been populated by a
domain-specific FrameNet-based information extraction system (Barzdins 2014).

7.3 Construction Grammar

Abstract syntax functions represent grammatical constructions. Basic syntactic struc-
tures such as NP-VP predication are examples of such constructions, on one end of the
scale; word lemmas linked to their inflection tables and other grammatical properties
are on the other end. Frames, in the sense of FrameNet, can be seen as a layer above
word senses, whereas what is more specifically called constructions are mixtures of
combination rules and words, which have special, non-compositional meanings (Gold-
berg 2013). The core GF RGL has only a few such constructions, with existentials
(Section 4.4) as a typical example. But semantic grammars are full of them, to capture
all kinds of idioms that could not be translated compositionally without them. As
we saw in Section 5.2, they can in a wide-coverage setting be seen as a layer on top
of the syntactic grammar, as fragments of a semantic interlingua. They also have the
advantage of making complicated run-time transfer unnecessary and thus maintaining
the interlingual paradigm.

A study of a standard construction grammar in GF was carried out in Gruzitis et al.
(2015) and Borin, Dannélls, and Grizitis (2018). It addressed the Swedish Constructi-
con (SweCcn) (Backstrom, Lyngfelt, and Skoldberg 2014), converting the semi-formal
descriptions to GF grammar rules in a semi-automatic way. SweCcn specifies more than
400 constructions, from which a GF construction grammar (an extension to the Swedish
resource grammar) can be automatically generated for nearly 80% of the constructions,
requiring post-editing for the remaining 20%. Initial evaluation of the automatically
acquired GF grammar on different test sets of construction examples shows that the
achieved recall is already 70% to 90% (Gruzitis et al. 2015). Some of this work has
continued on GF code repositories, and it is seen as a major way to improve wide-
coverage parsing, which of course is an open-ended task.

Development of constructicons is actively ongoing for many languages (Lyngfelt
2018). The Russian Constructicon, for instance, which currently specifies nearly 700
constructions, is being built in parallel with SweCcn (Janda et al. 2018), reusing the tech-
nical infrastructure and the data format of SweCcn. Thus, the SweCcn-in-GF approach
can be applied to the Russian Constructicon in a relatively straightforward manner.
Moreover, this would open a further research direction on developing a common GF
abstract syntax for a multilingual computational constructicon, building on the recent
linguistic research in multilingual constructicography by Lyngfelt et al. (2018).

7.4 Abstract Meaning Representation

AMR (Banarescu et al. 2013) has been proposed as a robust whole-sentence semantic
representation, and it has gained considerable attention in the research community.
Although the original work on both AMR as a representation and AMR as a seman-
tically annotated text corpus (sembank) has been focused on English, there have been
promising efforts in pushing it toward a semantic interlingua (Xue et al. 2014; Damonte
and Cohen 2018).
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Following a similar task in text-to-AMR parsing (May 2016), a recent shared task
at SemEval 2017 unveiled the state-of-the-art in AMR-to-text generation (May and
Priyadarshi 2017). According to the SemEval 2017 Task 9 evaluation, the convinc-
ingly best-performing AMR-to-text generation system (Gruzitis, Gosko, and Barzdins
2017), among the contestants, combines a GF-based generator with the JAMR generator
(Flanigan et al. 2016), achieving the Trueskill score (human evaluation) of 1.03-1.07 and
the BLEU score (automatic evaluation) of 18.82 (May and Priyadarshi 2017). The JAMR
generator alone placed second, achieving the Trueskill score of 0.82-0.85 and the BLEU
score of 19.01 (May and Priyadarshi 2017). In both cases, the common approach is to
convert the given AMR graph into a tree, and to generate a surface realization from the
tree. While Flanigan et al. (2016) transform AMR graphs into spanning trees, and decode
the trees using a weighted tree-to-string transducer and an n-gram language model,
Gruzitis, Gosko, and Barzdins (2017) transform AMR graphs into GF ASTs, leaving the
linearization of the acquired ASTs to the GF RGL, which resolves the word order and
syntactic agreement, handles function words, and so on.

Note that the combined GF/JAMR system achieved a lower BLEU score than the
JAMR system alone. The BLEU score was not binding in the SemEval 2017 Task 9
evaluation. In fact, this output confirms the inadequacy of using the BLEU score in this
kind of NLG task where text is generated from meaning representations—sentences
generated via ASTs are, in general, syntactic and even semantic paraphrases, if com-
pared to the source sentences of the AMRs. Also note that the approximately 200 hand-
crafted rules (within the given timeframe) for AMR-to-AST conversion fully covered
12.3% of the evaluation AMRs and partially covered another 36% of the evaluation
AMRs. In the combined GF/JAMR system, the incomplete ASTs and, thus, the incom-
plete linearizations were replaced by linearizations acquired by the JAMR generator. By
adding more and more AMR-to-AST conversion rules and increasing the proportion of
full GF-generated linearizations, the BLEU score would decrease even more.

