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Abstract
Sentiment Analysis and Emotion Detection in
conversation is key in several real-world appli-
cations, with an increase in modalities avail-
able aiding a better understanding of the un-
derlying emotions. Multi-modal Emotion De-
tection and Sentiment Analysis can be partic-
ularly useful, as applications will be able to
use specific subsets of available modalities, as
per the available data. Current systems dealing
with Multi-modal functionality fail to lever-
age and capture - the context of the conver-
sation through all modalities, the dependency
between the listener(s) and speaker emotional
states, and the relevance and relationship be-
tween the available modalities. In this paper,
we propose an end to end RNN architecture
that attempts to take into account all the men-
tioned drawbacks. Our proposed model, at the
time of writing, out-performs the state of the
art on a benchmark dataset on a variety of ac-
curacy and regression metrics.

1 Introduction

Multi-modal Emotion Detection and Sentiment
Analysis in conversation is gathering a lot of at-
tention recently considering its potential use cases
owing to the rapid growth of online social me-
dia platforms such as YouTube, Facebook, Insta-
gram, Twitter etc. (Chen et al., 2017, Poria et al.,
2016, Poria et al., 2017, Zadeh et al., 2016b, Zadeh
et al., 2017), especially knowing that information
obtained from any combination of more than one
of the available modalities (e.g. text, audio, video)
can be used to produce meaningful results.

The current state of the art systems on multi-
modal emotion detection and sentiment analysis
do not treat the modalities in accordance to the
information they are capable of holding (e.g. tex-
tual information is significantly more likely to hold
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contextual information then audio or video features
are), lack an adequate fusion mechanism, and fail
to effectively capture the context of a conversation
in a multi-modal setting. In addition to the lack of
proper usage of the available modalities, models
also fail to effectively capture the flow of a conver-
sation, the separation between speaker and listener
states, and the emotional effect a speaker’s utter-
ance has on the listener (s) in dyadic conversations.

Our proposed model Multilogue-Net, attempts to
embed basic domain knowledge and takes insight
from Poria et al. (2019), assuming that the senti-
ment or emotion governing a particular utterance
predominantly depends on 4 factors – interlocutor
state, interlocutor intent, the preceding and future
emotions, and the context of the conversation. In-
terlocutor intent amongst the mentioned is partic-
ularly difficult to model due to its dependency of
prior knowledge about the speaker, but modelling
the other 3 separately, yet in an interrelated manner
was theorized to produce meaningful results if man-
aged to be captured effectively. The key intention
was to attempt to simulate the setting in which an
utterance is said, and use the actual utterance at
that point to be able to gain better insights regard-
ing emotion and sentiment of that utterance. The
model uses information from all modalities learn-
ing multiple state vectors (representing interlocutor
state) for a given utterance, followed by a pair-
wise attention mechanism inspired by Ghosal et al.
(2018), attempting to better capture the relationship
between all pairs of the available modalities.

The model uses two gated recurrent units (GRU)
(Chung et al., 2014) for each modality for mod-
elling interlocutor state and emotion. Along
with these GRU’s, the model also uses an inter-
connected context network, consisting of the same
number of GRU’s as the number of available modal-
ities, to model a different learned context represen-
tation for each modality. The incoming utterance
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representations and the historical GRU outputs are
used at every timestamp to be able to arrive at a
prediction for that timestamp.

The model produces m different representations
at every timestamp (Where m is the number of
modalities), where each representation is the emo-
tional state at that timestamp as conveyed by each
of the modalities. Thesem representations are used
by the fusion mechanism to incorporate informa-
tion from each of the m representations to be able
to arrive at the final prediction for that timestamp.
We understand that the usage of the pairwise atten-
tion mechanism, along with the Emotion GRU are
what make the model flexible across tasks.

The usage of only the text representation as input
to the context GRU’s has been observed to be key to
the results, as the context of the conversation would
be better captured by textual information then it
would have with audio or video information. We
believe that Multilogue-net performs better than
the current state of the art (Ghosal et al., 2018)
on multi-modal datasets because of better context
representation leveraging all available modalities.1

The remaining sections of the paper are arranged
as follows: Section 2 – discusses related work;
Section 3 – discusses the model in detail; Section 4
– provides experimental results, dataset details, and
analysis; Section 5 contains our ablation studies
and its implications; and finally Section 6 – speaks
on potential future work, and concludes our paper.

