
Unsupervised Word Translation
with Adversarial Autoencoder

Tasnim Mohiuddin
Nanyang Technological University
School of Computer Science
and Engineering
mohi0004@e.ntu.edu.sg

Shafiq Joty
Nanyang Technological University
School of Computer Science and
Engineering
Salesforce Research Asia
srjoty@ntu.edu.sg

Crosslingual word embeddings learned from monolingual embeddings have a crucial role in
many downstream tasks, ranging from machine translation to transfer learning. Adversarial
training has shown impressive success in learning crosslingual embeddings and the associated
word translation task without any parallel data by mapping monolingual embeddings to a shared
space. However, recent work has shown superior performance for non-adversarial methods in
more challenging language pairs. In this article, we investigate adversarial autoencoder for
unsupervised word translation and propose two novel extensions to it that yield more stable
training and improved results. Our method includes regularization terms to enforce cycle
consistency and input reconstruction, and puts the target encoders as an adversary against
the corresponding discriminator. We use two types of refinement procedures sequentially after
obtaining the trained encoders and mappings from the adversarial training, namely, refinement
with Procrustes solution and refinement with symmetric re-weighting. Extensive experimenta-
tions with high- and low-resource languages from two different data sets show that our method
achieves better performance than existing adversarial and non-adversarial approaches and is also
competitive with the supervised system. Along with performing comprehensive ablation studies
to understand the contribution of different components of our adversarial model, we also conduct
a thorough analysis of the refinement procedures to understand their effects.

1. Introduction

Learning crosslingual word embeddings has been shown to be an effective way to
transfer knowledge from one language to another for many key linguistic tasks,

Submission received: 21 March 2019; revised version received: 8 November 2019; accepted for publication:
29 January 2020.

https://doi.org/10.1162/COLI a 00374

© 2020 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

https://doi.org/10.1162/COLI_a_00374

Computational Linguistics Volume 46, Number 2

including machine translation, named entity recognition, part-of-speech tagging, and
parsing (Ruder, Vulic, and Sogaard 2017). Whereas earlier efforts used large parallel
corpora to solve the associated word alignment problem (Luong, Pham, and Manning
2015), broader applicability demands methods to relax this requirement because acquir-
ing a large corpus of parallel data is not feasible in most scenarios. Recent methods
instead use embeddings learned from monolingual corpora, and then learn a linear
mapping from one language to another with the underlying assumption that two
embedding spaces exhibit similar geometric structures, also known as the isomorphic
assumption. This allows the model to learn effective crosslingual representations with-
out expensive supervision.

Given monolingual word embeddings of two languages, Mikolov, Le, and
Sutskever (2013) show that a linear mapping can be learned from a seed dictionary
of 5,000 word pairs by minimizing the sum of squared Euclidean distances between the
mapped vectors and the target vectors. Subsequent studies (Xing et al. 2015; Artetxe,
Labaka, and Agirre 2016, 2017; Smith et al. 2017) propose to improve the model by
normalizing the embeddings, imposing an orthogonality constraint on the mapper,
and modifying the objective function. These methods assume some supervision in the
form of a seed dictionary, although recently fully unsupervised methods have shown
competitive results. Zhang et al. (2017a, 2017b) first reported encouraging results for
unsupervised models with adversarial training. Conneau et al. (2018) improved this ap-
proach with post-mapping refinements, showing impressive results for many language
pairs. Their learned mapping was then successfully used to train a fully unsupervised
neural machine translation system (Lample et al. 2018a, 2018b).

Although successful, adversarial training has been criticized for not being stable
and failing to converge, inspiring researchers to propose non-adversarial methods
more recently (Xu et al. 2018; Hoshen and Wolf 2018; Alvarez-Melis and Jaakkola 2018;
Artetxe, Labaka, and Agirre 2018b). In particular, Artetxe, Labaka, and Agirre (2018b)
show that the adversarial methods of Conneau et al. (2018) and Zhang et al. (2017a,
2017b) fail for many difficult language pairs.

In this article, we revisit adversarial training and propose a number of key improve-
ments that yield more robust training and improved mappings. Our main idea is to
learn the crosslingual mapping in a projected latent space (code space) and add more
constraints to guide the unsupervised mapping in this space. We accomplish this by
proposing a novel adversarial autoencoder framework (Makhzani et al. 2015), where
adversarial mapping is done at the latent code space as opposed to the original embed-
ding space. This gives the model the flexibility to automatically induce the required
geometric structures in its code space that could potentially yield better mappings.
Figure 1 shows a conceptual demonstration of our main idea.

Søgaard, Ruder, and Vulić (2018) recently found that the isomorphic assumption
made by most existing methods does not hold in general even for two closely related
languages like English and German. In their words, “approaches based on this assump-
tion have important limitations” (page 778). By performing nonlinear transformations
of the original embeddings into their respective code spaces in the autoencoders and
then mapping the latent codes of two languages through adversarial training, our
approach therefore departs from the isomorphic assumption.

In our adversarial training, not only the mapper but also the target encoder is
trained to fool the language discriminator. This forces the discriminator to improve its
discrimination skills, which in turn pushes the mapper to generate indistinguishable
translation. To guide the mapping, we include two additional constraints. Our first

258

Mohiuddin and Joty Unsupervised Word Translation

Figure 1
Conceptual demonstration of our proposed crosslingual mapping method. Identical
shapes denote the similar meaning words in the two languages. In the original
embedding space, the geometric structures of the words in the two languages are
different (non-isomorphic). The geometric structures become similar (nearly
isomorphic) in the latent code space.

constraint enforces cycle consistency so that code vectors after being translated from
one language to another, and then translated back to their source space, remain close to
the original vectors. The second constraint ensures reconstruction of the original input
word embeddings from the back-translated codes. This grounding step forces the model
to retain word semantics during the mapping process and yields more stable training.

The initial bilingual dictionary induced by adversarial training (or any other un-
supervised method) is generally of lower quality than what could be achieved by a
supervised method. Conneau et al. (2018) and Artetxe, Labaka, and Agirre (2018b)
propose fine-tuning methods to refine the initial mappings. In particular, Conneau
et al. (2018) refine the initial mapping by iteratively solving the Procrustes problem
and applying a dictionary induction step. Artetxe, Labaka, and Agirre (2018b) propose
a multistep dictionary induction framework. Our work incorporates two types of re-
finement procedures, namely, refinement with Procrustes solution and refinement with
symmetric re-weighting, a step proposed by Artetxe, Labaka, and Agirre (2018b). We
perform refinement with the Procrustes solution in the code space, while refinement
with symmetric re-weighting is done with the original word embeddings. This way our
overall framework combines the two refinement procedures to get the best of both.

In order to demonstrate the effectiveness and robustness of our approach, we con-
duct a series of experiments with eight different language pairs (in both directions) com-
prising high- and low-resource languages from two different data sets. We also perform
extensive ablation studies to understand the contribution of different components of our

259

Computational Linguistics Volume 46, Number 2

adversarial autoencoder model and different refinement procedures. Our main findings
are the following.

(i) Our adversarial method is more robust and yields significant gains over
the adversarial method of Conneau et al. (2018) for all translation tasks in
all evaluation measures.

(ii) Our method with adversarial autoencoder exhibits better performance
than other existing supervised and unsupervised methods in most of the
translation tasks.

(iii) The ablation study of our adversarial autoencoder model reveals that cycle
consistency contributes the most, while adversarial training of the target
encoder and post-cycle reconstruction also have significant effects.

(iv) The in-depth analysis of the refinement procedures shows that symmetric
re-weighting is a powerful method and complements the Procrustes
solution based refinement method.

We have released our source code at https://ntunlpsg.github.io/project/

unsup-word-translation/.
In the rest of the article, we first review the related supervised and unsupervised

(both adversarial and non-adversarial) word translation models in Section 2, then
present our proposed unsupervised approach with adversarial autoencoder and refine-
ment procedures in Section 3. In Section 4, we present the experimental settings—the
data sets, and the supervised and the unsupervised baselines that we compare with.
We present our results with in-depth analysis in Section 5. Finally, we summarize our
contributions with future directions in Section 6.

2. Related Work

In recent years, a number of methods have been proposed to learn a bilingual dic-
tionary from monolingual word embeddings.1 Many of these methods use an initial
seed dictionary. However, more recently, researchers have attempted to eliminate the
seed dictionary totally and learn the mapping in a purely unsupervised way. In this
section, we give an overview of existing supervised and unsupervised word translation
methods. We also discuss the hubness problem that often occurs in these methods and
approaches to alleviate the effect of this problem.

2.1 Supervised Models

Mikolov, Le, and Sutskever (2013) first show encouraging results by learning a
linear mapping from the source to the target language word embedding space using
a seed dictionary of 5, 000 pairs. In their view, the key reason behind the good perfor-
mance of their model is the similarity of geometric arrangements in vector spaces of
the embeddings of different languages. Given a seed dictionary D = {xi, yi}n

i=1, where
xi is the embedding of a word in the source language, and yi is the embedding of its

1 See Ruder, Vulic, and Sogaard (2017) for a nice survey.

260

https://ntunlpsg.github.io/project/unsup-word-translation/
https://ntunlpsg.github.io/project/unsup-word-translation/

Mohiuddin and Joty Unsupervised Word Translation

translation in the target language, they learn a linear mapping by solving the following
regression (also known as the Ordinary Least Squares or OLS) problem:

WOLS = min
W

n∑
i=1

‖Wxi − yi‖2 (1)

This equation can be solved by using gradient-based methods such as gradient descent.
It also has a closed-form solution: WOLS = (XTX)−1XTY, where X and Y are the matrices
containing the embeddings of source and target words in the seed dictionary. For
translating a new source word, they map the corresponding word embedding to the
target space using the learned mapping WOLS and find the nearest target word. In their
approach, they found that simple linear mapping works better than nonlinear mappings
with multilayer neural networks.

Xing et al. (2015) identified some inconsistencies between the objective function to
learn the embedding and the objective to learn the linear mapping. They solve this by
enforcing the word vectors to be of unit length during the learning of the embeddings.
Instead of using Euclidean distance in the objective function for learning the mapping,
they propose to use cosine similarity:

WCOS = max
W

n∑
i=1

(Wxi)
T yi (2)

To preserve unit length after mapping, they enforce the orthogonality constraint on W,
i.e., WWT = I. As a result, the inner product in Equation (2) is equivalent to cosine
similarity.

Instead of learning a mapping from the source to the target embedding space,
Faruqui and Dyer (2014) use a technique based on Canonical Correlation Analysis to
project both source and target embeddings to a common low-dimensional space, where
the correlation of the word pairs in the seed dictionary is maximized.

