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Abstract

Question classification is a crucial subtask in question answering system. Mongolian is a kind of
few resource language. It lacks public labeled corpus. And the complex morphological structure
of Mongolian vocabulary makes the data-sparse problem. This paper proposes a classification
model, which combines the Bi-LSTM model with the Multi-Head Attention mechanism. The
Multi-Head Attention mechanism extracts relevant information from different dimensions and
representation subspace. According to the characteristics of Mongolian word-formation, this pa-
per introduces Mongolian morphemes representation in the embedding layer. Morpheme vector
focuses on the semantics of the Mongolian word. In this paper, character vector and morpheme
vector are concatenated to get word vector, which sends to the Bi-LSTM getting context repre-
sentation. Finally, the Multi-Head Attention obtains global information for classification. The
model experimented on the Mongolian corpus. Experimental results show that our proposed
model significantly outperforms baseline systems.

1 Introduction

When people read a specific sentence on a flyer or some magazine, they can understand the context or
intent of the sentence. And they can also extract information from the sentence. How to make a computer
think like a human. Natural Language Processing (NLP) and Natural Language Understanding (NLU) s-
tudy how to make the computer understand the semantics of natural language. The computer uses natural
language to communicate with people to realize human-machine interaction. Deep learning models have
achieved state-of-the-art performance in various natural language processing tasks such as text summa-
rization (Rush et al., 2015), question answering (He and Golub, 2016) and machine translation (Kudo,
2018). In recent years, question answering is a key technology in intelligent applications. It has aroused
widespread concern. Pipeline the first task of question system is to classify the domain of the dialogue
after the user enters the message (text or voice). Question classification divides questions into several
semantic categories. The machine gets a predicted category of the dialogue and the system returns a
concise and accurate answer. The understanding of questions provides constraints for improving the ac-
curacy of question answering system. Moldovan et al. (2003) have studied the influence of each part of
the question answering system on the system performance. The question classification recognition has
the greatest influence on the system performance. Therefore, to get a good question answering system,
it is necessary to design a high accuracy model of question classification.

However, the research of the Mongolian questions classification is very fewer. The reason is that
Mongolian corpus is scarce and there is no public Mongolian corpus. Data collected from internet are
noisy and uncertain in terms of coding and spelling. The word-formation is different from Chinese and
English. It consists of roots, stems and affixes. These problems result in unlimited vocabulary. The
existing short text classification methods are not effective. How to classify the questions accurately is a
complicated problem.
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Figure 1: The model architecture of MA-B.

In this article, the training data were crawled from the Mongolian web sites. After cleaning the invalid
data, we constructed a question classification data set. We propose a method of the Mongolian question
classification, which combines the Bi-LSTM model with the Multi-Head Attention mechanism. As
shown in Figure 1, the model is named MA-B. To better learn semantic information from sentences, we
introduce the morphemes representation. The character vector and the morpheme vector are concatenated
to get word vector. It sends to Bi-LSTM getting context representation. The Multi-Head Attention
mechanism extracts relevant information from different dimensions. In the classification layer, we use
the softmax classifier to output the probability of each category.

The paper is organized as follows: Section 2 gives the related work. Section 3 presents the question
classification method in detail. Section 4 shows the experiments and results. Section 5 summarizes the
full text and give some future works.

2 Related Work

Question classification is a kind of short text classification (Alsmadi and Gan, 2019). There have been
many studies on questions classification. Chinese and English, which are rich in resources, have achieved
good results. The traditional method was based feature engineering such as bag of words (BOW) and
n-gram. Both were combined with term frequency-inverse document frequency (TF-IDF) and other
element features as text features. However, these methods ignore the context semantic information.
There were some methods based machine learning, including Nearest Neighbors (NN) (Yang and Li-
u, 1999), Naive Bayes (McCallum et al., 1998), and Support Vector Machine (SVM) (Cristianini and
Shawe-Taylor, 2010). In (Wang et al., 2013), the authors utilized the external knowledge base for text
classification. In recent years, researchers have tried to extract semantic information from sentences via
deep learning. The combination of TextCNN (Kim, 2014), TextRNN (Liu et al., 2016), LSTM (Xiao et
al., 2018), TextGCN (Yao et al., 2019), with word embedding has been widely used in text classification.