2 Related Work

Multi-modal Emotion recognition and Sentiment
Analysis has always attracted attention in multiple
fields such as natural language processing, psychol-
ogy, cognitive science, and so on (Picard, 2010).
Previous works have been done studying factors
of variation that have a more direct correlation
with emotion, such as Ekman et al. (1992), who
found correlation between emotion and facial cues,
and a lot of studies extensively focus on emotions
and their relationship with one another such as
Plutchik’s wheel of emotions, which defines eight
primary emotion types, each of which has a multi-
tude of emotions as sub-types.

Early work done to leverage multi-modal in-
formation for emotion recognition includes works
such as Datcu and Rothkrantz (2012), who fused

1A basic model and training implementation of
Multilogue-Net can be found at https://github.com/
amanshenoy/multilogue-net.

acoustic information with visual cues for emotion
recognition and Eyben et al. (2010), who used
contextual information for emotion recognition in
multi-modal settings. More recently, deep recur-
rent neural networks have been used to be able
make the best of the learned representations of the
modalities available to be able to give very effective
and accurate emotion and sentiment predictions.
Poria et al. (2017) successfully used RNN-based
deep networks for multi-modal emotion recogni-
tion, which was followed by multiple other works
(Chen et al., 2017; Zadeh et al., 2018a; Zadeh et al.,
2018c) giving results far better than what was seen
before. Recent works also include works such as
Hazarika et al. (2018), who used memory networks
for emotion recognition in dyadic conversations,
where two distinct memory networks enabled inter-
speaker interaction.

Some works such as DialogueRNN (Majumder
et al., 2018), though focused on emotion recogni-
tion and sentiment analysis using a single modal-
ity (text), works very well in a multi-modal set-
ting by just replacing the text representation with
a concatenated vector of all the modality represen-
tations. DialogueRNN effectively leveraged the
separation between the speakers by maintaining
two independent gated recurrent units to keep track
of the interlocutor states, also effectively capturing
context in the conversation, yielding state-of-the-
art performance on uni-modal data. Even though
DialogueRNN was able to give reasonably good
results on multi-modal data, the lack of an ade-
quate fusion mechanism and the lack of focus on
a multi-modal representation held its multi-modal
performance back.

Apart from the kind of works shown before,
where a methodology or a model was proposed,
works such as Poria et al. (2019) spoke extensively
about the research challenges and advancements
in emotion detection in conversation and gave a
comprehensive overview of the problem. Most re-
cently Ghosal et al. (2018) introduced the idea of
learning the relationship between pairs of all avail-
able modalities using pairwise attention, in a multi-
modal setting, where similar attributes learned by
multiple modalities are emphasized and differences
between the modality representations are dimin-
ished. Pairwise attention proved to be incredibly
effective yielding state-of-the-art performance on
multi-modal data with just simple representations
for each modality.

https://github.com/amanshenoy/multilogue-net
https://github.com/amanshenoy/multilogue-net
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3 Proposed Methodology

3.1 Problem Formulation
Let there be a P number of participants
p1, p2, ..., pP in the conversation. The problem is
defined such that for every utterance u1, u2, ..., uN
uttered by any participant(s), a sentiment score is
allotted along with a predicted emotion label (one
of happy, sad, angry, surprise, disgust, and fear).
Each utterance corresponds to a particular partici-
pant of the conversation, allowing this formulation
of the problem to also capture the average senti-
ment of a participant in the conversation. Predic-
tions over utterances also avoid problems such as
classification during long moments of silence when
predictions are made for a fixed time interval, and
is also mostly common practice.

For every utterance ut(p), where p is the party
who uttered the utterance, there exist three inde-
pendent representations , tt ∈ RDt , at ∈ RDa ,
and vt ∈ RDv , and are obtained using the feature
extractors further explained in section 4.2.

This gives us our overall formulation of the prob-
lem, which is to be able to learn a function which
would take as input three independent representa-
tions of a particular utterance, information regard-
ing the previous emotional state of the participant,
and a representation of the current context of the
conversation - to be able to map to an output pre-
diction of a sentiment score and emotion label.

Details regarding how these representations are
updated and how the output is generated using these
inputs are described in detail below.

