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Abstract

Joint entity and relation extraction has received increasing interests recently, due to the capa-
bility of utilizing the interactions between both steps. Among existing studies, the Multi-Head
Selection (MHS) framework is efficient in extracting entities and relations simultaneously. How-
ever, the method is weak for its limited performance. In this paper, we propose several effective
insights to address this problem. First, we propose an entity-specific Relative Position Repre-
sentation (eRPR) to allow the model to fully leverage the distance information between entities
and context tokens. Second, we introduce an auxiliary Global Relation Classification (GRC) to
enhance the learning of local contextual features. Moreover, we improve the semantic repre-
sentation by adopting a pre-trained language model BERT as the feature encoder. Finally, these
new keypoints are closely integrated with the multi-head selection framework and optimized
jointly. Extensive experiments on two benchmark datasets demonstrate that our approach over-
whelmingly outperforms previous works in terms of all evaluation metrics, achieving significant
improvements for relation F1 by +2.40% on CoNLL04 and +1.90% on ACE05, respectively.

1 Introduction

The entity-relation extraction task aims to recognize the entity spans from a sentence and detect the
relations holds between two entities. Generally, it can be formed as extracting triplets (e1, r, e2), which
denotes that the relation r holds between the head entity e1 and the tail entity e2, i.e., (John Smith,
Live-In, Atlanta). It plays a vital role in the information extraction area and has attracted increasing
attention in recent years.

Traditional pipelined methods divide the task into two phases, named entity recognition (NER) and
relation extraction (RE) (Miwa et al., 2009; Chan and Roth, 2011; Lin et al., 2016). As such methods
neglect the underlying correlations between the two phases and suffer from the error propagation issue,
recent works propose to extract entities and relations jointly. These joint models fall into two paradigms.
The first paradigm can be denoted as (e1, e2) → r, which first recognizes all entities in the sentence,
then classifies the relation depend on each extracted entity pairs. However, these methods require enu-
merating all possible entity pairs and the relation classification may be affected by the redundant ones.
While another paradigm is referred as e1→ (r, e2), which detects head entities first and then predicts the
corresponding relations and tail entities (Bekoulis et al., 2018; Li et al., 2019; Zhao et al., 2020). Com-
paring with the first paradigm, the second one can jointly identify entities and all the possible relations
between them at once. A typical approach is the Multi-Head Selection (MHS) framework (Bekoulis et
al., 2018). It first recognizes head entities using the BiLSTM-CRF structure and then performs tail entity
extraction and relation extraction in one pass based on multiclass classification. The advantage of the
MHS framework is obvious - it is efficient to work with the scenario, that one entity can involve several
relational triplets, making this solution suitable for large scale practical applications. In this paper, we
focus on the second paradigm of the joint models, especially on the MHS framework.

Despite the efficiency of the MHS framework, it is weak for the limited performance comparing with
other complex models. Intuitively, the distance between entities and other context tokens provide impor-
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Louis  Vuitton founded  Louis  Vuitton  Inc.  in  1854 .
PER ORG

Work-For

Golden Relation: 
(Louis  Vuitton, Work-For, Louis  Vuitton  Inc.)

Born-In ? 

TIME

Figure 1: An example to show the impact of entity-specific relative position.

tant evidence for entity and relation extraction. Meanwhile, the distance information of non-entity words
is less important. As shown in the sentence of Fig. 1, the “Louis Vuitton” that is far from the word “Inc.”
is a person entity, while the one adjacent to “Inc.” denotes an organization. Such entity-specific relative
position can be a useful indicator to differentiate entity tokens and non-entity tokens and enhance interac-
tions between entities. While the existing model pays equal attention to each context tokens and ignores
the relative distance information of entities. As a result, the entity-specific features may become less ob-
scure and mislead the relation selection. Second, the existing model predicts the relations and tail entities
merely based on the local contextual features of the head entity, and the incomplete local information
may confuse the predictor. While the semantic of the whole sentence always has a significant impact on
relation prediction. For example, in Fig. 1, the relation between “Louis Vuitton” and “1854” may easily
be mislabeled as “Born-In” without considering the meaning of the whole sentence. Therefore, the
global semantics should also be taken into account.