There are some researches on rare resource languages to classify questions. For example, Uyghur is
also a few resource language and have complex word-formation. Parhat et al. (2019) proposed a method
of Uyghur short text classification based reliable sub-word morphology. Mongolian language processing
has been further developed, such as morphological segmentation (Wang et al., 2019b), spelling correc-
tion (Lu et al., 2019), named entity recognition (Wang et al., 2019a). The Mongolian question classifica-
tion needs to be solved urgently.
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Figure 2: Comparison between Latin alphabet and Mongolian alphabet.

Latin:

kgmpani-y'in havli-y'in homun ebedcileged genedte nasv barajai , tegun-u
ori ogcege-y'i hen egurgelehu boged bvcagahv ygsqtai

Means:

Who should bear and return the debts of the company due to the sudden
death of the legal person?

Category:

Company Law
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Figure 3: Example of traditional Mongolian script, Latin transliterature, category tag and their meanings.

3 Model Architecture

In this section, we will introduce this model from bottom to up. The Mulit-Head Attention mechanism
can fully capture the long-distance text features. But it is difficult to deal with the sequence information.
The recurrent neural network can effectively obtain the context order information of sequences. It can
effectively supplement the Mulit-Head Attention mechanism. As depicted in Figure 1, MA-B model is
proposed by combining Bi-LSTM network with Mulit-Head Attention mechanism.

3.1 Morpheme Vector

Mongolian is a kind of agglutinative language, which consists of roots, stems and suffixes. The Chinese
words need to be segmented, which is called Chinese word segmentation (Zhou et al., 2019). There are
natural spaces between words in Mongolian, but morphological segmentation is needed in Mongolian
because the root and stem suffixes of Mongolian words are connected with many different endings. The
Mongolian word formation features result in unlimited vocabulary. This paper uses Latin to deal with
Mongolian. The contrast between Latin characters and Mongolian letters is shown in Figure 2.

In this paper, we introduce Mongolian morphemes representation. The suffix is segmented by iden-
tifying a narrow uninterrupted space (NNBS) (U+202F, Latin: ”-”) to make it an independent training
unit. As shown in Figure 3, after segmentation the suffix, the sentence will be turned into “kgmpani -y’in
havli -y’in homun ebedcileged genedte nasv barajai , tegun -u” ori ogcege -y’i hen egurgelehu boged
bvcagahv ygsqtai”. The length of this sentence is changed to 19 units.

The Word2vec is a common tool for training word vectors. The Word2vec (Mikolov et al., 2013)
contains CBOW (Continuous Bag of Word) and Skip-gram. This paper uses the Skip-gram model to
train morpheme vectors. Given a sequence of morphemes m = my,...,m7 € M. The output of the model
is a probability distribution. The morpheme skip-gram model predict contextual morphemes when given
current morpheme.The formula is as follows:

N

1
T Z Z log p(mi+j | mu) (1

t=1 —c<j<c,j#0
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Figure 4: The character embedding of Mongolian morpheme.

where c is the size of the context window for the current central morpheme m;. The simplest formulation
of the probability p(my. j|m;) is:

eXp(uoTUc)
M T
> m=1 €xP(um’ ve)
where o is the ids of the output morpheme, c is the ids of the central morpheme, u is the output morpheme
vector, v is the input morpheme vector, and M is the morphemes set.

plo]c)= )

3.2 Character Vector

To better represent the semantic information in sentences, we use the Bi-LSTM model to learn the char-
acter embedding from training data. The character Bi-LSTM network consists of forward LSTM layer
and backward LSTM layer. The forward layer can learn word prefix information. And the backward
layer learns the morphological information. Both layers are connected to the same output layer. We get
the character representation. As shown in Figure 4 is the structure of Bi-LSTM character embedding
network.