3.2 Model Details
Modelling was done under the underlying assump-
tion that the sentiment or emotion of an utterance
predominantly depends on four factors as men-
tioned before:

• Interlocutor State

• Interlocutor Intent

• Context of the conversation until that point

• Previous interlocutor states and emotions of a
particular participant in the conversation

The proposed model attempts to model three out
of the mentioned four explicitly, and assume that
interlocutor intent will be modelled implicitly dur-
ing model training. Interlocutor state is modelled
using a state GRU (will be referred to as sGRU ),

A context GRU is used to keep track of the con-
text of the conversation (cGRU ), and an emotion
GRU (eGRU ) is used to keep track of the emo-
tional state of that particular participant. Finally, a
pairwise attention mechanism, which uses the emo-
tion representation of all modalities at a particular
timestamp is used to leverage the important modal-
ities and relevant combination of the modalities for
emotion or sentiment prediction at that timestamp.

Figure 1: Description of all the state updates at times-
tamp t for a single participant p1

Every utterance has three independent feature
representations (text, audio, and video features),
tt ∈ RDt , at ∈ RDa , and vt ∈ RDv . Each of these
feature representations are treated and operated on
independently until the pairwise attention mech-
anism. The model consists of two GRU’s (state
GRU, and emotion GRU) for every modality and
participant, and a context GRU for each modality
common to all participants in the conversation (If
p is the number of participants and m is the num-
ber of modalities, the model would have a total of
2mp+m GRU’s). The inputs at the current times-
tamp and the previous state, context, and emotion
representations are operated on to be able to arrive
at the prediction at that timestamp. Figure 1 de-
scribes the updates at a particular timestamp and
the role of each GRU is further explained below.

3.2.1 Context GRU (cGRU )
The Context GRU (cGRU ) for each modality aims
to capture the context of the conversation by jointly
encoding the utterance representation of that modal-
ity (at timestamp t in the given diagram) (tt ∈ RDt

, at ∈ RDa , or vt ∈ RDv ) and the previous times-
tamp speaker state GRU output of that modality.
This accounts for inter-speaker and inter-utterance
dependencies to produce an effective context rep-
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Figure 2: State updates and final prediction output in a conversation between two participants p1 and p2, where the
updates of each participant at a timestamp is as given in figure 1

resentation. The current utterance tt, at, or vt,
changes the state of that speaker from (stt, s

a
t , svt )

to (stt+1, sat+1, svt+1). To capture this change in
context we use GRU cell cGRU having output size
Dc, using tt, at, or vt and (stt, s

a
t , svt ) as:

ctt+1 = cGRU(ctt, (tt ⊕ stt)) (1)

cat+1 = cGRU(cat , (at ⊕ sat )) (2)

cvt+1 = cGRU(cvt , (vt ⊕ svt )) (3)

Where Dc is the size of the context vectors ctt+1,
cat+1, and cvt+1.Dt, Da, and Dv are the sizes of ut-
terance representations of text, audio, and video
respectively.⊕ represents the concatenation oper-
ation, Ds is the size of all the state vectors stt+1,
sat+1, and svt+1; and all GRU weight and biases
shapes are such that they produce the expected
shape of outputs taking the given shape of inputs.

3.2.2 State GRU (sGRU )
The network keeps track of the participants in-
volved in a conversation by employing a p ∗ m
number of (sGRU )’s, where p is the number par-
ticipants in the conversation and m is the number
of available modalities.The sGRU associated with
a participant outputs fixed size vectors which serve
as an encoding to represent the interlocutor state,

and are directly used for both emotion and senti-
ment prediction, and updating the context vectors.

All the state vectors are initialized to null at the
first timestamp. For a timestamp t, the state vector
of participant p and modality m ∈ {t, a, v} is up-
dated using the input feature representation of that
modality and simple attention over all the context
vectors until that timestamp. The simple attention
mechanism over all the context vectors is described
by the following equations:

α = softmax(mT
t Wα[c

m
1 , c

m
2 , ..., c

m
t ]) (4)

attt = α[cm1 , c
m
2 , ..., c

m
t ]
T (5)

Where mT
t ∈ {tTt , aTt , vTt }, Wα ∈ RDt,a,v×Dc ,

αT ∈ R(t−1), and attt ∈ RDc . In equation 4, we
calculate attention scores over all previous context
representations of all previous utterances, highlight-
ing the relative importance of all the previous con-
text vectors to mt. A softmax layer is applied to
amplify this relative importance, and finally equa-
tion 5 the final output of attention over context
attt is calculated by pooling the previous context
vectors with α.