Artetxe, Labaka, and Agirre (2016) show that the above methods are variants of the
same core optimization objective and propose a general framework that explains the
relation between the methods of Mikolov, Le, and Sutskever (2013), Xing et al. (2015),
and Faruqui and Dyer (2014). The orthogonality constraint on W and the unit-length
normalization of word embeddings ensure that Equations (1) and (2) are equivalent.
Use of mean-centering along each dimension of the word embeddings for maximum
expected covariance shows that the method is closely related to the method proposed
by Faruqui and Dyer (2014). Artetxe, Labaka, and Agirre (2016) also empirically show
the efficacy of orthogonality constraint on W. Under the orthogonality constraint, they
show that the optimization problem of Equation (1) has an exact solution:

WORT = VUT (3)

where YTX = UΣVT is the Singular Value Decomposition (SVD) of YTX. Smith et al.
(2017) show that this analytical solution is closely related to the orthogonal Procrustes
solution.

In their follow-up work, Artetxe, Labaka, and Agirre (2017) obtain competitive
results using a seed dictionary of only 25 word pairs. They propose a self-learning
framework that performs two steps iteratively until convergence. In the first step, they
use the dictionary (starting with the seed) to learn a linear mapping, which is then used
in the second step to induce a new dictionary.

261

Computational Linguistics Volume 46, Number 2

In their more recent work, Artetxe, Labaka, and Agirre (2018a) propose a multistep
framework that generalizes previous studies. Their framework consists of several steps:
whitening, orthogonal mapping, re-weighting, de-whitening, and dimensionality re-
duction. They show that existing methods can be explained in terms of these steps.
For example, regression methods such as the method of Mikolov, Le, and Sutskever (2013)
correspond to the case where whitening is applied to both the source and target lan-
guage embeddings, re-weighting is applied only to source language embeddings, and
de-whitening is applied to both language embeddings. The canonical method of Faruqui
and Dyer (2014) corresponds to the case where whitening is applied to both the source
and target language embeddings, and dimensionality reduction is applied to both, but
re-weighting and de-whitening are not performed. Similarly, orthogonal methods such as
the methods of Artetxe, Labaka, and Agirre (2016) and Smith et al. (2017) correspond to
the case where only orthogonal mapping is applied.

2.2 Unsupervised Models

As mentioned, a more recent line of research attempts to eliminate the seed dictionary
and learn the bilingual mapping in a completely unsupervised way. Initial approaches
used adversarial methods, but some non-adversarial methods have also been proposed
more recently.

2.2.1 Adversarial Methods. Barone (2016) is the first to propose a model for solving
bilingual word translation in an unsupervised way. He initially used an adversarial
network similar to Conneau et al. (2018), and found that the mapper (which is also the
encoder) translates everything to a single embedding, commonly known as the mode
collapse issue (Goodfellow 2017). To preserve diversity in mapping, he then used a de-
coder to reconstruct the source embedding from the mapped embedding, extending the
framework to an adversarial autoencoder. His analysis (qualitative) shows promising
but not competitive with methods that use bilingual seeds. He suspected issues with
adversarial training and with the underlying isomorphic assumption.

In our work, we successfully address these issues with an improved framework
that also relaxes the isomorphic assumption. Our framework comprises two separate
autoencoders, one for each language, which allows us to put more constraints to guide
the mapping through adversarial training. We also distinguish the role of an encoder
from the role of a mapper. The encoder projects embeddings to latent code vectors,
which are then translated by the mapper.

Zhang et al. (2017a) first show encouraging results on unsupervised word transla-
tion with adversarial methods. They propose the following three unsupervised models.

(i) Unidirectional transformation model: This model is similar in spirit to
the model of Conneau et al. (2018). The generator tries to transform the
source embeddings such that they are indistinguishable from the target
embeddings, whereas the discriminator tries to distinguish the real target
embeddings from the ones that are generated by the generator.

(ii) Bidirectional transformation model: There are two generators in this
model that transform embeddings from one language space to another
language space. Two separate discriminators for each language are used to
distinguish the real embeddings from the transformed ones.

262

Mohiuddin and Joty Unsupervised Word Translation

(iii) Adversarial autoencoder model: In this model, the generator is
responsible for transforming source embeddings to target space not only
to make them indistinguishable by the discriminator but also for
back-translating them to the source space. For this reason, they introduce
reconstruction loss. Although they call it an adversarial autoencoder
model, their approach is similar to the cycle GAN (Zhu et al. 2017).

To aid training, they incorporate additional techniques like noise injection which works
as a regularizer. For selecting the best model, they rely on sharp drops of the discrimina-
tor accuracy. In their follow-up work (Zhang et al. 2017b), they minimize Earth-Mover’s
distance between the distribution of the transformed source embeddings and the dis-
tribution of the target embeddings. They propose two models for this: (i) Wasserstein
GAN (WGAN), which minimizes the Wasserstein distance (closely related to Earth-
Mover’s distance) between the transformed source distribution and the target distribu-
tion, and (ii) EMDOT, which minimizes the Earth-Mover’s distance under orthogonal
transformation.

Conneau et al. (2018) is the first to show impressive results for unsupervised word
translation by pairing adversarial training with effective refinement methods. Given
two monolingual word embeddings, their adversarial training plays a two-player game,
where a linear mapper (generator) plays against a discriminator (Goodfellow et al.
2014). The discriminator is trained to distinguish between the original target embedding
and the mapped source embedding in the target space. On the other hand, the mapper
is jointly trained to fool the discriminator. They also impose the orthogonality constraint
on the mapper to preserve the monolingual quality of the embeddings and to make the
training more stable. After adversarial training, they extract a synthetic dictionary from
the resulting shared embedding space. To ensure a high-quality synthetic dictionary,
they consider the most frequent words and retain only mutual nearest neighbors in the
dictionary induction process. For fine-tuning the linear mapper, they use the Procrustes
solution in Equation (3), which is the closed form solution of Equation (1) under the
orthogonality constraint. Similar to Artetxe, Labaka, and Agirre (2017), they do the
fine-tuning in an iterative way. Because their method is purely unsupervised, instead
of using any bilingual dictionary, they introduce an unsupervised selection metric for
selecting the best model. This metric is highly correlated with the mapping quality and
quantifies the closeness of the source and target embedding spaces. They use it as a
stopping criterion as well as to select the best hyperparameters of the model.

Instead of using an adversarial loss, Xu et al. (2018) use Sinkhorn distance, another
distributional similarity measure. They optimize the linear mapping in both direc-
tions (source to target and vice versa) for each language pair in the way that the
source embeddings mapped to the target space match the distribution of the target
embeddings. Moreover, when the mapped source embeddings from the target space
are back-translated to the source space, they are maximally close to the original source
embeddings, also known as cycle consistency (Zhu et al. 2017). To avoid the problem
of getting stuck in a poor local minima, their model requires a good initial setting of
the parameters. To ensure this, in the first phase of the training, they optimize the
Wasserstein distance instead of Sinkhorn distance.

Similar to Zhang et al. (2017a) and (Xu et al. 2018), we also incorporate cycle con-
sistency along with the adversarial loss to train our adversarial autoencoder. However,
whereas all the existing methods learn the mapping in the original embedding space,
our approach learns it in the latent code space, considering both the mapper and the

263

Computational Linguistics Volume 46, Number 2

target encoder as adversarial with the discriminator. In addition, we use a post-cycle
reconstruction to guide the mapping.

2.2.2 Non-Adversarial Methods. Despite being successful, adversarial models have been
criticized for instability and failing to converge, prompting researchers to investigate
non-adversarial methods for unsupervised mapping of embeddings, as we summarize
them here.

Artetxe, Labaka, and Agirre (2018b) learn an initial dictionary by exploiting the
structural similarity of the embeddings and use a robust self-learning algorithm to
improve it iteratively. Their proposed method consists of the following four sequential
steps.

(i) Preprocessing: They length-normalize the embeddings, mean-center along
each dimension, and then length-normalize them again to ensure the unit
length of the embeddings.

(ii) Fully unsupervised initialization: To create an initial dictionary, they
follow the observation that in the similarity matrix of all words, each word
has a different distribution of similarity values and equivalent words in
two different languages have a similar “similarity” distribution. So under
the strict isometric assumption, sorted similarity vectors of two equivalent
words from two different languages will be the same. Based on this
assumption, they induce an initial dictionary. In practice, the isometric
assumption does not hold (Søgaard, Ruder, and Vulić 2018), thus resulting
in a noisy dictionary.

(iii) Robust self-learning: This step iteratively improves the initial solution.
Their goal is to learn two linear mappers to map the source and the target
embeddings to a shared embedding space. Xie et al. (2018) show that
under orthogonality constraint, mapping from the source to the target
space is equivalent to mapping both source and target to a shared
embedding space. In each step, their model computes the optimal
dictionary over the similarity matrix after computing the orthogonal
mapping. They propose the following key improvements in the dictionary
induction step to make the self-learning more robust.

• Stochastic dictionary induction: During dictionary induction, they
randomly keep some elements in the similarity matrix with some
probability, which enables the induced dictionary to vary from the
current step to the next. This works as a drop-out method that
should help the model to escape poor local optima. Although, in
practice, they found that it does not make any difference for most
of the language pairs.

• Frequency based vocabulary cutoff : To keep the matrix size reasonable,
they propose to consider only the most frequent words in the
dictionary induction process.

• CSLS retrieval: To mitigate the hubness problem (see Section 2.3),
they use Cross-domain Similarity Local Scaling (CSLS) (Conneau
et al. 2018) for finding the nearest neighbors.

264

Mohiuddin and Joty Unsupervised Word Translation

• Bidirectional dictionary induction: They propose to induce
dictionaries in both directions (source to target and vice versa) and
take their concatenation.

(iv) Final refinement through symmetric re-weighting: To improve the
mapping further, they use a slightly modified version of their earlier
multistep framework proposed in Artetxe, Labaka, and Agirre (2018a).
In Section 3.2.2, we discuss this step in detail.

In our work, we use a refinement method that combines Procrustes solution and
symmetric re-weighting. In contrast to existing methods, our Procrustes solution–based
refinement works in the code space, while the symmetric re-weighting method works
in the original embedding space. Our method combines the best of both refinement
techniques in a way that is mutually advantageous.

Hoshen and Wolf (2018) observe that two sufficiently similar distributions can be
aligned correctly with iterative matching methods. In their proposed method, they first
align the second moment of the word distributions of two languages, and later refine
the alignment iteratively. For aligning the second moment, they project the word vectors
to the top P principal components using Principal Component Analysis assuming that
some principal axes of variation are similar in many language pairs. Because the word
distributions and components of variation are different in languages, projecting to the
principal component does not align the languages in general. For this reason, they use
a modified version of the Iterative Closest Point (ICP) method, which is popularly used
in computer vision for 3D point cloud alignment. They call the method Mini-Batch Cycle
ICP (MBC-ICP). This method learns the transformation from source to target space and
vice versa. They use a cycle constraint to ensure that a word is transformed from one
space to another and translated back to the original space without change. In the final
step, they use fine-tuning similar to Conneau et al. (2018) by running the Procrustes
solution iteratively.