To address the aforementioned limitations, we present several new key points to improve the existing
multi-head selection framework. First, we propose an entity-specific Relative Position Representation
(eRPR) to leverage the distance information between entities and their contextual tokens, which pro-
vides important positional information for each entity. Then, in order to better consider the sentence-
level semantic during relation prediction, we add up an auxiliary Global Relational Classification (GRC)
to guide the optimization of local context features. In addition, different from the original MHS struc-
ture, we adopt the pre-trained transformer-based encoder (BERT) to enhance the ability of semantic
representations. Notably, the proposed method can address the entity and multiple-relation extraction
simultaneously and without relying on any external parsing tools or hand-crafted features. We conduct
extensive experiments on two widely-used datasets CoNLL04 and ACE05, and demonstrate the effec-
tiveness of the proposed framework.

To summarize, the contributions of this paper are as follows:

• We propose an entity-specific relative position representation to allow the model aware of the dis-
tance information of entities, which provides the model with richer semantics and handles the issue
of obscure entity features.

• We introduce a global relation classifier to integrate the essential sentence-level semantics with the
token-level ones, which can remedy the problem caused by incompleted local information.

• Experiments on the CoNLL04 and ACE05 datasets demonstrate that the proposed framework signif-
icantly outperforms the previous work, achieving +2.40% and +1.90% improvements in F1-score
on the two datasets.

2 Related Work

In this section, we introduce the related studies for this work, entity and relation extraction as well as the
positional representation.

2.1 Entity and relation extracion
As a crucial content of information extraction, the entity-relation extraction task has always been widely
concerned. Previous studies (Miwa et al., 2009; Chan and Roth, 2011; Lin et al., 2016) mainly focus
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on pipelined structure, which divides the task into two independent phases, all entities are extracted
first by an entity recognizer, and then relations between every entity pairs are predicted by a relation
classifier. The pipelined methods suffer from error propagation issue and they ignore the interactions
between the two phrases. To ease these problems, many joint models have been proposed to extract the
relational triplets (e1, r, e2), simultaneously. According to different extraction order, the joint models
can be categorized into two paradigms. The first paradigm first identifies all entities in the sentence,
then traverses each pair of entities and determines their potential relation. Various models have achieved
promising results by exploiting recurrent neural network (Miwa and Bansal, 2016; Luan et al., 2019),
graph convolutional network (Sun et al., 2019; Fu et al., 2019) and transformer-based structure (Eberts
and Ulges, 2019; Wang et al., 2019). Though effective, these models need to examine every possible
entity pairs, which inevitably contains a lot of redundant pairs. In the second paradigm, the head entities
are detected first and the corresponding relations and tail entities are extracted later. Bekoulis et al.
(Bekoulis et al., 2018) present the multi-head selection framework to automatically extract multiple
entities and relations at once. Huang et al. (Huang et al., 2019) improve the MHS framework by using
NER pretraining and soft label embedding features. Recently, Li et al. (Li et al., 2019) cast the task as
a question answering problem and identify entities based on a machine reading comprehension model.
Different from the first one, the second paradigm is able to extract entities and all the relations between at
once without enumerating every entity pair each time, which reduces redundant prediction and improves
work efficiency.

Our work is inspired by the multi-head selection framework but enjoys new key points as follows.
1) We propose an entity-specific relative position representation to better encode the distance between
entities and context tokens. 2) We incorporate the sentence-level information for relation classification to
revise the learning of local features. 3) We enhance the original MHS framework with a pre-trained self-
attentive encoder. Together these improvements contribute to the extraction performance remarkably.

2.2 Positional Representation

Generally, non-recurrent models do not contain the sequential order information of input tokens. There-
fore, in order to fit for the sequential inputs, they need to design representations to encode positional
information explicitly.

The approaches for positional representations can fall into three catagroies. The first one designs
the position encodings as a deterministic function of position or learned parameters (Sukhbaatar et al.,
2015; Gehring et al., 2017). These encodings are combined with input elements to expose position
information to the model. For example, the convolutional neural networks inherently capture the relative
positions within each convolutional kernels. The second catagroy is the absolute position representation.
The Transformer structure (Vaswani et al., 2017) contains neither recurrence nor convolution, in order
to inject the positional information to the model, it defines the sine and consine functions of different
frequencies to encode absolute positions. However, such absolute positions cannot model the interaction
information between any two input tokens explicitly. Therefore, the third catagroy extends the self-
attention mechanism to consider the relative positions or distances between sequential elements. Such
as the model by (Shaw et al., 2018) and Transformer-XL (Dai et al., 2019). Different from the relative
positions metioned above, we propose the relative positions exspecially for entities. As such information
is not necessary for non-entity tokens, and may introduce noise on the contrary.