We then employ sGRU t,a,v to update st,a,vt to
st,a,vt+1 on the basis of incoming utterance representa-
tions for each modalitymT

t ∈ {tTt , aTt , vTt } and the
context representations atttt, att

a
t , and attvt using
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GRU cells sGRU tt , sGRUat , and sGRUvt , each of
output size Ds.

stt+1 = sGRU(stt, (tt ⊕ atttt+1)) (6)

sat+1 = sGRU(sat , (at ⊕ attat+1)) (7)

svt+1 = sGRU(svt , (vt ⊕ attvt+1)) (8)

Where Ds is the size of all the state vectors
stt+1, sat+1, and svt+1.Dt, Da, Dv are the sizes of
utterance representations of text, audio, and video
respectively.⊕ represents concatenation operation,
and all GRU weights shapes are such that they pro-
duce the expected shape of outputs taking the given
shape of inputs.

The intended purpose of using this as the input
to sGRU t,a,v is to model the dependency of the
speaker state on the context of the conversation as
understood by the utterances until that point, along
with the utterance representation at that point. The
output of the sGRU for modality m and times-
tamp t serves as an encoding of the speaker state
as conveyed by modality m, at time t.

3.2.3 Emotion GRU (eGRU )
The emotion GRU serves as the decoder for the
encoding produced by the state GRU. The emotion
GRU uses the previous timestamp eGRU output,
and the encoding provided by sGRU to produce
an emotion or sentiment representation which is
further used by the pairwise attention mechanism
to be able to produce the relevant output for predic-
tion. At timestamp (t+ 1) the emotion vectors are
updated as:

ett+1 = eGRU(ett, s
t
t+1) (9)

eat+1 = eGRU(eat , s
a
t+1) (10)

evt+1 = eGRU(evt , s
v
t+1) (11)

Where De is the size of all the emotion vec-
tors ett+1, eat+1, and evt+1.Dt, Da, andDv are the
sizes of utterance representations of text, audio,
and video respectively.De is the size of the state
vectors stt+1, sat+1, and svt+1; and all GRU weights
shapes are such that they produce the expected
shape of outputs taking the given shape of inputs.

The emotion GRU acts as a decoder to the encod-
ing produced by the associated state GRU, produc-
ing a vector which can be used for both sentiment
and emotion prediction.

3.2.4 Pairwise Attention Mechanism
The emotion GRU for each timestamp will produce
an m number of vectors (where m is the number
of modalities available). Pairwise attention is then
used over these m vectors to produce the final pre-
diction output. In particular pairwise attention is
calculated over the following pairs in our case –
(ev, et), (et, ea), and (ea, ev). Pairwise attention
for pair (ev, et) would be calculated as follows:

Figure 3: Pairwise attention mechanism used as the fu-
sion mechanism followed by the final prediction layer

B1 = ev.(et)T , B2 = et.(ev)T (12)

N1 = softmax(B1), N2 = softmax(B2) (13)

O1 = N1.e
t, O2 = N2.e

v (14)

A1 = O1 � ev, A2 = O2 � et (15)

pairwise(ev, et) = A1 ⊕A2 (16)

Where B1, B2 ∈ RDe×De ; N1, N2 ∈ RDe×De ;
A1, A2 ∈ RDe×De ; and pairwise(ev, et) ∈
RDe×2De ; � represents element-wise product; and
⊕ represents concatenation.

A complete analysis on the pairwise attention
mechanism has been done by Ghosal et al. (2018),
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where the role of each one of the intermediate vari-
ables has been described. These equations (12, 13,
14, 15, 16) calculate mC2 pairwise fusion represen-
tations, which are further concatenated to make the
final prediction as described below.

3.2.5 Final Predictions
The prediction layer varies based on whether a
sentiment or emotion prediction is expected. For
sentiment prediction first all three pairs of pairwise
attention i.e. pairwise(ev, et), pairwise(ea, et),
and pairwise(ev, ea) at that timestamp are con-
catenated along with the emotion GRU outputs at
that timestamp (ett, e

a
t , and evt ) and the concate-

nated layer is passed through a fully connected
layer followed by a softmax or tanh layer based
on the nature of the expected prediction. For senti-
ment prediction between -1 and +1 at timestamp t
the output layer would equate as follows:

pw = pw(ev, et)⊕pw(ea, et)⊕pw(ev, ea) (17)

Lt = pw ⊕ ett ⊕ eat ⊕ evt (18)

predsentiment(t) = tanh(WLLt) (19)

Where pairwise(ev, et) has been represented as
pw(ev, et); and WL ∈ R9De×1.