Alvarez-Melis and Jaakkola (2018) cast the unsupervised embedding mapping
problem as an optimal transport problem, and exploit the Gromov-Wasserstein dis-
tance, which measures how similarities between pairs of words relate across languages.

2.3 Hubness Problem in Similarity Measures

One problem that we have overlooked so far is how to find the nearest neighbor of a
source word in the target space. Mikolov, Le, and Sutskever (2013) take the closest target
embedding of the mapped source embedding in the target language space using cosine
similarity as the similarity measure. Dinu, Lazaridou, and Baroni (2015) show that in
high dimensional spaces this nearest neighbor finding approach leads to a detrimental
phenomenon known as the hubness problem. Due to this problem, a few nodes (word
embeddings) become hubs, whereas some others become anti-hubs. Hubs are the nodes
that are nearest neighbors of many other nodes with high probability. On the other hand,
anti-hubs are not nearest neighbors to any node.

To alleviate the hubness problem, Dinu, Lazaridou, and Baroni (2015) propose a
method called the globally corrected neighbor retrieval method, where instead of
returning the nearest neighbor of a (mapped) source embedding, it returns the target
embedding for which the source embedding is the nearest neighbor, that is, it reverses
the direction of the query. They solve ties by taking the candidate with the highest cosine

265

Computational Linguistics Volume 46, Number 2

similarity with the source embedding. Artetxe, Labaka, and Agirre (2016) termed this
approach as inverted nearest neighbor retrieval.

Smith et al. (2017) combat the hubness problem by introducing inverted softmax
method, which is built on the work of Dinu, Lazaridou, and Baroni (2015), and also
works by reversing the direction of the query. To find the nearest neighbor, they use the
softmax function instead of cosine in the similarity computations.

Conneau et al. (2018) consider a bi-partite neighborhood graph, in which each
word embedding of a language is connected to its k nearest neighbors in the other
language. Let x be the source and y be the target word embeddings, rT(x) be the average
cosine similarity of x to its k nearest neighbors in the target language, and rS(y) be the
average cosine similarity of y to its k nearest neighbors in the source language. The CSLS
measure between x and y is computed as:

CSLS(x, y) = 2cos(x, y)− rT(x)− rS(y) (4)

Among the existing solutions to penalize the similarity scores of hubs, CSLS gener-
ally performs better, and has become the standard measure of similarity search. In our
approach, we also use CSLS for finding crosslingual nearest neighbors.

3. Our Proposed Approach

Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be two sets consisting of n and m word em-
beddings of d-dimensions for a source and a target language, respectively. We assume
that X and Y are trained independently from monolingual corpora. Our aim is to learn
a mapping f (x) in an unsupervised way (i.e., no bilingual dictionary given) such that for
every xi, f (x) corresponds to its translation in Y . Figure 2 shows our overall approach,
which has the same sequence of steps as Conneau et al. (2018). More specifically, the
steps are:

(i) Induction of seed dictionary through adversarial training.
(ii) Iterative refinement of the initial mapping.

(iii) Application of CSLS for nearest neighbor search.

We propose a novel adversarial autoencoder to learn the initial mapping for in-
ducing a seed dictionary (Section 3.1), and we incorporate existing refinement methods
for steps (ii) and (iii) (Section 3.2). Without loss of generality, we use X ∈ Rn×d and
Y ∈ Rm×d to denote the matrices containing the word embeddings of the source and
target, respectively. Table 1 summarizes all the notations used throughout the article.

Initial Seed Dictionary Learn Mapping New Dictionary

Until Convergence

Induce through Adversarial Autoencoder Iterative Refinement

Figure 2
Our framework for unsupervised word translation.

266

Mohiuddin and Joty Unsupervised Word Translation

Table 1
Notations used throughout the article.

Notation Meaning

x; xi A word embedding in the source language
y; yj A word embedding in the target language
X Matrix containing source word embeddings
Y Matrix containing target word embeddings
X ; p(x) Set (or distribution) of word embeddings in the source language
Y ; p(y) Set (or distribution) of word embeddings in the target language
EX Encoder for source language autoencoder
DX Decoder for source language autoencoder
EY Encoder for target language autoencoder
DY Decoder for target language autoencoder
Zx; q(zx|x) Distribution of encoded (or code) vectors for source autoencoder
Zy; q(zy|y) Distribution of encoded (or code) vectors for target autoencoder
Zx Matrix containing source code vectors
Zy Matrix containing target code vectors
G Mapper from source codes to target codes
F Mapper from target codes to source codes
LX Language discriminator in the source code space
LY Language discriminator in the target code space

3.1 Adversarial Autoencoder for Initial Dictionary Induction

Our proposed model as shown in Figure 3 has two autoencoders, one for each language.
Each autoencoder comprises an encoder EX (resp., EY) and a decoder DX (resp., DY).
The encoders transform an input x (resp., y) into a latent code zx (resp., zy) from which
the decoders try to reconstruct the original input. Our autoencoders contain a three-
layer encoder and a three-layer decoder with nonlinear transformations in between as
shown in Figure 3b. More formally, the encoding-decoding operations of the source
autoencoder are defined as:

hEX
1 = PReLU(Dropout(θEX

1 xi)) (5)

hEX
2 = PReLU(Dropout(θEX

2 hEX
1)) (6)

zxi = θEX
3 hEX

2 (7)

hDX
1 = PReLU(Dropout(θDX

3 zxi)) (8)

hDX
2 = PReLU(Dropout(θDX

2 hDX
1)) (9)

x̂i = tanh(θDX
1 hDX

2) (10)

where θEX
i ∈ Rci×di and θDX

i ∈ Rdi×ci are the parameters of the linear layers in the en-
coder and the decoder, respectively. We use Parametric Rectified Linear Unit (PReLU)
as the nonlinear activation functions. We train the autoencoders with l2 reconstruction
loss as defined below.

LautoencX (ΘEX , ΘDX) = 1
n

n∑
i=1

‖xi − x̂i‖2 (11)

267

Computational Linguistics Volume 46, Number 2

(a) Adversarial autoencoder (b) Autoencoder architecture

Figure 3
Our proposed adversarial autoencoder framework for unsupervised word translation.

where ΘEX = {θEX
1 ,θEX

2 ,θEX
3 } and ΘDX = {θDX

1 ,θDX
2 ,θDX

3 } are the parameters of the en-
coder and the decoder. The encoder, decoder and the reconstruction loss for the target
autoencoder (autoencY) are similarly defined.

Let q(zx|x) and q(zy|y) be the encoding distributions of the two autoencoders. We use
adversarial training to find a mapping between q(zx|x) and q(zy|y). This is in contrast
with most existing methods (e.g., Conneau et al. (2018), Artetxe, Labaka, and Agirre
(2017)) that directly map the distribution of the source word embeddings p(x) to the
distribution of the target p(y). As Søgaard, Ruder, and Vulić (2018) pointed out, the
isomorphism does not hold in general between the word embedding spaces of two
languages. Mapping the latent codes of two languages gives our model more flexibility
to induce the required semantic structures in its code space that could potentially yield
more accurate mappings.

As shown in Figure 3, we include two linear mappings G : Zx → Zy and F : Zy
→ Zx to project the code vectors (samples from q(.|.)) from one language to the other.
In addition, we have two language discriminators, LX and LY . The discriminators
are trained to discriminate between the mapped codes and the encoded codes, and
the mappers and respective target encoders are jointly trained to fool their respective
discriminator. For example, in the case of mapping Zx to Zy by G, the target encoder is
EY . On the other hand, when F maps Zy to Zx, EX is the target encoder. This results in
a three-player game, where the discriminator tries to identify the origin of a code, and
the mapper and the respective target encoder act together to prevent the discriminator
from succeeding by making the mapped vector and the encoded vector as similar as
possible. In the following, we present the components of our framework.

Discriminator Loss.Let θLX and θLY denote the parameters of the two discriminators, and
WG and WF are the mapping weight matrices. The loss for the source discriminator
LX is:

LLX (θLX |WF,θEX) = − 1
m

m∑
j=1

log PLX (src = 0|F(zyj))−
1
n

n∑
i=1

log PLX (src = 1|zxi) (12)

268

Mohiuddin and Joty Unsupervised Word Translation

where PLX (src|z) is the probability according to LX to distinguish whether z is coming
from the source encoder (src = 1) or from the target-to-source mapper F (src = 0). The
discrimination loss LLY (θLY |WG,θEY) is similarly defined for the target discriminator LY
using G and EY .

Our discriminators have the same architecture as Conneau et al. (2018). Specifically,
they are feed-forward networks with two hidden layers of size 2,048 and Leaky-ReLU
activations. We apply dropout with a rate of 0.1 on the input to the discriminators.
Instead of using 1 and 0, we also apply a smoothing coefficient (s = 0.2) in the dis-
criminator loss.

Adversarial Loss. The mappers and encoders are trained jointly to fool their respective
discriminators. The adversarial loss for mapper F and encoder EX can be expressed as:

Ladv(WF,θEX |θLX) = − 1
m

m∑
i=1

log PLX (src = 1|F(zyj))−
1
n

n∑
i=1

log PLX (src = 0|zxi) (13)

The adversarial loss for mapper G and encoder EY is defined similarly.
Note that in our framework we consider both the mapper and the target encoder

as generators. This is in contrast to existing adversarial methods, which do not use any
autoencoder on the target side. The mapper and the target encoder team up to fool the
discriminator. This forces the discriminator to improve its skill and vice versa for the
generators, forcing them to produce indistinguishable codes through better mapping.

Cycle Consistency and Reconstruction. Adversarial training (introduced above) maps a
“bag” of source embeddings to a “bag” of target embeddings, and, in theory, the mapper
can match the target language distribution (Goodfellow 2017). However, mapping at the
bag level is often insufficient to learn the individual word level mappings. In fact, there
are an infinite number of possible mappings that can match the same target distribution.
Thus to learn better mappings, we need to enforce more constraints to our objective.