Figure 20 illustrates the difference between the GF-based AMR-to-text generator
(Gruzitis, Gosko, and Barzdins 2017) and the JAMR generator (Flanigan et al. 2016),
given a sample input AMR that the current AMR-to-AST conversion rule set fully
covers. Note that the reference is not the original sentence from which the AMR was
specified by a human annotator; it is an informed human translation by the authors.?
Although the fluency of the GF-generated linearization can be argued, it is obviously
more adequate, both syntactically and semantically—and, what is important: the GF-
generated output is predictable.

It should be noted that the current AMR specification*’ does not represent grammat-
ical tense, plural, and articles. Because of this information loss, one cannot expect that
such details will be correctly deduced or guessed, especially without a wider context.
Therefore the default linearization by the GF generator (and the guessed linearization
by the JAMR generator) of the AMR concept person in Figure 20 is in the singular
form. Similarly, information about the plural “boys” is lost in the AMR representation
in Figure 21 and is not transferred to the output linearization. Regarding the ARG2
argument of the convict-01 predicate, this however requires adding corpus-based
valencies to the AMR-to-AST transformation.

39 This sample AMR graph is taken from the SemEval 2017 Task 9 evaluation data set, and the original
reference sentences are not available to the authors.
40 https://github.com/amrisi/amr-guidelines/blob/master/amr.md (v1.2.6).
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(c3 / convict-01
:ARG1 (p / person
:mod (c4 / country :wiki "Iraq" :name (n3 / name :opl "Iraq")))
:ARG2 (s / smuggle-01
:ARGO p
:ARG1 (p2 / person)
:ARG3 (c / country :wiki "Australia"” :name (n / name :opl "Australia"))))

#JAMR:  Iraq person has been convicted of the person is being smuggled into Australia
# GF: a person from Iraq is convicted to smuggle a person to Australia
# Human: an Iraqi person is convicted for smuggling persons to Australia

Figure 20
The difference between GF-based and JAMR linearization of a sample AMR. The reference is an
informed human translation from the given AMR.

The boys want to go to New York City. (mtTixi (mkutt (mks
mkC.
(mkNP a_Quant (mkCN boy_N))
(mkvpP
want_WV
— (mkvP

(mkVP go_V)
text-to-AMR (mkAdv
parser to_Prep
(mkNP (mkPN "New York City"))
AMR-to-AST )))))) fullStopPunct)
transformer

AST-to-text

linearizer

(w / want-01
:ARGO (b / boy)
:ARG1 (g / go-02

N German
N
D resource
N\ _grammar
N

Spanish
resource
grammar #

:ARGO b , English N
:ARG4 (c / city 7 resource N
:name (n / name L grammar \\
:opl "New" e N
:op2 "York" // S N
top3 "City") /- Un nifio quiere ir A boy wants to go Ein Junge will nach
P P— . ! T o . .
swiki “New_York_City")))  :wiki@es — Nueva York \_ a New York City. to New York City. New York City gehen.
S
Figure 21

The overall architecture for multilingual AMR-to-text generation via GF.

The alternative AMR-to-text approaches focus solely on AMR-to-English genera-
tion. Because the RGL supports many languages, the GF-based approach can be ex-
tended to multilingual AMR-to-text generation, given a wide-coverage GF translation
lexicon such as the WordNet-based GF dictionary described in Section 7.1. Thus, AMR
equipped with GF strengthens the status of AMR being an interlingua.

Figure 21 outlines the architecture of the proposed approach. It also illustrates
the requirement and opportunity for a multilingual GF lexicon of named entities—the
wikification part of AMR.

In order to develop fully fledged multilingual linearization of AMR graphs via
GF, a multilingual Wikipedia-based*' GF lexicon has to be created first, in addition
to the WordNet-based GF translation dictionary. Because AMR representations specify
Wikipedia identifiers of named entities (when possible), translation equivalents can be

41 Technically, it can be based on the DBpedia or Wikidata knowledge base, for instance.
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found via the Linguistic Linked Open Data cloud (Chiarcos, Hellmann, and Nordhoff
2012), while contextually correct inflectional forms of named entities can be provided
by RGL. Thus, the Spanish linearization in Figure 21 would use “Nueva York” instead
of “New York City.” This is a future research direction.