For emotion prediction we use a fully connected
layer along with a final softmax layer to calculate
6 emotion class probabilities from Lt.

lt = ReLU(WlLt + bl) (20)

Pt = softmax(Wsmaxlt + bsmax) (21)

predemotion(t) = argmax(Pt) (22)

Where Wl ∈ RDl×9De ; bl =∈ RDl ;Wsmax ∈
Rc×Dl ; bsmax ∈ Rc and Pt ∈ Rc

3.2.6 Training
Fairly standard practices have been employed for
the training of the model. Categorical cross-entropy
has been used along with L2-regularization as the
loss function during training for emotion prediction,
to maximize likelihood over each of the classes.

Mean Square Error (MSE) along with L2 regular-
ization has been employed as loss function during
training for sentiment regression. The usage of a

Metric A2 F1
Text + Audio
BC-LSTM 79.30 -
MMMU-BA 80.58 -
DialogueRNN 78.81 79.12
Multilogue-net 80.12 78.84
Video + Audio
BC-LSTM 62.10 -
MMMU-BA 65.16 -
DialogueRNN 63.22 60.14
Multilogue-net 69.55 63.40
Text + Video
BC-LSTM 80.20 -
MMMU-BA 81.51 -
DialogueRNN 79.88 79.10
Multilogue-net 80.66 79.62
Text + Audio + Video
BC-LSTM 80.30 -
MMMU-BA 82.31 -
DialogueRNN 79.80 79.48
Multilogue-net 81.19 80.10

Table 1: Multilogue-Net performance on CMU-MOSI
in comparison with the current and previous state-of-
the-art on the dataset. A2 indicating accuracy with 2
classes, and F1 indicating F1 score .

saturating output layer and a loss function that does
not undo the saturation, leads to the model to stop
training when it makes extreme predictions (close
to -1 or +1) due to very small gradients. Using
initialization strategies that start at smaller model
weights, mini-batch gradient descent-based Adam
(Kingma and Ba, 2014) optimizer, and using L2
regularization is used to avoid this failure mode.

4 Experiments, Datasets, and Results

4.1 Datasets

We evaluate our model using two benchmark
datasets - CMU Multi-modal Opinion-level Senti-
ment Intensity (CMU-MOSI) (Zadeh et al., 2016a)
and the recently published CMU Multi-modal
Opinion Sentiment and Emotion Intensity (CMU-
MOSEI) dataset (Zadeh et al., 2018b).

4.1.1 CMU-MOSI
CMU-MOSI dataset consists of 93 videos spanning
over 2199 utterances. Each utterance has a senti-
ment label associated with it. It has 52, 10 & 31
videos in training, validation & test set accounting
for 1151, 296 & 752 utterances. CMU-MOSEI
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has 3229 videos with 22676 utterances from more
than 1000 online YouTube speakers. The training,
validation & test set consist of 16216, 1835 & 4625
utterances, respectively. Each utterance in CMU-
MOSI dataset has been annotated as either positive
or negative.

4.1.2 CMU-MOSEI
In CMU-MOSEI dataset labels are in a continu-
ous range of -3 to +3 and are accompanied by an
emotion label being one of six emotions. How-
ever, in this work we also project the instances of
CMU-MOSEI in a two-class classification setup
with values ≥ 0 signifies positive sentiments and
values < 0 signify negative sentiments. We have
called this A2 accuracy (accuracy with 2 classes).
Along with this we have also shown results for con-
tinuous range prediction between -3 and +3, and
emotion prediction with the 6 emotion labels for
each utterance in CMU- MOSEI. We have used
A2 as a metric to be consistent with the previous
published works on CMU-MOSEI dataset (Ghosal
et al., 2018; Zadeh et al., 2018b). CMU-MOSEI
has further been used for other comprehensive ex-
periments due to its large sizer and easier feature
extraction

4.2 Uni-modal Feature Extraction

4.2.1 CMU-MOSEI
We use the CMU-Multi-modal Data SDK (Zadeh
et al., 2018b) for feature extraction. For MOSEI
dataset, sentiment label-level features were pro-
vided where text features used were GloVe em-
beddings (Pennington et al., 2014), visual features
extracted by Facet (Stöckli et al., 2017) & acous-
tic features by OpenSMILE (Eyben et al., 2010).
Thereafter, we compute the average of sentiment
label-level features in an utterance to obtain the
utterance-level features. For each sentiment label-
level feature, the dimension of the feature vector is
set to 300 (text), 35 (visual) & 384 (acoustic).