The first form of constraints we consider is cycle consistency (Zhu et al. 2017) to
ensure that a source code zx translated to the target language code space, and translated
back to the original space remains unchanged, that is, zx → G(zx)→ F(G(zx)) ≈ zx. For-
mally, the cycle consistency loss in one direction can be written as:

Lcyc(WG, WF) = 1
n

n∑
i=1

‖zxi − F(G(zxi))‖ (14)

The loss in the other direction (zy → F(zy)→ G(F(zy)) ≈ zy) is similarly defined.
In addition to cycle consistency, we include another constraint to guide the mapping

further. In particular, we ask the decoder of the respective autoencoder to reconstruct
the original input from the back-translated code. We compute this post-cycle recon-
struction loss for the source autoencoder as follows:

Lrec(θEX ,θDX , WG, WF) = 1
n

n∑
i=1

‖xi −DX (F(G(zxi)))‖
2 (15)

The reconstruction loss at the target autoencoder is defined similarly.
Apart from improved mapping, both cycle consistency and reconstruction lead to

more stable training in our experiments. Specifically, they help our training to converge

269

Computational Linguistics Volume 46, Number 2

and get around the mode collapse issue (Goodfellow 2017). Because the model now has
to translate the mapped code back to the source code and reconstruct the original word
embedding, the generators cannot get away by mapping all source codes to a single
target code.

Total Loss. The total loss for mapping a batch of word embeddings from source to
target is

Lsrc→tar = Ladv + λ1Lcyc + λ2Lrec (16)

where λ1 and λ2 control the relative importance of the three loss components. Similarly
we define the total loss for mapping in the opposite direction Ltar→src.

The complete objective of our adversarial autoencoder model is:

Ltotal = Lsrc→tar + Ltar→src (17)

3.2 Refinement

The encoders (EX and EY) and the mappers (G and F) obtained from our adversarial
training give a good initial bilingual dictionary. However, as shown later in our experi-
ments (Section 5), the results with these initial mappings are inferior to the supervised
methods. One reason is that with adversarial training, we do not consider the embed-
dings and the covariance of the features (columns of X, Y, or Z) globally. In the refine-
ment step, our goal is to enrich the initial mapping by considering the global properties
of the embedding spaces. Previous studies (Conneau et al. 2018; Artetxe, Labaka, and
Agirre 2018b) have shown that refinement procedures after the initial mappings boost
the results and make them better or on par with the supervised approach. In our work,
we experiment with two types of refinement (or fine-tuning) procedures: (i) refinement
with the Procrustes solution, and (ii) refinement with symmetric re-weighting.

3.2.1 Refinement with Procrustes Solution. Similar to Conneau et al. (2018), we first induce
a seed dictionary using the learned encoders and mappers from our adversarial train-
ing. In order to find the nearest target word (y) of a source word (x) in the translated
code space (Zy), we use the CSLS measure in Equation (4). As described in Section 2.3,
CSLS works better than simple cosine similarity in mitigating the hubness problem.
It penalizes the nodes that are close to many other nodes in the translated space. To
construct the seed dictionary, we compute CSLS for K1 most frequent source (resp.,
target) words, and select the translation pairs that are mutual nearest neighbors, that
is, we select x-y as a translation pair if and only if y is the nearest neighbor of x in Zy
and x is the nearest neighbor of y in Zx.

With the seed dictionary, we apply the Procrustes solution in Equation (3) to im-
prove the initial mappings, G and F. In particular, given the approximate alignment of
words from the seed dictionary, we optimize the following objectives:

WG = VGUT
G, where UGΣGVT

G = SVD(ZT
y Zx) (18)

WF = VFUT
F , where UFΣFVT

F = SVD(ZT
x Zy) (19)

We perform this fine-tuning process iteratively: Induce a new dictionary using
CSLS on the newly learned mapping, then use the dictionary in Procrustes solution

270

Mohiuddin and Joty Unsupervised Word Translation

Algorithm 1: Refinement with Procrustes solution
Input : Two sets of word embeddings: X and Y .
Output: Updated mappings (G, and F)
1. Load the saved best model (EX , EY , G, and F).
2. Induce a seed dictionary using CSLS.
3. // Run Procrustes solution iteratively

do
(i) Find optimal mappings using Procrustes solution using the dictionary

(Eq. 3).
(ii) Take most frequent K1 words from the source and target, and generate

a new dictionary using CSLS.
while not converge;

to improve the mapping parameters (see Algorithm 1). For convergence, we use the
following criterion: if the difference between the average similarity scores of two suc-
cessive iteration steps is less than a certain threshold (we use 10−6), then stop the
refinement process. Note that unlike Conneau et al. (2018), who use original word
embeddings; our refinement with Procrustes solution uses the latent codes for both the
Procrustes solution and the dictionary induction.

3.2.2 Refinement with Symmetric Re-weighting. In a different line of research, Artetxe,
Labaka, and Agirre (2018a, 2018b) perform the refinement and dictionary induction
steps by mapping both the source and target embeddings into a common space through
orthogonal transformation. In addition to the Procrustes solution, they also use sym-
metric re-weighting to transform the original source and target embeddings to a com-
mon space. Because we apply Procrustes solution in the code space (ZX and ZY), to
get the best of both representation types, in our approach we apply symmetric re-
weighting to the original embeddings (X and Y). This refinement works in three steps:
(a) embedding whitening, (b) orthogonal mapping, and (c) embedding de-whitening.

(a) Embedding whitening. After performing the length normalization (across rows) and
mean-centering (across columns) of the original embedding matrices X and Y, they
are whitened by applying a linear transformation with the corresponding whitening
matrices, Wx and Wy:

Xwhitened = XWx (20)

Ywhitened = YWy (21)

where Wx = (XTX)− 1
2 and Wy = (YTY)− 1

2 . Whitening makes the different features of the
embeddings have unit variance and zero covariance (i.e., become uncorrelated among
themselves).

(b) Orthogonal transformation. In the second step, we perform orthogonal transformation
of the whitened matrices with symmetric re-weighting. More specifically, we first com-
pute the singular value decomposition: USVT = (XD

whitened)TYD
whitened, where XD

whitened
and YD

whitened are the whitened embeddings of the induced dictionary entries D from

271

Computational Linguistics Volume 46, Number 2

the previous step. Then we perform orthogonal transformation with symmetric re-
weighting as follows:

Xorthogonal = XwhitenedUS 1
2 (22)

Yorthogonal = YwhitenedVS 1
2 (23)

Note that this step transforms the embeddings into a common space, where they can
be compared. However, because they are whitened, they do not represent the original
covariance in the feature distributions. Thus, we need a de-whitening step.

(c) Embedding de-whitening. After orthogonal transformation, we de-whiten the trans-
formed matrices to restore the original variance in every direction. Specifically, we
perform:

Xw = XorthogonalWxdewhitened (24)

Yw = YorthogonalWydewhitened (25)

where Wxdewhitened = UT(XTX) 1
2 U and Wydewhitened = VT(YTY) 1

2 V.
With the transformed de-whitened embeddings, we can now measure the similarity

between any x ∈ Xw and y ∈ Yw, and thereby induce a synthetic dictionary by finding
the nearest neighbor of x in Yw using CSLS Equation (4). During dictionary induction,
we only consider the K2 most frequent words from the source and the target languages
and retain only the mutual nearest neighbors. This process is then iterated to refine the
initial mappings and the induced dictionary. Algorithm 2 shows the whole process in
pseudocode.

3.2.3 Combining Procrustes Solution and Symmetric Re-weighting. In our approach, we
combine the two refinement methods to get the best of both—Procrustes solution on
the code space and symmetric re-weighting on the original embedding space. We
sequentially apply the two refinement procedures (Algorithms 1 and 2) by iteratively

Algorithm 2: Refinement with Symmetric Re-weighting
Input : Two sets of word embeddings: X and Y .
1. Load the saved best model (EX , EY , G, and F).
2. Induce a seed dictionary using CSLS.
3. // Run symmetric re-weight iteratively

do
(i) Preprocess embeddings by length normalization and mean-centering.
(ii) Whiten the embeddings (Eq. 20–21).

(iii) Transform the whitened embeddings through orthogonal mappings
(Eq. 22–23).

(iv) Apply de-whitening on the transformed embeddings (Eq. 24–25).
(v) Take most frequent K2 words from source and target,

generate a new dictionary using CSLS
while not converge;

272

Mohiuddin and Joty Unsupervised Word Translation

performing the same two steps for each method: Induce a synthetic dictionary and
refine the mappers.

We first induce a seed dictionary from adversarial training by considering the K
most frequent words. To optimize the G and F mappings, we apply the Procrustes solu-
tion using the induced dictionary. We then use CSLS to find a new synthetic dictionary,
which in turn is used to refine the mappings. We continue this process on the code space
until convergence.

After the convergence of the refinement procedure, we take the updated mappings.
Using the learned encoders from adversarial training and the newly updated mappings,
we induce a new seed dictionary to apply the symmetric re-weighting procedure. We
follow the three steps in Section 3.2.2 to transform the original embeddings into a
common space. From these transformed source and target embeddings, we induce
a new dictionary using CSLS. We apply this refinement procedure iteratively on the
original embedding space until convergence.

3.3 Training Procedure and Translation Process

We present the training procedure of our model and the overall word translation process
in Algorithm 3. We first pre-train the autoencoders separately on monolingual embed-
dings (Step 1). This pre-training is required to induce word semantics (and relations) in
the latent code space.

We start adversarial training (Step 2) by updating the discriminators for n critics 5
times, each time with a random batch. Then we update the generators (the mapper and
target encoder) on the adversarial loss. The mappers then go through two more updates,
one for cycle consistency and another for post-cycle reconstruction. The autoencoders
(encoder-decoder) in this stage get updated only on the post-cycle reconstruction loss.
We also apply the orthogonalization update to the mappers following Conneau et al.
(2018) with β = 0.01.

Our training setting is similar to Conneau et al. (2018), and we apply the similar
pre- and post-processing steps. We use stochastic gradient descent with a batch size of
32, a learning rate of 0.1, and a decay of 0.95.

For selecting the best model, we use the unsupervised validation criterion pro-
posed by Conneau et al. (2018), which correlates highly with the mapping quality. In this
criterion, 10,000 most frequent source words along with their most probable translations
in the target space are considered. We use CSLS to find the most probable translation
of a source word. The average cosine similarity between these pseudo translations is
considered as the validation metric for model selection. For refinement, we follow the
methods described in Section 3.2.

4. Experimental Settings

Following the tradition, we evaluate our approach on word translation (a.k.a. bilingual
lexicon induction) task, which measures the accuracy of the predicted dictionary to a
gold standard dictionary. In the following, we describe the data sets and the baselines
used in our experiments.