3 Method

In this section, we briefly present the details of the relative position representation based multi-head
selection framework. The concept of multi-head means that any head entity may be relevant to multiple
relations and tail entities (Bekoulis et al., 2018).

Formally, denote E and R as the set of pre-defined entity types and relation categories, respectively.
Given an input sentence with N tokens s = {s1, s2, . . . , sN}, the entity-relation extraction task aims
at extracting a set of named entities e = {e1, e2, . . . , eM} with specific types y = {y1, y2, . . . , yM},
and predict the relation rij for each entity pair (ei, ej), where yi ∈ E and rij ∈ R. Triplets such as
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Figure 2: The overview of the relative position representation based multi-head selection framework.
We take a sentence from CoNLL04 dataset as an example. In this sentence, the golden relational triplets
are: (John Smith, Live-In, Atlanta), (John Smith, Work-For, Disease Control Center) and (Disease
Control Center, Located-In, Atlanta). The NULL label denotes a case of no relation.

(ei, rij , ej) are formulated as the output, where ei is the head entity and ej is the tail entity, e.g., (John
Smith, Live-In, Atlanta).

As illustrated in Fig. 2, our framework consists of four modules as follows: the encoder module, the
CRF module, the context fusion module and the multi-head selection module. The token sequence is
taken as the input of the framework and is fed into the BERT encoder to capture contextual representa-
tions. The CRF module is applied afterward to extract potential head entities (i.e., boundaries and types).
Then, the hidden states of BERT and the entity information are feed into the context fusion module to
encoder the entity position-based features. Finally, a multi-head selection module is employed to simul-
taneously extract tuples of relation and tail entity for the input token (e.g., (Work-For, Center) and
(Live-In, Atlanta) for the head entity Simth). Additionally, we present the strategy of global relation
classification. We will elaborate on each of the modules in the following subsections.

3.1 Encoder Module
The encoder module aims at mapping discrete tokens into distributed semantic representations. Bidirec-
tioal Encoder Representations from Transformers (BERT) (Devlin et al., 2019) is a pre-trained language
representations built on the bidirectional self-attentive models. It is known as its powerful feature rep-
resentative ability and recently breaks through the leaderboards of a wide range of natural language
processing tasks, such as named entity recognition, word segmentation and question answering. Differ-
ent from the previous work (Bekoulis et al., 2018) which uses the BiLSTM as the feature encoder, we
use the BERT instead to better represent contextual features.

As illustrated in Fig. 2, given a N -token sentence s = {s1, s2, . . . , sN}, a special classification token
([CLS]) is introduced as the first token of the input sequence as {[CLS], s1, s2, . . . , sN}. The sequence
is encoded by the multi-layer bidirectional attention structure. The output of the BERT layer is the
contextual representation of each token as h = {h0, h1, . . . , hN} where hi ∈ Rdh , where dh denotes the
dimension of the hidden state of BERT.

3.2 CRF Module
The conditional random field is a probabilistic method that jointly models interactions between entity
labels, which is widely used in named Entity recognition task. Similarly, we employ a linear-chain CRF
over the BERT layer to obtain the most possible entity label for each token, e.g., B-PER.
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Given the BERT outputs h = {h0, h1, . . . , hN}, the corresponding entity label sequence is denoted
as y = {y0, y1, . . . , yN}. Specifically, we uses the BIO (Begin, Inside, Non-Entity) tagging scheme. For
example, B-PER denotes the beginning token of a person entity. The probability of using y as the label
prediction for the input context is calculated as

p(y|h) =
∏N
i=1 φi(yi−1, yi,h)∑

y′∈Y(h)
∏N
i=1 φi(y

′
i−1, y

′
i,h)

. (1)