8. Conclusion and Future Work

We have explained the basic concepts and principles of abstract syntax and its use as an
interlingual representation as implemented in the Grammatical Framework (GF). We
have also outlined a number of projects where GF is used in NLP tasks, emphasizing
recent developments toward wide coverage. To conclude the discussion, we list some
of the projects again, grouped according to their maturity:

Established, stable, widely used, several publications

¢  the GF programming language

¢ grammar compiler and runtime systems

*  theresource grammar library (RGL)

e  CNL translation and analysis

*  natural language generation (NLG)

*  logical semantics

o question answering

e commercial applications of CNL, NLG, and semantics
The core components of GF—the programming language and the RGL—have their lim-
itations, as discussed in Sections 3.6 and 4.6. At the same time, they are well established
and solid tools used in numerous projects and also by several companies.*> The core
GF has a clear identity, and radical changes in it would make it to something else than
GF. It tries to follow the principle “do one thing and do it well”—the one thing being
a tool for multilingual grammars with common abstract syntaxes. One still unexploited

application of the core functionalities is the type-theoretical modeling of anaphora and
other text-size phenomena (cf. Section 3.5).

Emerging, published, active

e multilingual WordNet-based concept extraction

e  FrameNet-based abstraction to GF RGL

e multilingual verbalization of Abstract Meaning Representations (AMR)
¢  data augmentation and bootstrapping

e ud2gf pipelines

. Explainable Machine Translation (XMT)

42 We have found at least 15 companies, some of which are listed on http://digitalgrammars.com.

478


http://digitalgrammars.com

Ranta et al. Abstract Syntax as Interlingua

WordNet, FrameNet, and AMR are approaches to crosslingual meaning representations,
and hence share some of the goals of GF. The resources created in them can be converted
to GF grammar modules. In return, GF can complete them by providing precise and
formalized syntax and morphology. GF can also help in augmenting and bootstrap-
ping resources. The clearest example is treebanks, which can be generated either from
grammars alone or by varying previously given trees. To find good combinations of
hand-annotated and generated data is one of the most active directions for future work.

A related future task is semi-automatic creation of a wide-coverage multilingual
GF lexicon of named entities. Such extension to RGL would be beneficial for various
practical applications, including media monitoring use cases, for instance. Although
it is rather trivial to generate a GF named entity lexicon for English (e.g., from the
Wikipedia/DBpedia and Wikidata data sets), as named entities are not inflected in
English, it is challenging in the case of inflectional languages. Another open question
is the scope and coverage of such a lexicon: common and well-established entities vs.
emerging entities of global or regional importance. The RGL could provide a compre-
hensive core lexicon of common entities, which could be extended by domain-specific
applications.

Tested, published, but not yet widely used

*  hybrid GF-SMT systems
¢ Construction Grammar implementations

*  typological studies

Hybrid GF-SMT systems had a promising start (Enache et al. 2012), but were not
continued when SMT itself was replaced by NMT in mainstream MT. SMT phrase
alignment techniques are still a useful tool for bootstrapping translation lexica for GE.
The main direction in current work, however, is to relate GF with neural techniques.
Using neural UD parsing as a robust front end is a first step in this direction, and also
a way to make MT more explainable (Section 2). An interesting next step would be to
train neural parsers that directly return GF trees, without going via UD trees.

Grammatical constructions are needed to guarantee meaning-preserving composi-
tional translation: It cannot scale up by word senses and syntactic structures alone. The
challenge is how to identify these constructions. Phrase alignment can help in this, but a
more general approach would extract abstract syntax functions and their linearizations
from parallel texts. Initial experiments for such concept alignment align subtrees of
abstract syntax trees obtained by wide coverage parsing, or—more robustly—parallel
UD trees, which are then converted to GF. Preliminary results have been obtained from
parallel GDPR data (Section 5.4; Ranta 2018), but they still need a lot of manual post-
processing.

The potential for typological studies comes from the very idea of GF, which is
to maintain an explicit distinction between shared and differing parts of grammars.
One idea would be to elaborate the “questionnaire” technique in the LinGO Matrix:
to implement a new language proceeds by answering a set of questions (Bender et al.
2010). The questions are posed by the abstract syntax, and the answers end up in the
concrete syntax.

The Community. For any approach based on linguistic knowledge, an open culture
for creating and sharing knowledge is essential. An important factor in building and
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expanding the RGL has been the series of summer schools training new contributors.
Except for the commercial applications, all of the projects mentioned in this article are
open-source and available via public repositories. The grammar compiler is distributed
under GPL (GNU General Public Licence), and the libraries and run-time under LGPL
(Lesser General Public Licence) and BSD (Berkeley Software Distribution).
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