4.1 Data Sets

To demonstrate the effectiveness of our method, we evaluate our models on two dif-
ferent data sets. The first one is from Conneau et al. (2018), which consists of FastText

273

Computational Linguistics Volume 46, Number 2

Algorithm 3: Unsupervised word translation with cycle-consistent adversarial
autoencoder

Input : Two sets of word embeddings: X and Y
// Initial autoencoder training

1. Train autoencX and autoencY separately for some epochs on monolingual
embeddings (Eq. 11);
// Adversarial training

2. for n epochs do
for n iterations do

// Critic update

for n critics do
(i) Sample a batch from X and Y
(ii) Update discriminators (LX , LY) (Eq. 12)

end
(a) Sample a batch from X as source and Y as target
(b) Update mapper G and encoder EY on adversarial loss to fool LY
(Eq. 13)

(c) Update mappers G and F on cycle consistency loss (Eq. 14)
(d) Update mappers (G, F) and autoencX on post-cycle reconstruction

loss (Eq. 15)
// Orthogonalize the mappers

(e) Update weight matrices of mapper G and F using:
WG ← (1 + β)WG − β(WGWT

G)WG
WF ← (1 + β)WF − β(WFWT

F)WF
(f) Sample a batch from Y as source and X as target and update

accordingly (symmetric to (b) -(e) steps).
end
Use validation criterion to save the best model.

end
// Fine-tuning

3. Load the best model.
// Iterative Procrustes solution

for n iterations do
(a) Build a synthetic dictionary
(b) Apply the Procrustes solution on the dictionary.

end
// Symmetric re-weighting

for n iterations do
(a) Build a synthetic dictionary
(b) Apply the symmetric re-weighting for the refinement.

end
// Test

4. Test the model on gold bilingual dictionary.

monolingual embeddings of (d =) 300 dimensions (Bojanowski et al. 2017) trained on
Wikipedia monolingual corpus and gold dictionaries for 110 language pairs.2 To show
the generality of different methods, we consider seven (7) different language pairs with
fourteen (7× 2 = 14) different translation tasks from high- and low-resource languages

2 https://github.com/facebookresearch/MUSE.

274

https://github.com/facebookresearch/MUSE

Mohiuddin and Joty Unsupervised Word Translation

from different language families. In particular, we evaluate on English (En) from/to
Spanish (Es), German (De), Italian (It), Finnish (Fi), Arabic (Ar), Malay (Ms), and
Hebrew (He). Malay and Hebrew are generally considered as low-resource languages.
We will refer to this data set as the Conneau data set.

We also evaluate on the more challenging data set of Dinu, Lazaridou, and Baroni
(2015) and its subsequent extension by Artetxe, Labaka, and Agirre (2018a).3 This
data set contains monolingual embeddings for English, Spanish, German, Italian, and
Finnish. According to Artetxe, Labaka, and Agirre (2018b), existing adversarial methods
often fail to produce meaningful results on this data set. English, Italian, and German
embeddings were trained on WacKy crawling corpora using CBOW (Mikolov et al.
2013), while Spanish and Finnish embeddings were trained on WMT News Crawl and
Common Crawl respectively. The CBOW vectors are also of 300 dimensions. We refer
to this data set as the Dinu-Artetxe data set.

4.2 Baselines and Model Settings

We compare our method with the unsupervised models of (i) Conneau et al. (2018),
(ii) Artetxe, Labaka, and Agirre (2018b), (iii) Alvarez-Melis and Jaakkola (2018), (iv) Xu
et al. (2018), and (v) Hoshen and Wolf (2018). To evaluate how our unsupervised
method compares with methods that rely on a bilingual seed dictionary, we follow
Conneau et al. (2018), and compute a supervised baseline that uses the Procrustes
solution directly on the seed dictionary (5,000 pairs) to learn the mapping function, and
then uses CSLS to do the nearest neighbor search. We refer to this baseline as Procrustes-
CSLS.

We also compare with the supervised approaches of Artetxe, Labaka, and Agirre
(2017, 2018a), which to our knowledge are the state-of-the-art supervised systems. For
some of the baselines, results are reported from their papers, while for the rest we report
results by running the publicly available codes on our machine.

For training our model on all language pairs, the weight for cycle consistency (λ1)
in Equation (16) was always set to 5, and the weight for post-cycle reconstruction (λ2)
was set to 1.4 The hidden layer dimensions of our encoder and decoder are set to 400
for both the first and second layer. We found the dimension of the code vectors to
be crucial (especially for Arabic and low-resource languages), which we set through
hyperparameter search. During the dictionary induction process of both refinement
procedures, we consider 30,000 most frequent words (value of K1 and K2) from the
source and target languages.

5. Results

We present our results on high- and low-resource languages from Conneau and Dinu-
Artetxe data sets in Tables 2–4. In each case, we present results for three different
refinement procedures based on the same seed dictionary induced by our adversarial
autoencoder: (i) refinement of Conneau et al. (2018) referred to as Conneau refinement,

3 https://github.com/artetxem/vecmap/.
4 We did not tune the λ values much, rather we used our initial observation. Tuning λ values might yield

even better results.

275

https://github.com/artetxem/vecmap/

Computational Linguistics Volume 46, Number 2

(ii) refinement of Artetxe, Labaka, and Agirre (2018b) referred to as Artetxe refine-
ment, and (ii) our proposed refinement method that combines Procrustes solution and
symmetric re-weighting. Through experiments and analysis, our goal is to assess the
following.

(i) Does the unsupervised mapping method based on our proposed
adversarial autoencoder model improve over the best existing adversarial
method of Conneau et al. (2018) in terms of mapping accuracy and
convergence (Section 5.1)?

(ii) How does our unsupervised mapping method compare with other
unsupervised and supervised approaches (Section 5.2)?

(iii) Which components of our adversarial autoencoder model attribute to
improvements (Section 5.3)?

(iv) What is the impact of different refinement methods in our approach
(Section 5.4)?

5.1 Comparison with Conneau et al. (2018)

Because our approach follows the same steps as Conneau et al. (2018), we first compare
our proposed model with their model on their data set. Table 2 presents the results for
Es, De, It, and Fi, and Table 3 presents the results for Ar, Ms, and He. In the tables, we
present the numbers that they reported in their paper (Conneau et al. (2018) (paper))
as well as the results that we get by running their code on our machine (Conneau
et al. (2018) (code)). For a fair comparison with respect to the quality of the learned
mappings (or induced seed dictionary), in this subsection we only consider the results
of our approach that use the refinement procedure of Conneau et al. (2018).

In Table 2, we see that our Adversarial autoencoder + Conneau refinement out-
performs Conneau et al. (2018) in all the eight translation tasks. For Spanish, German,
and Italian, the gains are in the range of 0.3% to 1.3%. The improvement is much higher
(about 11%) for English to Finnish. Also notice that for Finnish to English, our method
gives 64.0% word translation accuracy (P@1), whereas the method of Conneau et al.
(2018) fails to converge for this task.

Our method is also superior to theirs for the Arabic and low-resource language
pairs (Ms and He) in Table 3. Here our method gives consistent gains ranging from
2.3% to 4.5%. Note specifically that Malay (Ms) is a low-resource language, and FastText
contains word vectors for only 155K Malay words. We found their model to be very
fragile for En from/to Ms and does not converge at all for Ms→En. We ran their code
10 times for Ms→En but failed every time. Compared with that, our method is more
robust and converged most of the time we ran.

If we compare our Adversarial autoencoder + Conneau refinement with Conneau et al.
(2018) on the Dinu-Artetxe data set in Table 4, we see here also our method performs
better than their method in all the eight translation tasks. In this data set, our method
shows more robustness compared to their method. For example, their method had
difficulties in converging for En from/to Es, De, and Fi translation tasks. For example,
their model converges only 2 times out of 10 attempts for En→Es, while for Es→En,
En↔De (both directions) and En↔Fi (both directions), it did not converge a single

276

Mohiuddin and Joty Unsupervised Word Translation

Table 2
Word translation accuracy (P@1) of Es, De, It, and Fi on the Conneau data set using FastText
embeddings (trained on Wikipedia). ‘-’ indicates the authors did not report the number.
** indicates failure to converge.

En-Es En-De En-It En-Fi
→ ← → ← → ← → ←

Supervised Baselines
Artetxe, Labaka, and Agirre (2017) 81.2 83.5 72.9 72.5 76.1 77.5 40.8 57.1
Artetxe, Labaka, and Agirre (2018a) 80.5 83.8 73.6 73.5 77.1 79.3 48.9 64.6
Procrustes-CSLS 82.4 83.9 75.3 72.7 78.1 78.1 46.7 58.6

Unsupervised Baselines
Alvarez-Melis and Jaakkola (2018) 81.7 80.4 71.9 72.8 78.9 75.2 – –
Xu et al. (2018) 79.5 77.8 69.3 67.0 73.5 72.6 – –
Artetxe, Labaka, and Agirre (2018b) 82.2 84.4 74.9 74.1 78.9 79.5 49.8 63.5
Hoshen and Wolf (2018) 82.1 84.1 74.7 73.0 77.9 77.5 43.6 56.4
Conneau et al. (2018) (paper) 81.7 83.3 74.0 72.2 – – – –
Conneau et al. (2018) (code) 82.3 83.7 74.2 72.6 78.3 78.1 38.4 **

Our Unsupervised Approach
Adversarial autoencoder +

Conneau refinement 82.6 84.5 75.5 73.9 78.8 78.9 49.1 64.0
Artetxe refinement 82.7 84.7 75.4 74.1 79.2 79.4 49.4 64.6
Our combined refinement 83.0 85.2 76.2 74.7 79.3 80.3 49.8 65.7

Table 3
Word translation accuracy (P@1) of Arabic and low-resource (Ms, He) languages on the
Conneau data set using FastText embeddings. ** indicates failure to converge.

En-Ar En-Ms En-He
← → ← → ← ←

Supervised Baselines
Artetxe, Labaka, and Agirre (2017) 24.8 45.3 38.8 41.6 32.7 52.1
Artetxe, Labaka, and Agirre (2018a) 41.2 55.2 55.1 51.7 47.6 58.0
Procrustes-CSLS 34.5 49.7 47.3 46.6 39.2 54.1

Unsupervised Baselines
Hoshen and Wolf (2018) 34.4 49.3 ** ** 36.5 52.3
Artetxe, Labaka, and Agirre (2018b) 33.2 52.8 49.0 49.7 43.8 57.5
Conneau et al. (2018) (code) 29.3 47.6 46.2 ** 36.8 53.1

Our Unsupervised Approach
Adversarial autoencoder +

Conneau refinement 33.8 49.9 49.5 48.6 41.1 56.8
Artetxe refinement 38.3 54.1 54.0 54.4 44.9 58.1
Our combined refinement 38.6 55.7 54.8 55.2 46.1 58.6

time in 10 attempts. Compared with that, our method was more robust and converged
most of the time. In Section 5.3, we compare our model with Conneau et al. (2018)
more rigorously by evaluating them with and without fine-tuning and measuring their
performance on P@1, P@5, and P@10.