Here, Y(h) is the set of all possible label predictions. And φi(yi−1, yi,h) = exp(Wyi
CRFhi + byi−1→yi

CRF ),
where WCRF ∈ Rdh×dl , bCRF ∈ Rdl×dl with dl denoting the size of the entity label set. Wyi

CRF is the
column corresponding to label yi, and byi−1→yi

CRF is the transition probability from label yi−1 to yi.
During training, the NER loss function LCRF is defined as the negative log-likelihood:

LNER = −
∑

h
log p(y|h). (2)

During decoding, the most possible label sequence y∗ is the sequence with maximal likelihood of the
prediction probability:

y∗ = argmaxy∈Y(h) p(y|h). (3)

The final labels can be efficiently addressed by the Viterbi algorithm.

3.3 Context Fusion Module
The context fusion module focuses on injecting the entity-specific relative position representation into
the semantic feature of entities to capture the distance information between entities and other context
tokens. The self-attention structure in BERT introduces sine and cosine functions of varying frequency
to represent the absolute position representation (APR) of tokens as:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel),
(4)

where dmodel stands for the hidden dimention of the model. However, such absolute position represen-
tation neglects the relative distance information between entities and other tokens, while such distance
plays a crucial role in entity-relation prediction. Hence, we introduce an entity-specific relative position
representation to efficiently encode the relative distance.

Formally, for the output states of BERT encoder h = {h0, h1, . . . , hN} where hi ∈ Rdh , the relative
position layer outputs a transformed sequence p = {p0, p1, . . . , pN}where pi ∈ dp with dp as the hidden
dimention of self-attention structure.

Consider two input states hi and hj , where hi denotes an entity and hj denotes a contextual token,
i, j ∈ 0, 1, . . . , N . In order to inject the relative position information into xi, we define aKij ∈ dp,
aVij ∈ dp as two different relative distances between hi and hj . Suppose that the impacts of tokens
beyond a maximum distance on current token are negligible. Therefore, we clip the relative position
within a maximum distance δ and only consider the position information of δ tokens on the left and δ
tokens on the right. We define ωK = (ωK−δ, . . . , ω

K
δ ) and ωV = (ωV−δ, . . . , ω

V
δ ) as two relative position

representations, where ωKi , ω
V
i ∈ Rdp are initialized randomly and will be learned during training.

Figure 3 illustrates an example of the relative position representations. Then, aKij and aVij are assigned as:

aKij = ωKclip(j−i,δ)

aVij = ωVclip(j−i,δ)

clip(x, δ) = max(−δ,min(x, δ)).

(5)

Based on the relative position representations aKij , aVij , the attention matrix between hi and hj is
calculated as:

αij = softmax(
(hiW

Q)(hjW
K + aKij )

T√
dp

), (6)
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Figure 3: An example to illustrate the entity relative position representation. x4 is considered as an
entity, we show the eRPR between x4 and the context tokens within the clipped distance δ. Assuming
3 <= δ <= n− 4 in this example.

whereWQ ∈ Rdh×dp ,WK ∈ Rdh×dp are parameter matrices for multi-head projections. The attentional
output of hi is the weighted sum of hj which also consider the relative position:

pi =
n∑
j=1

αij(hjW
V + aVij). (7)

Specifically, we only consider the relative position of named entities rather than every tokens in the
sentence. So ωK and ωV are set as 0 for non-entity tokens. the This entity-only RPR approach comes
with the following key advantages: 1) it encodes unique features for entities and thus can better differen-
tiate entities from other plain tokens; 2) it provides entity-specific information and helps the relation and
tail entity prediction.

3.4 Multi-head Selection Module
The multi-head selection module aims to predict the possible relations and tail entities simultaneously for
each head entity (Bekoulis et al., 2018). Given a sequence of entity labels y = {y0, y1, . . . , yN} predicted
by the CRF module, we map each label to a distributed label embedding as l = {l0, l1, . . . , lN}, li ∈ Rdl ,
where dl is the label embedding size. The mapping dictionary is randomly initialized and be fine-tuned
during training. During training, we use the golden entity labels.