4.2.2 CMU-MOSI
In contrast, for MOSI dataset we use utterance
level features provided in Poria et al. (2017). These
utterance-level features represent the outputs of
a convolutional neural network (Karpathy et al.,
2014), 3D convolutional neural network (Ji et al.,
2010) & openSMILE (Eyben et al., 2010) for text,
visual & acoustic modalities, respectively. Dimen-
sions of utterance-level features are 100, 100 & 73
for text, visual & acoustic, respectively.

Metric A2 F1 MAE r
T + A
MMMU-BA 79.74 - - -
DialogueRNN 79.80 78.32 - -
Multilogue-net 80.18 79.88 - -
V + A
MMMU-BA 76.66 - - -
DialogueRNN 73.90 73.92 - -
Multilogue-net 75.16 74.04 - -
V + T
MMMU-BA 79.40 - - -
DialogueRNN 78.90 78.12 - -
Multilogue-net 80.06 79.84 - -
T + A + V
Graph-MFN 76.90 77.00 0.71 0.54
MMMU-BA 79.80 - - -
DialogueRNN 79.98 79.82 0.69 0.42
Multilogue-net 82.10 80.01 0.59 0.50

Table 2: Multilogue-Net performance on CMU-
MOSEI Sentiment Labels compared to previous state-
of-the-art models on regression and accuracy Metrics.
All metrics apart from MAE represents higher values
for better results, MAE represents lower values for bet-
ter results.

4.3 Experiments

We evaluate our proposed approach on CMU-
MOSI (test-set) on accuracy and F1 score, and
CMU-MOSEI (dev-set) on accuracy, F1 score,
mean absolute error (MAE), pearson score (r),
and accuracy’s on the emotion labels. Due to the
lack of speaker information in CMU-MOSI we
were not able to use the CMU-Multi-modal Data
SDK for sentiment label extraction, to be able to
evaluate our approach on CMU-MOSI on mean
absolute error and Pearson score.

Results have also been reported for usage of two
of the three available modalities. Uni-modal per-
formance has not been reported as the focus of the
paper is the effective usage of multi-modal data.
In a uni-modal setting the model would not be us-
ing the fusion mechanism and the output would
be equivalent to having a few dense layers after
the emotion GRU to directly output the final pre-
diction. F1 scores have not been mentioned by
most previous models being used for comparison,
but have been reported for Multilogue-Net for ad-
ditional comparison to any future models using
CMU-MOSI dataset.

Table 1 shows the performance of Multilogue-
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MOSEI Emotions (Text + Video + Audio)
Emotion Anger Disgust Fear Happy Sad Surprise

Metric WA F1 WA F1 WA F1 WA F1 WA F1 WA F1
Graph-MFN 62.6 72.8 69.1 76.6 62.0 89.9 66.3 66.3 60.4 66.9 53.7 85.5

Multilogue-Net 83.1 80.9 90.3 87.3 89.7 87.0 70.0 68.4 76.1 74.5 87.4 84.0

Table 3: Multilogue-Net performance on MOSEI Emotion Labels compared with that of Graph-MFN on weighted
accuracy and F1 score. MOSEI Emotion label results were presented by only one model, and comprehensive results
have not been published for the same.

Net on CMU-MOSI dataset, comparing to the cur-
rent state of the art (Ghosal et al., 2018), previ-
ous state-of-the-art (Poria et al., 2017), and Dia-
logueRNN (Majumder et al., 2018) (Multi-modal
performance of DialogueRNN has not been re-
ported by Majumder et al. (2018), and we have
run these experiments additionally for a better com-
parative study, where concatenating the input rep-
resentations has been used as a fusion mechanism).
Our model consistently outperforms the previous
state-of-the-art but performs better only on one of
the subsets of the modalities when compared to the
current state-of-the-art.