These comparisons with Conneau et al. (2018) using the same refinement method
demonstrate that our approach of performing the crosslingual mapping in the code

277

Computational Linguistics Volume 46, Number 2

space is more effective and can learn more robust mapping functions. Figures 4a and
4b, respectively, show the t-SNE plots for English to Finnish translation on the Conneau
data set for the model of Conneau et al. (2018) and our model. Notice that the English
words and their Finnish translations are better mapped in our code space compared
with the mappings in the original embedding space by Conneau et al. (2018).

5.2 Comparison with Other Methods

In this section, we compare our model with other state-of-the-art methods that do
not follow the same procedure as us and Conneau et al. (2018). For example, Artetxe,
Labaka, and Agirre (2018b) do the initial mapping in the similarity space, then they
apply a different refinement procedure on that.

Let us first consider the results on the Conneau data set in Table 2. Our method
performs better than other methods in all eight translation tasks on this data set. Among
the other unsupervised baselines, Artetxe, Labaka, and Agirre (2018b) exhibit better
results than others. On the Dinu-Artetxe data set in Table 4, our model achieves better
performance than most of the other methods. Only for En from/to Fi does the super-
vised model of Artetxe, Labaka, and Agirre (2018a) perform better than our method.
As we mentioned earlier, this data set is more challenging, where other unsupervised
methods except Artetxe, Labaka, and Agirre (2018b) fail to converge in most of the word
translation tasks.

For Arabic and low-resource languages in Table 3, our model exhibits better per-
formance than others in three out of six translation tasks. Only the supervised model
of Artetxe, Labaka, and Agirre (2018a) performs better than our method in the rest
of the three translation tasks. Here our model gives consistent gains compared with
other unsupervised models. For En ↔ Ms, we see the similar phenomenon that other
unsupervised methods except Artetxe, Labaka, and Agirre (2018b) fail to converge.

Table 4
Word translation accuracy (P@1) on the En-It, En-Es, En-De, and En-Fi data sets of Dinu,
Lazaridou, and Baroni (2015), Artetxe, Labaka, and Agirre (2017); All methods use CBOW
embeddings. ** indicates failure to converge; ‘-’ indicates the authors did not report.

En-It En-Es En-De En-Fi
→ ← → ← → ← → ←

Supervised Baselines
Artetxe, Labaka, and Agirre (2017) 43.8 37.2 32.4 27.2 47.4 40.7 30.8 26.2
Artetxe, Labaka, and Agirre (2018a) 45.3 38.5 37.2 29.6 47.2 44.7 33.2 36.3
Procrustes-CSLS 44.9 38.5 33.8 29.3 46.5 42.6 31.8 29.1

Unsupervised Baselines
Artetxe, Labaka, and Agirre (2018b) 47.9 42.3 36.9 31.6 48.3 44.1 32.9 33.5
Hoshen and Wolf (2018) ** ** ** ** ** ** ** **
Conneau et al. (2018) (paper) 45.1 38.3 – – – – – –
Conneau et al. (2018) (code) 44.9 38.7 34.7 ** ** ** ** **

Our Unsupervised Approach
Adversarial autoencoder +

Conneau refinement 45.3 39.4 35.2 29.9 46.8 42.6 30.4 31.9
Artetxe refinement 47.9 42.6 37.5 32.1 47.9 44.1 32.9 33.0
Our combined refinement 47.7 42.3 38.1 32.3 48.7 44.1 32.6 33.2

278

Mohiuddin and Joty Unsupervised Word Translation

(a) t-SNE plot for Conneau et al. (2018) model

(b) t-SNE plot for our model

Figure 4
t-SNE plots for En→Fi translation on the Conneau data set.

We notice that the unsupervised method of Artetxe, Labaka, and Agirre (2018b)
gives better results than other baselines. To understand whether the improvements of
their method are due to a better initial mapping or better post-processing, we conducted
two additional experiments. In our first experiment, we use their method to induce
the initial seed dictionary and then apply iterative Procrustes solution for refinement.
Table 5 shows the results. Surprisingly, on both data sets their initial mappings fail to
produce any reasonable results. So we suspect that the main gain in Artetxe, Labaka,
and Agirre (2018b) comes from their fine-tuning method, which they call robust self
learning. In the second experiment, we use the initial dictionary induced by our ad-
versarial training and then apply their refinement procedure. Here, for most of the
translation tasks, we achieve better results; see the model Adversarial autoencoder +
Artetxe refinement in Tables 2–4. This shows that the initial dictionary generated by
our model is better than their model.

279

Computational Linguistics Volume 46, Number 2

Table 5
Conneau refinement (Iterative Procrustes solution and CSLS) applied to the initial mappings of
Artetxe, Labaka, and Agirre (2018b). ** indicates failure to converge.

En-It En-Es
→ ← → ←

Dinu-Artetxe data set ** ** ** **
Conneau data set 01.2 01.6 04.7 05.1

5.3 Adversarial Model Dissection

We further analyze our adversarial autoencoder model by dissecting it and measuring
the contribution of each novel component that is proposed in this work. We achieve
this by incrementally removing a new component from our model and evaluating it
on different translation tasks. In order to better understand the contribution of each
component, we evaluate each model by measuring its P@1, P@5, and P@10 with fine-
tuning and without fine-tuning. For fine-tuning, we use the Conneau refinement.
In case of without fine-tuning, the models apply the CSLS directly on the mappings
learned from the adversarial training, that is, no Procrustes solution–based refinement is
done after the adversarial training. This set-up allows us to compare our model directly
with the model of Conneau et al. (2018), putting the effect of fine-tuning aside.

Table 6 presents the ablation results for En-Es, En-De, and En-It in both directions.
The first row (Conneau-18) presents the results of Conneau et al. (2018) that uses
adversarial training to map the word embeddings. The next row shows the results of our
full model. The subsequent rows incrementally detach one component from our model.
For example, - Enc. adv denotes the variant of our model where the target encoder is
not trained on the adversarial loss (θEX in Eq. 13); - - Recon excludes the post-cycle
reconstruction loss from - Enc. adv, and - - - Cycle excludes the cycle consistency from
- - Recon. Thus, - - - Cycle is a variant of our model that uses only adversarial loss to
learn the mapping. However, it is important to note that in contrast to Conneau et al.
(2018), our mapping is performed at the code space.

As we compare our full model with the model of Conneau et al. (2018) in the without
fine-tuning setting, we notice large improvements in all measures across all data sets:
5.1–7.3% in En→Es, 3–6% in Es→En, 3.4–4.3% in En→De, 1–3% in De→En, 3.4–4.3% in
En→It, and 0.3–3.7% in It→En. These improvements demonstrate that our model finds
a better mapping compared to Conneau et al. (2018). Among the three components, the
cycle consistency is the most influential one across all languages. Training the target
encoder adversarially also gives a significant boost. The reconstruction has less impact.
If we compare the results of - - - Cycle with Conneau-18, we see sizeable gains for En-Es
in both directions. This shows the benefits of mapping at the code level.

Now let us turn our attention to the results with fine-tuning. For a fair comparison
with respect to the learned mappings, here we only consider the results of our approach
that uses the fine-tuning (refinement) procedure of Conneau et al. (2018). Here also we
see gains across all data sets for our model, although the gains are not as verbose as
before (about 1% on average). However, this is not surprising as it has been shown that
iterative fine-tuning with Procrustes solution is a robust method that can recover many
errors made in the initial mapping (Conneau et al. 2018). Given a good enough initial

280

Mohiuddin and Joty Unsupervised Word Translation

Table 6
Ablation study of our adversarial autoencoder model on the Conneau data set.

En→Es Es→En En→De De→En En→It It→En
P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

Without Fine-Tuning

Conneau-18 65.3 73.8 80.6 66.7 78.3 80.8 61.5 70.1 78.2 60.3 70.2 77.0 64.8 75.3 79.4 63.8 77.1 81.8
Our (full) 71.8 81.1 85.7 72.7 81.5 83.8 64.9 74.4 81.8 63.1 71.3 79.8 68.2 78.9 83.7 67.5 77.6 82.1
- Enc. adv 70.5 79.7 83.5 71.3 80.4 83.3 63.7 73.5 79.3 62.6 70.5 79.0 67.6 77.3 82.7 66.2 78.3 82.5
- - Recon 70.1 78.9 83.4 70.8 81.1 83.4 63.1 73.8 80.5 62.2 71.7 78.7 66.9 79.7 82.1 64.8 78.6 82.1
- - - Cycle 66.8 76.5 82.1 67.2 79.9 82.7 61.4 69.7 77.8 60.1 69.8 76.5 65.3 75.1 78.9 64.4 77.6 81.7

With Fine-Tuning

Conneau-18 82.3 90.8 93.2 83.7 91.9 93.5 74.2 89.0 91.5 72.6 85.7 88.8 78.3 88.4 91.1 78.1 88.2 90.6
Our (full) 82.6 91.8 93.5 84.5 92.3 94.3 75.5 90.1 92.9 73.9 86.5 89.3 78.8 89.2 91.9 78.9 88.9 91.1
- Enc. adv 82.5 91.6 93.5 84.3 92.1 94.3 75.4 89.7 92.7 73.5 86.3 89.2 78.4 89.0 91.8 78.1 88.7 91.0
- - Recon 82.5 91.6 93.4 84.1 92.2 94.3 75.3 89.4 92.6 73.2 85.9 89.0 78.2 89.1 91.9 78.2 88.8 91.2
- - - Cycle 82.4 91.0 93.1 83.6 92.2 94.0 74.3 89.7 92.6 72.7 86.1 89.1 77.8 89.2 91.8 77.4 88.3 90.8

mapping, the measures converge nearly to the same point even though the differences
were comparatively more substantial initially; for example, notice the scores are very
similar for P@5 and P@10 measures after fine-tuning.

5.4 Analysis of the Refinement Procedures

Given the initial mappings and the resulting seed dictionary from our adversarial
autoencoder model, we further analyze the impact of different refinement methods.
In Sections 3.2.1 and 3.2.2, we described two refinement techniques to fine-tune the
initial mappings, namely, refinement with Procrustes solution and with symmetric re-
weighting. We then proposed a refinement method (Section 3.2.3) that combines these
two techniques. In this section, we analyze the effect of each of these techniques and
compare them with the refinement process of Artetxe, Labaka, and Agirre (2018b).
Tables 7, 8, and 9 present the results of our experiments on the two data sets using
the same initial dictionary for each language pair.