As shown in Fig. 2, the input to the multi-head selection layer are the concatentation of label embed-
ding and the outputs of relative position layer as:

zi = [li; pi], i = 0, 1, . . . , N. (8)

For each input state zi, we compute the score between zi and zj given a relation rk, rk ∈ R as:

g(zi, zj , rk) = V rf(U rzj +W rzi + br), (9)

where V r ∈ Rdr , U r,W r ∈ Rdr×(dh+dl), br ∈ Rdr , f(·) is the element-wise RELU function. The most
probable tail entity sj with the relation rk corresponding to the head entity si is predicted as:

Pr(tail = sj , relation = rk|head = si) = σ(g(zi, zj , rk)), (10)

where σ(·) denotes the sigmoid function.
During training, we optimize the cross-entropy loss LMHS for the candidate tail entity sij and relation

rij given the head entity si as:

LMHS =

N∑
i=0

M∑
j=0

−log Pr(tail = sj , relation = rj |head = si), (11)

where M is the number of golden relations for si. During testing, we select the tuple of the relation and
tail entity (r̂k, ŝj) with a score exceeding the confidence threshold η. In this way, multiple tail entities
and relations for the head entity si can be predicted simultaneously.
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3.5 Global Relation Classification

Generally, detecting the relation between entites need to consider the theme of the sentence. The pre-
vious work only use the local context information for relation and entity prediction, which may lead to
the deviation of global semantics. We introduce the global relation classification strategy to guide the
training of local semantic features. As illustrated in Fig. 2, the first output of the relative position layer
corresponding to the hidden state of [CLS] token p0, which can be considered as the aggregate represen-
tation of the sentence. Therefore, we use the [CLS] token to predict the relations relevant to the whole
sentence s as:

Pr(relation = r|s) = σ(W gp0 + bg), (12)

where r ⊆ R, W g ∈ Rdh×|R|, br ∈ R|R|, σ(·) is the sigmoid function.
During training, we minimize the binary cross-entropy loss for the global classification as:

LGRC =

T∑
i=0

Pr(relation = r|s), (13)

where T denotes the number of golden relations in the sentence.

3.6 Joint Training

To train the model jointly, we optimize the final combined objective function during training:

L = LNER + λLGRC + LMHS, (14)

where LNER, LGRC, and LMHS denote the loss function for head entity recognition, global relation clas-
sification and multi-head selection, respectively (Eq. 2, 13, 11), λ ∈ [0, 1] is the weight controling the
trade-off of the global relation classification. L is averaged over samples for each batch.

4 Experiment

In this section, we conduct extensive experiments to verify the effectiveness of our framework, and make
detailed analyses to show its advantages.

4.1 Dataset

We evaluate the proposed method on two widely-used benchmarks for entity and relation extaction:
CoNLL04 and ACE05.

• CoNLL04 (Roth and Yih, 2004) defines 4 entity types including Location (LOC), Organization
(ORG), Person (PER) and Other and 5 relation categories as Located-In, OrgBased-In,
Live-In, Kill and Work-For. It consists of news articles from the Wall Street Journal and
Associated Press. We use the data split by Gupta et al. (Gupta et al., 2016) (910 instances for
training, 243 for validation and 288 for testing).

• ACE05 (Doddington et al., 2004) provides 7 entity types: Location (LOC), Organization (ORG),
Person (PER), Geopolitical Entity (GPE), Vehicle (VEH), Facility (FAC), Weapon (WEA) and 6 rela-
tion types: Organization affiliation (ORG-AFF), Person-Social (PER-SOC), Agent-Artifact (ART),
PART-WHOLE, GPE affiliation (GEN-AFF), Physical (PHYS). It contains documents from different
domains as newswire and online forums. We adopt the same data splits as the previous work (Miwa
and Bansal, 2016) (351 documents for training, 80 for validation and 80 for testing).

4.2 Implemental Details

Following previous works, we use the standard precision (P), recall (R), and micro-F1 score (F1) as
the evaluation metrics. A relation is correct if the arguments of triplet (e1, r, e2) are correct. Other
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experimental settings are as follows. We initialize the BERT encoder layer using the pre-trained BERT-
Base-Cased checkpoint 1 which has 12 layers, a hidden size of 768. We use Adam optimizer with
an initial learning rate of 5 × 10−5. During training, we do warm-up startup first and employ a linearly
decrease with 0.05 as the decay rate. For the model structure, we adopt 2-layer eRPR-based self-attention
after the BERT encoder layer. The self-attention layer has an identical structure as the layer in BERT.
The relative position representations ωK ,ωV are initiaized randomly with a uniform distribution. The
maximum relative distance is set as δ = 4. The GRC loss weight is set as λ = 1. The size of entity label
embedding is set as dl = 50. The threshold for multi-head selection η = 0.5.

