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Abstract

Event extraction is an essential yet challenging task in information extraction. Previous
approaches have paid little attention to the problem of roles overlap which is a common
phenomenon in practice. To solve this problem, this paper defines event relation triple to
explicitly represent relations among triggers, arguments and roles which are incorporated
into the model to learn their inter-dependencies. A novel joint framework for multiple
Chinese events extraction is proposed which jointly performs predictions for event trig-
gers and arguments based on shared feature representations from pre-trained language
model. Experimental comparison with state-of-the-art baselines on ACE 2005 dataset
shows the superiority of the proposed method in both trigger classification and argument
classification.

1 Introduction

Event extraction (EE) is of utility and challenge task in natural language processing (NLP).
It aims to identify event triggers of specified types and their arguments in text. As defined
in Automatic Content Extraction (ACE) program, the event extraction task is divided into
two subtasks, i.e., trigger extraction (identifying and classifying event triggers) and argument
extraction (identifying arguments and labeling their roles).

Chinese event extraction is a more difficult task because of language specific issue in Chinese
(Chen and Ji, 2009). Since Chinese does not have delimiters between words, segmentation is
usually a necessary step for further processing, leading to word-trigger mismatch problem (Lin
et al., 2018). The approaches based on word-wise classification paradigm commonly suffer from
this. For instance, two characters in one word “打死” (hit and die) trigger two different events:
an “Attack”event triggered by “打” (hit) and a “Die” event triggered by “死” (die). It is
hard to extract accurately when a trigger is part of a word or cross multiple words. To avoid
this issue, we formulate Chinese event extraction as a character-based classification task. In
addition, another interesting issue in event extraction which is rarely followed requires more
efforts. It is the roles overlap problem that we concern in this paper, including the problems
of either roles sharing the same argument or arguments overlapping on some words. There are
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Figure 1: Examples of roles overlap problem

multiple events existing in the one sentence, which commonly causes the roles overlap problem
and is easy to overlook (Yang et al., 2019). Fig. 1(a) shows example of roles sharing the same
argument in ACE 2005 dataset. “控” (accuse) triggers a Charge-Indict event and “杀害” (kill)
triggers an Attack event, while argument “他们” (them) plays the role “Defendant” as well as
the role “Attacker” at the same time. Fig. 1(b) shows example of arguments overlapping on
some words in ACE 2005 dataset. “来往” (traveled between) triggers a Transport event, while
argument “中国” (China) plays not only the role “Origin” but “Destination” and argument
“来往于中国和澳大利亚之间的乘客” (passengers who traveled between China and Australia)
plays the role “Artifact”. We observe that the above two arguments overlap on word “中国”
(China)，which is more challenging for traditional methods to simultaneously identify these two
arguments, especially for those being long noun phrases. Research shows that there exist about
10% events in ACE 2005 dataset (Doddington et al., 2004) having the roles overlap problem
(Yang et al., 2019). Moreover, the results of event extraction could affect the effectiveness of
many other NLP tasks, such as the construction of knowledge graph. If there exist roles overlap
problems in events, the model identities accurately when it predicts any one argument or role,
which leads to omission and incompleteness of information for knowledge graph construction
and is obviously far from real-world applications. Therefore, the roles overlap problem is of
great importance and needs to be seriously addressed.

It is thus appealing to design a single architecture to solve the problem. Although there
exist prior studies that mention the roles overlap problem on ACE 2005 dataset, they share the
limitations that include either depending on elaborate engineering features (i.e, hand-crafted
features (He and Duan, 2019), dependency paths (Liu et al., 2018), etc.) or following the
pipelined approach (Yang et al., 2019).

To overcome the issues of such prior works, in this paper, we propose a single framework
to jointly extract triggers and arguments. Inspired by the effectiveness of pre-trained language
models, we adopt bidirectional encoder representation from transformer (BERT) as the encoder
to obtain the shared feature representations. Specifically, the relations among triggers (t),
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arguments (a) and roles (r) are defined as event relation triples < t, r, a > where r represents
the dependencies of a on t in the event triggered by t. The event sentence of Fig. 1(b) could be
represented by event relation triples as < 来往, Origin, 中国 >, < 来往, Destination, 中国 >, <
来往, Origin, 澳大利亚 >, < 来往, Destination, 澳大利亚 >, < 来往, Artifact, 来往于中国和澳
大利亚之间的乘客 >. As is seen, event relation triples could explicitly describe relations among
the three items. The key contribution of this paper is to design a novel joint extraction framework
which jointly conducts trigger and argument extraction with incorporating the event relations
defined. The task of argument classification is converted to relation extraction. Specially,
to extract multiple events and relation triples, we utilize multiple sets of binary classifiers to
determine the spans (each span includes a start and an end). By this approach, not only
roles overlap problem but also word-trigger mismatch and word boundary problems in Chinese
language are solved. Our framework avoids human involvements and elaborate engineering
features in event extraction, but yields better performance over prior works.

This paper is organized as follows: Section 2 presents the related work for EE. Section 3
introduces our approach to tackle problems of roles overlap. Extensive experiments are con-
ducted to evaluate the effectiveness of the proposed model on widely-used dataset ACE 2005 in
Section 4. Besides, more rigorous evaluation criteria are adopted in experiments. Conclusions
and future work are given in Section 5.