As discussed before, the main phenomenon behind the impressive results of
Artetxe, Labaka, and Agirre (2018b) is their refinement procedure. After the robust
self-learning step, they perform symmetric re-weighting. We investigate the efficacy of
this final symmetric re-weighting step. For the languages on the Conneau data set in
Table 7, we see that symmetric re-weighting (Artetxe refinement) boosts the results of
robust self-learning by 0.1–0.7% for Spanish, German, and Italian. The improvement
is more vivid for En from/to Fi, gaining 2.7% and 3.8%, respectively. For Arabic and
low-resource languages in Table 8, we see the similar phenomenon—symmetric re-
weighting improves the result ranging from 1.2% to 3.9%. On the Dinu-Artetxe data
set in Table 9, we see that symmetric re-weighting step (Artetxe refinement) on top of
robust self-learning improves the results by 1.0–3.9%.

Now if we look at the results of our refinement methods in Tables 7–9, we see
that our combined method outperforms the individual ones in each of the fourteen
(14) translation tasks. If only the Procrustes solution is used for refinement on the
Conneau data set, the results lag behind the combined method in the range of 0.4–
1.7% for the languages in Table 7 and of 1.8–6.6% for Arabic and low-resource language
pairs in Table 9. On the Dinu-Artetxe data set, we see similar phenomenon—results for

281

Computational Linguistics Volume 46, Number 2

Table 7
Analysis of refinement methods applied to the same initial mappings of our adversarial
autoencoder on the Conneau data set for Es, De, It, and Fi languages.

En-Es En-De En-It En-Fi
→ ← → ← → ← → ←

Artetxe refinement
Robust self-learning 82.3 84.0 75.3 73.6 78.7 78.9 46.7 60.8
Robust self-learning + Symmetric re-weighting 82.7 84.7 75.4 74.1 79.2 79.4 49.4 64.6

Our refinement
Procrustes solution 82.6 84.5 75.5 73.9 78.8 78.9 49.1 64.0
Symmetric re-weighting 82.8 84.8 75.7 74.5 79.1 80.0 47.6 64.0
Procrustes solution + Symmetric re-weighting 83.0 85.2 76.2 74.7 79.3 80.3 49.8 65.7

Table 8
Analysis of refinement methods applied to the same initial mappings of our adversarial
autoencoder on the Conneau data set for Ar, Ms, and He languages.

En-Ar En-Ms En-He
→ ← → ← → ←

Artetxe refinement
Robust self-learning 35.6 51.7 52.2 50.5 43.7 56.3
Robust self-learning + Symmetric re-weighting 38.3 54.1 54.0 54.4 44.9 58.1

Our refinement
Procrustes solution 33.8 49.9 49.5 48.6 41.1 56.8
Symmetric re-weighting 36.1 54.0 54.6 55.0 45.8 57.1
Procrustes solution + Symmetric re-weighting 38.6 55.7 54.8 55.2 46.1 58.6

Table 9
Analysis of refinement methods applied to the same initial mappings of our adversarial
autoencoder on the Dinu-Artetxe data set.

En-It En-Es En-De En-Fi
→ ← → ← → ← → ←

Artetxe Refinement
Robust self-learning 44.5 40.5 36.5 30.6 46.8 42.9 31.5 30.4
Robust self-learning + Symmetric re-weighting 47.9 42.6 37.5 32.1 47.9 44.1 32.9 33.0

Our Refinement
Procrustes solution 45.3 39.4 35.2 29.9 46.8 42.6 30.4 31.9
Symmetric re-weighting 46.5 42.4 37.5 31.9 48.3 44.1 32.4 32.7
Procrustes Solution + Symmetric re-weighting 47.7 42.3 38.1 32.3 48.7 44.1 32.6 33.2

refinement with only the Procrustes solution are inferior to the combined refinement
method in the range of 1.3–2.9%.

Interestingly, when we use only symmetric re-weighting for refinement, the results
are close to the results of the combined method. On average, the gain for the combined

282

Mohiuddin and Joty Unsupervised Word Translation

method over the symmetric re-weighting methods is about 0.85% on the Conneau data
set. We observe similar trends on the Dinu-Artetxe data set.

5.4.1 Impact of Orthogonality Constraint and Regularization on Symmetric Re-weighting. The
above observations tell us that the symmetric re-weighting is a powerful method for re-
finement. In this section, we investigate symmetric re-weighting–based refinement fur-
ther. Recall that this refinement approach works in three steps: (a) embedding whitening,
(b) orthogonal mapping, and (c) embedding de-whitening (see Section 3.2.2). Artetxe,
Labaka, and Agirre (2018a) show the correspondence between symmetric re-weighting
and the regression-based transformation (see Section 2.1), which are equivalent under
certain conditions. The regression-based formulation of the problem gives us further
opportunities to explore other possible ways to improve the mapping. For example,
dimensionality reduction is one that has been shown to be beneficial in the Canonical
Correlation Analysis–based approach (Faruqui and Dyer 2014) and in orthogonal trans-
formation (Smith et al. 2017). The idea is to learn mappings after excluding the features
that are not indicative (i.e., have low variance).

We conduct a final set of experiments to see if such dimensionality reduction
methods yield any further improvement in our framework. For this, we formulate the
optimization problem as a regression (OLS) problem as the following.

WOLS = min
W
||Y− XW||F (26)

Then we add regularizers that promote sparsity in W (e.g., L1-regularization, Elastic
Net). More specifically, we optimize the following objectives.

WLASSO = min
W
||Y− XW||F + γ1||W||1 [OLS with L1] (27)

WRIDGE = min
W
||Y− XW||F + γ2||W||22 [OLS with L2] (28)

WE-NET = min
W
||Y− XW||F + γ1||W||1 + γ2||W||22 [OLS with L1 + L2] (29)

Where γ1 and γ2 are the regularization strength parameters. The idea is that if the
weights corresponding to certain features in the embeddings become zero (or close to
zero), those features are essentially disregarded when mapping (XW) is computed. We
use stochastic gradient descent to find the solution. However, Equation (26) does not
enforce orthogonality constraint on W, which is shown to be crucial (Artetxe, Labaka,
and Agirre 2016; Smith et al. 2017); we will also see this in our experiments. To enforce
orthogonality, we update W using the following equation, which ensures that W stays
close to an orthogonal matrix during training (Conneau et al. 2018).

WORT = (1 + β)W − β(WWT)W (30)

where W is one of {WOLS, WLASSO, WRIDGE, WE-NET}, and β = 0.01 generally performs
well.

Tables 10, 11, and 12 show the results of our experiments on the Conneau and
Dinu-Artetxe data sets. The first row in each table shows the results for symmetric re-
weighting–based refinement and the remaining rows show the results for regression
based solutions. We can observe the benefit of using orthogonality constraint on the
mapper. For the language pairs on the Conneau data set in Table 10, adding orthog-
onality constraint improves the results in the range of 2.2–7.1%, and for the language
pairs in Table 11 the improvements are much higher, in the range of 5.4–14.4%. For the

283

Computational Linguistics Volume 46, Number 2

Table 10
Analysis of symmetric re-weighting–based refinement applied to the same initial mappings of
our adversarial autoencoder of Es, De, It, and Fi languages on the Conneau data set.

En-Es En-De En-It En-Fi
→ ← → ← → ← → ←

Symmetric re-weighting 82.8 84.8 75.7 74.5 79.1 80.0 47.6 64.0

OLS 76.2 81.3 72.4 72.3 76.9 76.6 42.9 60.1
OLS + Orthogonality 82.7 84.6 75.9 74.7 79.5 79.9 47.7 63.8

OLS with L1 regularizer (LASSO) 75.8 81.4 72.4 72.9 76.8 76.8 43.3 59.8
LASSO + Orthogonality 82.3 84.6 75.6 74.7 79.2 79.8 47.4 62.9

OLS with L2 regularizer (RIDGE) 75.7 81.1 72.2 72.7 77.3 77.6 42.9 60.2
RIDGE + Orthogonality 82.5 84.5 76.2 74.3 79.3 80.1 47.4 63.3

OLS with L1 & L2 regularizers (E-NET) 76.0 80.7 72.2 72.9 77.2 77.6 43.5 61.0
E-NET + Orthogonality 82.7 84.9 75.7 74.7 79.2 80.1 47.3 63.6

Table 11
Analysis of symmetric re-weighting–based refinement applied to the same initial mappings of
our adversarial autoencoder of Ar, Ms, and He languages on the Conneau data set.

En-Ar En-Ms En-He
→ ← → ← → ←

Symmetric re-weighting 36.1 54.0 54.6 55.0 45.8 57.1
OLS 27.2 48.0 39.4 44.2 34.5 51.1
OLS + Orthogonality 33.7 53.2 51.6 53.4 42.6 56.4
OLS with L1 regularizer (LASSO) 26.5 47.9 37.3 43.1 32.4 51.1
LASSO + Orthogonality 34.3 52.8 51.5 52.6 42.6 56.4
OLS with L2 regularizer (RIDGE) 25.8 47.3 37.3 42.1 32.9 50.8
RIDGE + Orthogonality 33.7 52.8 51.1 52.8 42.3 56.8
OLS with L1 & L2 regularizers (E-NET) 27.3 47.5 39.5 41.6 32.5 51.4
E-NET + Orthogonality 33.8 52.2 51.4 53.5 41.9 56.9

language pairs on the Dinu-Artetxe data set in Table 12, we also see the benefit of adding
orthogonality constraint.

Now, if we compare the refinement results of the OLS solution with orthogonality
constraint with the symmetric re-weighting (first row) on the same induced seed dic-
tionary, we see that for the language pairs on the Conneau data set in Table 10, a small
improvement is visible. On the contrary, for other language pairs on the Conneau data
set (Table 11) and the language pairs on the Dinu-Artetxe data set (Table 12), OLS with
orthogonality constraint lags behind by about 2% on average.

However, we do not see any significant contribution from the regularizers in
Tables 10, 11, and 12. After investigation we found that the values in W are generally
quite small (in the range of −0.3 to 0.3). As a result, regularizers that penalize large
weight values do not seem to have a significant contribution.

284

Mohiuddin and Joty Unsupervised Word Translation

Table 12
Analysis of symmetric re-weighting–based refinement applied to the same initial mappings of
our adversarial autoencoder on the Dinu-Artetxe data set.

En-Es En-It En-De En-Fi
→ ← → ← → ← → ←

Symmetric re-weighting 46.5 42.4 37.5 31.9 48.3 44.1 32.4 32.7
OLS 41.8 36.7 29.0 29.6 41.5 39.3 27.7 26.9
OLS + Orthogonality 45.1 39.5 35.7 31.7 47.6 43.8 30.9 32.3
OLS with L1 regularizer (LASSO) 42.3 36.9 28.4 30.4 42.3 39.7 26.8 27.1
LASSO + Orthogonality 46.0 40.1 34.8 32.2 47.1 44.2 32.4 32.6
OLS with L2 regularizer (RIDGE) 41.7 36.5 29.4 29.5 41.9 39.0 28.2 29.4
RIDGE + Orthogonality 46.2 39.9 35.1 32.0 47.8 44.2 32.7 32.7
OLS with L1 & L2 regularizers (E-NET) 42.1 36.8 29.3 30.1 42.2 38.2 28.5 28.5
E-NET + Orthogonality 45.6 40.3 35.3 31.6 47.7 44.0 32.5 32.9

6. Conclusions and Future Directions

In this article, we have proposed an adversarial autoencoder framework to learn the
crosslingual mapping of monolingual word embeddings of two languages in a com-
pletely unsupervised way. In contrast to the existing methods that directly map word
embeddings, our method first learns to transform the embeddings into latent code
vectors by pretraining an autoencoder.