Specifically, we use the both the relaxed and strict evaluation settings for comparison. In the relaxed
setting, assuming the entity boundaries are given, a multi-token entity is correct if at least one of its
comprising token types is correct; a relation is correct if the two argument entities are correct and the
relation type is correct. In the strict setting, we consider an entity is correct if the entity type and the
boundaries are both correct; a relation is correct if the relation type and the argument entities are both
correct.

4.3 Results and Analyses

Table 1: Performance comparision with baseline models on CoNLL04 and ACE05. eRPR denotes mod-
els adopt the self-attention with entity-specific relative position representation at the context fusion mod-
ule. The 3and 7marks stand for whether or not the model builds on hand-crafted features or NLP tools.
eRPR MHS is the proposed full model.

Model Pre-calculated Evaluation Entity Relation
Features P R F1 P R F1

CoNLL04

Gupta et al. (2016) 3 relaxed 92.50 92.10 92.40 78.50 63.00 69.90
Gupta et al. (2016) 7 relaxed 88.50 88.90 88.80 64.60 53.10 58.30

Adel and Schütze (2017) 7 relaxed - - 82.10 - - 62.50
Bekoulis et al. (2018) 7 relaxed 93.41 93.15 93.26 72.99 63.37 67.01

eRPR MHS 7 relaxed 94.32 93.81 94.06 73.85 64.41 68.81

Miwa and Sasaki (2014) 3 strict 81.20 80.20 80.70 76.00 50.90 61.00
Bekoulis et al. (2018) 7 strict 83.75 84.06 83.90 63.75 60.43 62.04

eRPR MHS 7 strict 86.85 85.62 86.23 64.20 64.69 64.44

ACE05

Miwa and Bansal (2016) 3 strict 80.80 82.90 81.80 48.70 48.10 48.40
Katiyar and Cardie (2017) 7 strict 81.20 78.10 79.60 46.40 45.53 45.70

eRPR MHS 7 strict 86.26 84.66 85.45 60.60 60.84 60.72

Comparison Baseline As shown in Table 1, we list the following baselines for comparison. Gupta
et al. (2016) propose a table-filling based method that relies on hand-crafted features and external NLP
tools. Adel and Schütze (2017) use a global normalized convolutional neural networks to extract entities
and relations. Miwa and Bansal (2017) adopt a BiLSTM to extract entities and a Tree-LSTM to model
the dependency relations between entities. Bekoulis et al. (2018) propose the multi-head selection
structure, which adopts BiLSTM as the feature encoder and uses CRF for entity recognition and can
extract the relational triplet simultaneously. The results on CoNLL04 and ACE05 are directly copied
from the published paper.

Main Results Table 1 presents the performance comparisions on CoNLL04 and ACE05 datasets.
eRPR MHS is the proposed full model, which uses the BERT at encoder module, and follows by two

1BERT checkpoints are available at https://github.com/google-research/bert
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Table 2: Ablation study on CoNLL04 and ACE05. APR denotes models adopt the general self-attention
with absolute position representation at the context fusion module. eRPR denotes models adopt the self-
attention with entity-specific relative position representation at the context fusion module. The 3mark
refers to the model include the global relation classification. We use the strict evaluation setting here.

Model Encoder Context Fusion GRC Entity Relation
P R F1 P R F1

CoNLL04

1 BiLSTM - - 83.75 84.06 83.90 63.75 60.43 62.04
2 BERT - - 85.75 86.28 86.00 65.15 62.56 63.83
3 BERT APR Layer ×2 - 86.32 85.68 86.00 64.53 63.40 63.96
4 BERT eRPR Layer ×2 - 86.75 85.56 86.15 63.93 64.50 64.21
5 BERT APR Layer ×2 3 86.78 85.66 86.22 64.18 64.30 64.24
6 BERT eRPR Layer ×2 3 86.85 85.62 86.23 64.20 64.69 64.44