In comparison to MMMU-BA our model also
lacks in Multi-modal performance. We theorize
that the model performance is lacking because of
the low number of training examples (CMU-MOSI
consists only of 93 conversations out of which 62
were used for training), in contrast to our model
which has a high capacity (Relative to models be-
ing compared with). Since Multilogue-Net learns
a lot of intermediate representations in order to
make a prediction, it would need a larger dataset
with more variability to be able to learn meaningful
representations. The proposition that performance
lacks due to a lack of training examples is backed
by the results on CMU-MOSEI (demonstrated in
a comparative setting in Table 2 and 3) where the
model consistently outperforms the current state-
of-the-art on most metrics.

On CMU-MOSEI, our model seems to perform
very consistently on both sentiment and emotion
labels. The model outperforms the current state of
the art on all but one metric (both classification and
accuracy) on sentiment labels in the tri-modal set-
ting. Multilogue-Net also outperforms the current
state of the art on the emotion labels by a consider-
able margin (This is also attributed to the fact that
not a lot of models have presented results on these
labels).

Similar observations are made in both datasets,

where the tri-modal metrics show the best perfor-
mance, and audio + video show the worst relative
performance (suggesting the importance of text in a
multi-modal setting). Textual information seems to
be the guiding factor for multi-modal performance,
with video and audio features simply acting as a
push to the uni-modal performance on text.

We theorize that the performance of Multilogue-
Net is majorly attributed to its increased capacity
as compared to previous models. Effective usage
of this increased capacity, using representations in-
spired from a basic understanding of conversation,
along with a larger dataset for training have been
key in achieving the improved results.

5 Ablation Studies and Analysis

Until now, some architectural considerations, such
as the use of eGRU and the fusion mechanism,
have been briefly explained but not empirically jus-
tified. This section aims to get empirical evidence
regarding the effectiveness of these modules. Since
our model completely hinges around the usage of
the context and state GRU’s, our ablation studies
and analysis have focused on the fusion mechanism
and emotion GRU (eGRU ) only.

5.1 Fusion Mechanism

The effectiveness of the fusion mechanism can be
very easily examined by observing the results of
the model on both tasks − Sentiment Regression
and Emotion Recognition, with and without the
fusion mechanism. Table 4 shows these results on
CMU-MOSEI modality subsets.

The bi-modal results in table 4 involve evaluat-
ing the pairwise attention module only once (Since
there is only one pair available), directly followed
by the prediction layer. The tri-modal case on the
other hand involves evaluating the pairwise atten-
tion module thrice (Once for each pair). In general,
the number of times this module will have to be
evaluated for m modalities is mC2, which raises



27

Fusion Mechanism A2 MAE
Text + Audio
without 75.78 -
with 80.18 -
Video + Audio
without 75.66 -
with 75.16 -
Text + Video
without 76.80 -
with 80.06 -
Text + Audio + Video
without 79.80 0.66
with 82.10 0.59

Table 4: Multilogue-Net performance on CMU-
MOSEI with and without the fusion mechanism - for
’without’ fusion we have concatenated all the represen-
tations and directly passed them to the prediction layer.

a fair concern regarding the trade-off between the
additional computational cost and performance.

We empirically observe that the additional com-
putational cost can be considered negligible in con-
text of the increased performance, largely attribut-
ing to the non-parametric nature of the fusion mech-
anism and the relatively small number of additional
parameters in the prediction layer (6De for the sen-
timent regression; 36De for emotion recognition).

The fusion mechanism seems to clearly be bene-
ficial in all of the reported cases apart from video
+ audio, implying that the fusion mechanism is
useful only in the cases the text representation is
used. This further strengthens our claim that the
text representation guides tri-modal performance.

5.2 Emotion GRU (eGRU )

Unlike as done with the fusion mechanism, the
effectiveness of the eGRU cannot be examined by
evaluating metrics with and without it. Removing
the Emotion GRU would clearly be detrimental to
the results, and would not convey the intention of
having it.

The primary intention of having the eGRU can
be considered to be maintaining consistency be-
tween tasks. To better understand what this means
table 5 quantitatively demonstrates this effect. The
model was trained separately for Emotion Detec-
tion and Sentiment Regression tasks. After both the
models were trained satisfactorily, a particular sam-
ple from the test set (test sample 6) was inferred
on. We then retrieved the intermediate text repre-

Representation Euclidean Distance
Sample 6 with t = 4

st4 4.6 units
ct4 6.1 units
et4 26.4 units

Table 5: Euclidean Distance between the same rep-
resentations for Sentiment Regression as compared to
Emotion Detection. (Distances have been converted to
units for convenience and easier comparison)

sentations (et4, ct4, and st4; superscript t indicating
text modality) at a particular timestamp (t = 4)
for both models on that sample. The Euclidean
Distance between these two sets of representations
(one for each task) was evaluated and have been
shown in table 5, where we can clearly observe
that the euclidean distance between the emotion
representations is much larger as compared to the
state and context representations.