We apply adversarial training to map the distributions of the source and target code
vectors. In our adversarial training, both the mapper and the target encoder are treated
as generators that act jointly to fool the language discriminator. To guide the mapping
further, we include constraints for cycle consistency and post-cycle reconstruction.

To improve the initial mapping further, we use two iterative refinement methods—
Procrustes solution and symmetric re-weighting—sequentially on the seed dictionary
induced from the adversarial training. While the Procrustes solution–based refinement
operates in the latent code space, symmetric re-weighting works in the original word
embedding space.

Through extensive experimentations on six different language pairs comprising
high- and low-resource languages from two different data sources, we demonstrate
that our adversarial method outperforms the method of Conneau et al. (2018) for all
translation tasks in all measures (P@{1,5,10}) across all settings (with and without fine-
tuning). Comparison with other existing methods also shows that our method learns
better mapping. With an extensive ablation study, we further demonstrated that the
cycle consistency is the most important component, followed by the adversarial training
of target encoder and the post-cycle reconstruction.

From the in-depth analysis of the refinement procedures, we observe the strength
of symmetric re-weighting and the significant effect of orthogonality constraint on it.
Our refinement approach that combines both Procrustes solution and symmetric re-
weighting achieves the best results across almost all of the translation tasks in two
data sets.

The work presented in this article leads to several interesting future directions. In
the near future, we plan to incorporate knowledge from the similarity space in our
adversarial framework. We also want to use word frequency information in our ad-
versarial model. We would also like to explore the fine-tuning process more rigorously,

285

Computational Linguistics Volume 46, Number 2

especially for low-resource languages where the initial mapping obtained from the ad-
versarial training is not that good. Another interesting future direction is to extend our
framework to solve downstream crosslingual applications such as machine translation,
named entity recognition, part-of-speech tagging, and parsing.

To the best of our knowledge, our work in this article is the first to give a com-
prehensive overview of existing methods for unsupervised word translation, which is
one of the most emerging topics in crosslingual representation learning. We therefore
hope that the codebase5 released with this article will serve as a benchmark that will
facilitate other researchers in pushing the state-of-the-art and in applying bilingual
word embeddings to their downstream NLP tasks.

Bibliographic Note

Portions of this work have been published in the NAACL-HLT 2019 conference pro-
ceeding (Mohiuddin and Joty 2019). However, this article substantially extends the pub-
lished work in several ways, most notably: (i) we extend our approach by incorporating
two types of refinement (fine-tuning) procedures (Section 3.2); (ii) alongside evaluating
the performance with Conneau et al. (2018) refinement and Artetxe, Labaka, and Agirre
(2018b) refinement, we also present the performance of our adversarial model with our
proposed refinement procedure (Section 5.2); and (iii) we analyze the components of
different refinement methods and assess the impact of regularization and orthogonality
constraint on refinement methods (Section 5.4). Besides these extensions, most of the
article is rewritten to adapt to a journal-style publication.

Acknowledgments
Many thanks to the anonymous reviewers
for their insightful comments on the
NAACL-HLT 2019 submitted version.

References
Alvarez-Melis, David and Tommi Jaakkola.

2018. Gromov-Wasserstein alignment of
word embedding spaces. In Proceedings
of the 2018 Conference on Empirical Methods
in Natural Language Processing,
pages 1881–1890, Brussels.

Artetxe, Mikel, Gorka Labaka, and Eneko
Agirre. 2016. Learning principled bilingual
mappings of word embeddings while
preserving monolingual invariance. In
Proceedings of the 2016 Conference on
Empirical Methods in Natural Language
Processing, pages 2289–2294, Austin, TX.

Artetxe, Mikel, Gorka Labaka, and Eneko
Agirre. 2017. Learning bilingual word
embeddings with (almost) no bilingual
data. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 451–462, Vancouver.

Artetxe, Mikel, Gorka Labaka, and Eneko
Agirre. 2018a. Generalizing and improving
bilingual word embedding mappings
with a multi-step framework of linear
transformations. In Proceedings of the
Thirty-Second AAAI Conference on Artificial
Intelligence, pages 5012–5019, New
Orleans.

Artetxe, Mikel, Gorka Labaka, and Eneko
Agirre. 2018b. A robust self-learning
method for fully unsupervised
cross-lingual mappings of word
embeddings. In ACL, Melbourne.

Barone, Antonio Valerio Miceli. 2016.
Towards cross-lingual distributed
representations without parallel text
trained with adversarial autoencoders.
In Proceedings of the 1st Workshop on
Representation Learning for NLP,
pages 121–126. Berlin.

Bojanowski, Piotr, Edouard Grave, Armand
Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword
information. Transactions of the Association
for Computational Linguistics,
5:135–146.

Conneau, Alexis, Guillaume Lample,
Marc’Aurelio Ranzato, Ludovic Denoyer,

5 https://ntunlpsg.github.io/project/unsup-word-translation/.

286

https://ntunlpsg.github.io/project/unsup-word-translation/

Mohiuddin and Joty Unsupervised Word Translation

and Hervé Jégou. 2018. Word translation
without parallel data. In International
Conference on Learning Representations
(ICLR), Vancouver.

Dinu, Georgiana, Angeliki Lazaridou, and
Marco Baroni. 2015. Improving zero-shot
learning by mitigating the hubness
problem. In ICLR, Workshop track,
San Diego, CA.

Faruqui, Manaal and Chris Dyer. 2014.
Improving vector space word
representations using multilingual
correlation. In Proceedings of the 14th
Conference of the European Chapter of the
Association for Computational Linguistics,
pages 462–471, Gothenburg.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. 2014. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information
Processing Systems 27, Curran Associates,
Inc., pages 2672–2680.

Goodfellow, Ian J. 2017. NIPS 2016 tutorial:
Generative adversarial networks. CoRR,
abs/1701.00160.

Hoshen, Yedid and Lior Wolf. 2018.
Non-adversarial unsupervised word
translation. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 469–478,
Brussels.

Lample, Guillaume, Alexis Conneau,
Ludovic Denoyer, and Marc’Aurelio
Ranzato. 2018a. Unsupervised machine
translation using monolingual corpora
only. In International Conference on Learning
Representations (ICLR), Vancouver.

Lample, Guillaume, Myle Ott, Alexis
Conneau, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2018b. Phrase-based
& neural unsupervised machine
translation. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing (EMNLP), Brussels.

Luong, Thang, Hieu Pham, and
Christopher D. Manning. 2015. Bilingual
word representations with monolingual
quality in mind. In Proceedings of the
1st Workshop on Vector Space Modeling for
Natural Language Processing,
pages 151–159, Denver.

Makhzani, Alireza, Jonathon Shlens,
Navdeep Jaitly, and Ian J. Goodfellow.
2015. Adversarial autoencoders. CoRR,
abs/1511.05644.

Mikolov, Tomas, Quoc V. Le, and Ilya
Sutskever. 2013. Exploiting similarities

among languages for machine translation.
CoRR, abs/1309.4168.

Mikolov, Tomas, Ilya Sutskever, Kai Chen,
Greg S. Corrado, and Jeff Dean. 2013.
Distributed representations of words and
phrases and their compositionality. In
Advances in Neural Information Processing
Systems 26, pages 3111–3119, Curran
Associates, Inc. Lake Tahoe.

Mohiuddin, Tasnim and Shafiq Joty. 2019.
Revisiting adversarial autoencoder for
unsupervised word translation with cycle
consistency and improved training. In
HLT-NAACL, NAACL’19,
pages 3857–3867, Minneapolis, MN.

Ruder, Sebastian, Ivan Vulic, and Anders
Sogaard. 2017. A survey of cross-lingual
word embedding models. CoRR,
abs/1706.04902.

Smith, Samuel L., David H. P. Turban, Steven
Hamblin, and Nils Y. Hammerla. 2017.
Offline bilingual word vectors, orthogonal
transformations and the inverted softmax.
In International Conference on Learning
Representations (ICLR), Toulon.

Søgaard, Anders, Sebastian Ruder, and Ivan
Vulić. 2018. On the limitations of
unsupervised bilingual dictionary
induction. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 778–788, Melbourne.

Xie, Jiateng, Zhilin Yang, Graham Neubig,
Noah A. Smith, and Jaime Carbonell. 2018.
Neural cross-lingual named entity
recognition with minimal resources. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 369–379, Brussels.

Xing, Chao, Dong Wang, Chao Liu, and Yiye
Lin. 2015. Normalized word embedding
and orthogonal transform for bilingual
word translation. In HLT-NAACL,
pages 1006–1011, Denver.

Xu, Ruochen, Yiming Yang, Naoki Otani, and
Yuexin Wu. 2018. Unsupervised
cross-lingual transfer of word embedding
spaces. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language
Processing, pages 2465–2474, Brussels,
Belgium.

Zhang, Meng, Yang Liu, Huanbo Luan, and
Maosong Sun. 2017a. Adversarial training
for unsupervised bilingual lexicon
induction. In Proceedings of the 55th
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 1959–1970, Vancouver.

287

Computational Linguistics Volume 46, Number 2

Zhang, Meng, Yang Liu, Huanbo Luan, and
Maosong Sun. 2017b. Earth mover’s
distance minimization for unsupervised
bilingual lexicon induction. In Proceedings
of the 2017 Conference on Empirical Methods
in Natural Language Processing,
pages 1934–1945, Copenhagen.

Zhu, Jun Yan, Taesung Park, Phillip Isola,
and Alexei A. Efros. 2017. Unpaired
image-to-image translation using
cycle-consistent adversarial networks. In
2017 IEEE International Conference on
Computer Vision (ICCV), pages 2242–2251,
Venice.

288

	Introduction
	Related Work
	Supervised Models
	Unsupervised Models
	Hubness Problem in Similarity Measures

	Our Proposed Approach
	Adversarial Autoencoder for Initial Dictionary Induction
	Refinement
	Training Procedure and Translation Process

	Experimental Settings
	Data Sets
	Baselines and Model Settings

	Results
	Comparison with Conneau et al. (2018)
	Comparison with Other Methods
	Adversarial Model Dissection
	Analysis of the Refinement Procedures

	Conclusions and Future Directions