ACE05

1 BiLSTM - - 84.88 84.10 84.49 57.40 60.32 58.82
2 BERT - - 85.70 84.25 84.96 59.92 60.06 59.99
3 BERT APR Layer ×2 - 86.18 84.55 85.36 60.23 60.82 60.52
4 BERT eRPR Layer ×2 - 86.24 84.60 85.41 60.57 60.76 60.66
5 BERT APR Layer ×2 3 86.22 84.57 85.39 60.46 60.76 60.61
6 BERT eRPR Layer ×2 3 86.26 84.66 85.45 60.60 60.84 60.72

eRPR self-attention layers and adopts the GRC strategy. As we can see, our eRPR MHS overwhelm-
ingly outperforms all the baseline models in terms of all three evaluation metrics on the two datasets. by
a large margin for both entity and relation extraction. Especially, comparing with the model by Bekoulis
et al. (2018), our model achieves significant boosts by 2.40% and 1.90% for relation F1 on CoNLL04
and ACE05, respectively. These results show that, with our enhanced components, i.e., the eRPR lay-
ers, the global relation classification and the BERT encoder, the model performance can be significantly
improved. Such improvements highlight the effectiveness of our proposed framework.

Ablation Study As shown in Table 2, we list variant models (Model 1-5) to each component in our
framework. Model 1 stands for the original MHS framework proposed by Bekoulis et al. (2018). By
comparison, we come to the following conclusions. 1) Replacing the BiLSTM with pre-trained BERT
can improve the performance obviously (Model 2 v.s. Model 1). 2) Adding the context fusion module
after the encoder module can enhance the semantic representation, leading to higher results (Model 3 v.s.
Model 2). 3) Comparing Model 4 with the above variations, incorporating eRPR into the self-attention
structure can significantly increase the precision of models and thus contribute to better overall F1 scores.
For example, it increases the relation F1 from 63.96% to 64.21% on CoNLL04. We attribute it to that
the eRPR injects distance information into entity features, which can provide useful information to the
multi-head selection. 4) Comparing Model 5 and Model 4, the GRC strategy can further improve model
performance. Therefore, global information is instructive for learning local features. Finally, combining
all these components, we achieve significant improvements over the original MHS.

4.4 Effect of the Maximum Relative Distance
In this subsection, we evaluate the effect of varying the maximum relative distance δ. Following previous
studies (Shaw et al., 2018), we conduct experiments on CoNLL04 with different maximum relative
distance δ, increases exponentially from 0 to 64. Fig. 4 shows the experimental results. We observe
that when δ = 8, the entity F1 has the best result, and when δ = 4, the relation F1 has the best result.
Meanwhile, the larger value of δ (i.e., δ = 64) is meaningless for both entity and relation extraction,
which verifies that the impacts of tokens beyond a maximum distance can be negligible. Therefore, to
ensure a better performance for relation extraction, we set δ = 4 for all the experiements.
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Figure 4: Experimental results for varying the maximum relative distance δ.
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Figure 5: Experimental results for varying the GRC loss weight λ.

4.5 Effect of the GRC Loss Weight
In this subsection, we evaluate the effect of different GRC loss weight λ to the model performance. We
keep the maximum relative distance δ as 4 and conduct the experiments on the CoNLL04 dataset with
λ from 0 to 1 at the interval of 0.2. As shown in Fig. 5, the setting with λ = 0 denotes the GRC is not
used in the framework and its performance is much lower than settings with larger λ In addition, with
the growth of λ, both entity and relation F1 scores are increased continuously. As such, we keep λ = 1
for all the above experiments. These comparison results further demonstrate the effectiveness of GRC.
Therefore, the sentence-level information can be utilized fruitfully for multi-head selection and helps
improve the overall performance.

5 Conclusion

In this paper, we propose a relative position representation based multi-head selection framework for joint
entity and relation extraction. Different with the existing multi-head selection method, we introduce the
relative position representation to capture the distance information of entities. We then propose a global
relation classification to guide the learning of local features. Additionaly, BERT is incorperated in the
framework for sematic representation. Experimental results on CoNLL04 and ACE05 datasets show that
our framework siginificantly outperforms all the baseline models for both entity and relation extraction.
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