3.3 Bi-LSTM Layer

LSTM (Hochreiter and Schmidhuber, 1997) network is a special type of recursive neural network, which
can capture the context order information of the sequence and solve the problem of long dependency.
LSTM is a variant of RNN. It introduces some gates to solve the gradient problem. LSTM calculates an
output vector according to the current input and the output of the previous unit. The output vector is then
used as input to the next unit.

LSTM is mainly composed of four parts: storage unit c;, input gate 7, output gate o;, and forget gate
ft. Those gates control the proportion of history to omit or to store in the next time stamp. LSTM
calculates the output vector based on the current input and the output of the previous unit, which is then
used as the input of the next unit. The calculation formula is as follows:

fe=o(Wipze + Uphi-r + bp)

it = o(Wayzs + Uy, + by)

or = o(Wioyzt + Ug)hy_y + b(o))

cy = ¢+ 1 © tanh(Wgywy + Ugyh,_y + b))
c=ftOc1

ht = o¢ © tanh(c;)

3

where i, is the input gate and o is the output gate. The forget gate f; is a reset memory unit. x; the input
vector. h; represents the hidden unit vector. ¢ is the point product sigmoid function. ® represents the
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Figure 5: The flowchart of scaled dot-product attention.

corresponding multiplication of elements. W;, Wy, W, is the weight matrix of the input gate, the forget
gate, and the output gate respectively. Uy, U;, U,, U, denote the different weight matrices for hidden /.
And b;, by, be, b, represent the bias.

The LSTM can only encode historical information, but it is often not enough. The paper adopted the
Bidrectional LSTM network which is composed of forward LSTM and backward LSTM. So, 4 is the

— .
concatenate of E, h; and h is shown as below.

%
h=hi+ Iy 4)
where h; is the forward output vector and h; is backward output vector.

3.4 Mulit-Head Attention Layer

In recent years, Transformer (Vaswani et al., 2017) model is very popular, which used in NLP tasks. It
uses the Mulit-Head Attention mechanism. The Mulit-Head Attention is the optimization of the tradi-
tional attention mechanism and it is used to fully capture the features of long distance and obtain the
global information. It firstly projects the input into multiple feature spaces, then compute correlation
score and utilize the scores to weight context representation, finally concatenates vectors weighted as
output.

The input of Mulit-Head Attention mechanism consists of Q(queries), K(keys) and D(dimension).
The merging vector output from Bi-LSTM layer is the input of O, K and V. Then Q, K, V are linearly
transformed and finally input into scaled dot-product attention(SDPA). This process calculates one head
at a time. As shown in Figure 5, the model independently compute dot product attention for each part
head;. The details are described below.

QK"
SDPA(Q, K,V) = softmazx < \/@> 14 (5)
where softmax is a normalization function.The calculation formula is as follows:
e9(Q.K)
softmax(g (Q, K)) = W (6)

where g(Q,K) represents the similarity between Q and K. Similarity calculation is obtained by Q and K
point product operation.

Then, all the scaled dot-product attention results of m times, are concatenated and the value obtained
by a linear transformation is used as the result of the Mulit-Head Attention model.

head; = SDPA (QW? LQWE, VWiV) )
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MA(Q, K,V) = Concat(heady, - - - , heady,) €)
where W? WZK and WZV are projection matrices corresponding to Q, K and V respectively.

3.5 Classification Layer

Questions classification is a multi classification problem. The classification layer consists of two parts:
a linear layer and a softmax layer. The text vector 4 can be used as features for questions classification.

y = softmax(Wrh + by) 9

We use the negative log likelihood of the correct classification as training loss.
L==> logys (10)
t

where i is the label of the text z.

4 Experiments

Our model is trained on the selected data set. By evaluating the classification results and comparing with
baseline, we can evaluate the questions classification performance of the model.

4.1 Setting Up

The training data mainly comes from China Mongolian News Network, People’s Daily Online (Mongo-
lian version), China Mongolian Broadcasting Network, China Judgements Online (Mongolian version)
and other web sites. After removing duplicate data and cleaning invalid data, 115688 sentences were
obtained by manual correction and annotation. The data of question classification is divided into eleven
categories, as shown in Table 1. We divided the dataset into train, dev and test with the percent 80%,
10% and 10%,respectively.