This shows that for both tasks, interlocutor state
and context representations are relatively similar to
each other, whereas the emotion state representa-
tion is more varied and task dependant. This not
only allows us to use the same cGRU and sGRU
weights across tasks, but would also allow us to
train for multiple tasks in parallel using a different
eGRU for each task - giving us consistent and ac-
curate predictions across multiple tasks. Analysis
of such a network, and whether training for multi-
ple tasks in parallel aids one another, has not been
covered in this paper and is left to our future work.

6 Conclusion

In this paper, we have presented an RNN architec-
ture for multi-modal sentiment analysis and emo-
tion detection in conversation. In contrast to the cur-
rent state-of-the-art models, our model focuses on
effectively capturing the context of a conversation
and treats each modality independently, taking into
account the information a particular modality is ca-
pable of holding. Our model consistently performs
well on benchmark datasets such as CMU-MOSI
and CMU-MOSEI in any multi-modal setting.

The model can be further extended to have better
feature extractors, and increase both the number
of modalities and the number of participants in the
conversation. Due to the lack of availability of
datasets consisting of these extensions with emo-
tion or sentiment labels, we have left this to our
future work.
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Dragos Datcu and Léon Rothkrantz. 2012. Semantic
audiovisual data fusion for automatic emotion recog-
nition.

P. Ekman, Edmund Rolls, David Perrett, and H. Ellis.
1992. Facial expressions of emotion: An old con-
troversy and new findings: Discussion. Royal Soci-
ety of London Philosophical Transactions Series B,
335:69–.
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Sabrina Stöckli, Michael Schulte-Mecklenbeck, Stefan
Borer, and Andrea Samson. 2017. Facial expression
analysis with affdex and facet: A validation study.
Behavior Research Methods, 50.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cam-
bria, and Louis-Philippe Morency. 2017. Tensor
fusion network for multimodal sentiment analysis.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1103–1114.

Amir Zadeh, Paul Liang, Navonil Mazumder, Soujanya
Poria, Erik Cambria, and Louis-Philippe Morency.
2018a. Memory fusion network for multi-view se-
quential learning.

Amir Zadeh, Paul Liang, Soujanya Poria, Erik Cam-
bria, and Louis-Philippe Morency. 2018b. Multi-
modal language analysis in the wild: Cmu-mosei
dataset and interpretable dynamic fusion graph.
pages 2236–2246.

Amir Zadeh, Paul Liang, Soujanya Poria, Prateek Vij,
Erik Cambria, and Louis-Philippe Morency. 2018c.
Multi-attention recurrent network for human com-
munication comprehension. Proceedings of the
2018 AAAI Conference on Artificial Intelligence,
2018.

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-
Philippe Morency. 2016a. Mosi: Multimodal cor-
pus of sentiment intensity and subjectivity analysis
in online opinion videos.

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-
Philippe Morency. 2016b. Multimodal sentiment in-
tensity analysis in videos: Facial gestures and verbal
messages. Intelligent Systems, IEEE, pages 82–88.

https://doi.org/10.1002/9781118910566.ch16
https://doi.org/10.1002/9781118910566.ch16
https://doi.org/10.1002/9781118910566.ch16
https://doi.org/10.1098/rstb.1992.0008
https://doi.org/10.1098/rstb.1992.0008
https://doi.org/10.1145/1873951.1874246
https://doi.org/10.1145/1873951.1874246
https://doi.org/10.18653/v1/N18-1193
https://doi.org/10.18653/v1/N18-1193
https://doi.org/10.18653/v1/N18-1193
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1109/T-AFFC.2010.10
https://doi.org/10.1109/T-AFFC.2010.10
http://arxiv.org/abs/1905.02947
http://arxiv.org/abs/1905.02947
http://arxiv.org/abs/1905.02947
https://doi.org/10.3758/s13428-017-0996-1
https://doi.org/10.3758/s13428-017-0996-1
https://doi.org/10.18653/v1/P18-1208
https://doi.org/10.18653/v1/P18-1208
https://doi.org/10.18653/v1/P18-1208