Label Categories Number | Label Categories Number
0 Marriage and Family 10359 6 Property Disputes 9435
1 Labor Disputes 9621 7 Infringement 11258
2 Traffic Accident 11421 8 Company Law 9900
3 Credit and Debt 9401 9 Medical Disputes 8743
4 Criminal Defense 13020 10 Administrative Litigation 13872
5 Contract Disputes 8658

Table 1: The data is divided into eleven categories.

4.2 Evaluation Metrics

Question classification is a multi classification task, so we use precision, recall and F} as the evaluation
index. These metrics are calculated as:

TP

P=—"_
TP+ FP
TP

" TP+ FN
9PR

“P+R

1D

1

where TP is the number of correctly predicted question sentences. FP is the number of sentences that
predicted as question sentences, but in actuality those are negative class. If the prediction is failed, and
the positive class is predicted as a false negative(FN). F7 is the harmonic mean of precision and recall.
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4.3 Results

In this paper, TextCNN, Bi-LSTM and Attention-BiLSTM model are used as baselines. TextCNN (Kim,
2014) applies Convolutional Neural Networks(CNN) to text classification tasks. The key information in
sentences is extracted by using multiple different size kernels. So it can better capture the local corre-
lation. TextCNN is a commonly used baseline. Bi-LSTM and Attention-BiLSTM are commonly used
models to extract text features. Attention is essentially an automatic weighted summation mechanism
that makes the model more capable of handling long sequences.

The experiment is divided into two forms: 1) whether the combination of character vector and mor-
pheme vector affects the performance of the model. 2) whether the introduction of Mulit-Head Attention
mechanism into the model affects the performance of the model. The experimental results are shown in

Table 2.

Model Character embedding Morpheme embedding P(%) R(%) Fi(%)

TextCNN Yes No 82.57 79.36 80.93
TextCNN Yes Yes 83.27 8142 82.33
Bi-LSTM Yes No 83.22 8395 83.58
Bi-LSTM Yes Yes 84.56 8393 84.24
Att-BiLSTM Yes No 84.67 8391 84.31
Att-BiLSTM Yes Yes 85.13 84.89 85.01
MA-B Yes No 86.58 86.01 86.29

MA-B Yes Yes 86.71 86.51 86.61

Table 2: Comparison of experimental results.

We compare the results from the table:

1) Introducing morpheme features in the embedding layer can improve performance. The F value
of MA-B model remains the highest among all models. About 1.6% improvement compared with the
highest Att-BiLSTM model in the baseline model.

2) In the whole model, the introduction of Mulit-Head Attention mechanism can effectively improve
the model classification performance. Compared with Bi-LSTM model, our model is improved by about
2.2%. Compared with Att-BiLSTM model, our model’s classification ability is also significantly en-
hanced.

The reasons for the above results are as follows:

1) When judging the questions categories of sentences, we mainly consider the semantic information
of sentences. In Mongolian word formation, morpheme vector can learn more syntactic and semantic
information. Therefore, the introduction of morpheme features into the model will have a good perfor-
mance.

2) Compared with the baseline model, the advantage of MA-B model is to use BILSTM network to
obtain the internal relationship between the front and back directions of sentences and get local infor-
mation. The long-distance feature is fully captured by Mulit-Head Attention mechanism, and relevant
information is learned from different dimensions and representation subspaces.

5 Conclusion

In this paper, Bi-LSTM and Mulit-Head Attention mechanism are used to model Mongolian corpus
texts. By combining the ability of multi head attention to obtain global information with the ability of
Bi-LSTM to obtain local sequence information, a better effect has been achieved. At the same time, in
order to make the model better learn the text semantic information, Mongolian morphemes representation
are further introduced.

However, there is a lot of room for improvement in the field of Mongolian questions classification.
From the experiment, it can be seen that the introduction of pre training morphemes features has a good
effect. In the future, feature engineering can be further reduced by using pretraining language models.
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At the same time, the research of Mongolian question intention recognition provides a good foundation
for Mongolian question answering system in the future.
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