2 Related Work

EE is an important task which has attracted many attentions. There are two main
paradigms for EE: a) the joint approach that predicts event triggers and arguments jointly, and
b) the pipelined approach that first identifies trigger and then identifies arguments in separate
stages (Nguyen et al., 2016). The advantages of such a joint system are twofold: (1) mitigating
the error propagation from the upstream component (trigger extraction) to the downstream
classifier (argument extraction), and (2) benefiting from the inter-dependencies among event
triggers and argument roles (Nguyen and Nguyen, 2019). Traditional methods that rely heavily
on hand-craft features are hard to transfer among languages and annotation standards (Chen
and Ng, 2012; Liao and Grishman , 2010; Li et al., 2013). The neural network based methods
that are able to learn features automatically (Chen et al., 2015; Feng et al., 2016; Nguyen et al.,
2016; Nguyen and Grishman, 2016; Zeng et al., 2016) have achieved significant progress. Most
of them have followed the pipelined approach. Some improvements have been made by jointly
predicting triggers and arguments (Liu et al., 2018; Nguyen et al., 2016; Nguyen and Nguyen,
2019) and introducing more complicated architectures to capture larger scale of contexts. These
methods have achieved promising results in EE.

Unfortunately, roles overlap problem has been put forward (He and Duan, 2019; Yang et
al., 2019), but there are only few works in the literature to study this. He and Duan (2019)
construct a multi-task learning with CRF enhanced model to jointly learn sub-events. However,
their method relies on hand-crafted features and patterns, which makes them difficult to be
integrated into recent neural models. The similar work to ours is Yang et al.(2019) that adopts
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a two-stage event extraction by adding multiple sets of binary classifiers to solve roles overlap
problem. But this work needs to detect triggers and arguments separately which suffers from
error propagation. It does not employ shared feature representations as we do in this work.

In recent years, pre-trained language models are successful in capturing words semantic
information dynamically by considering their context. McCann et al.(2017) pre-train a deep
LSTM encoder from an attentional sequence-to-sequence model for machine translation (MT) to
contextualize word vectors. ELMo (Embeddings from Language Models) improve 6 challenging
NLP problems by learning the internal states of the stacked bidirectional LSTM (Long Short-
Term Memory) (Peters et al., 2018). Open AI GPT (Generative Pre-Training) improves the
state-of-the-art in 9 of 12 tasks (Radford et al., 2018). BERT obtains new state-of-the-art
results on 11 NLP tasks (Devlin et al., 2018).

3 Extraction Model

This section describes our approach that is designed to extract events occurring in plain
text. We now define the scope of our work. The task of argument extraction is defined as
automatically extracting event relation triples defined. In our model, instead of treating entity
mentions as being provided by human annotators, only event label types and argument role
types are utilized as training data for both trigger and argument extraction.

We propose a pre-trained language model based joint multiple Chinese event extractor
(JMCEE). Let s = {c1, c2,…, cn} be annotated sentence s with n as the number of characters
and ci as the ith character. Given the set of event relation triples E = {< t, r, a >} in s, the
goal of our framework is to perform the task of trigger extraction T and argument extraction A

jointly:
P (A, T |s) = P (A|T, s)× P (T |s) =

∏
(r,a)∈E|t

p((r, a)|t, s)
∏
t∈E

p(l, t|s) (1)

Here (r, a) ∈ E|t denotes an argument and role pair (r, a) in the event triples E triggered by
t and l denotes the event label type. Based on Eq. (1), we first predict all possible triggers
and their label types in a sentence; then for each trigger, we integrate information of predicted
trigger word to extract event relation triple < t, r, a > by simultaneously predicting all possible
roles and arguments, as illustrated in Fig. 2. We employ a pre-trained BERT encoder to learn
the representation for each character in one sentence, then feed it into downstream modules.
The input of our joint extractor follows the BERT, i.e. the sum of three types of embeddings,
including WordPiece embedding, Position embedding and Segment embedding. Token [CLS]
and [SEP] are placed at the start and end of the sentence. Multiple sets of binary classifiers are
added on the top of the BERT encoder to implement predictions for multiple events and relation
triples. For trigger extraction, we need to predict the start and end of event type l for ci ∈ s

(l could be “Other” type to indicate that there is no word triggering any event) with each set
of binary classifiers severing for an event type to determine the starts and ends of all triggers.
For argument extraction, we need to extract event relation triple < t, r, a > by predicting the
start and end of role type r for ci in sentence s based on predicted triggers (r is set to “Other”
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Figure 2: The framework of JMCEE, including the trigger extract component and the argument
extract component. The extraction procedure of the event instance is shown.

if there is no word triggering any event as well) with each set of binary classifiers severing for a
role to determine the starts and ends of all arguments that play it. The roles overlap problem
could be solved since the prediction could belong to different arguments and roles. Besides,
our JMCEE enables to identify those arguments being long noun phrases like “来往于中国和澳
大利亚之间的乘客” (passengers who traveled between China and Australia), which tackles the
word boundary problem often encountered in Chinese. Compared with sentence-level sequential
modeling methods, our approach also avoids suffering low efficiency in capturing very long-range
dependencies in previous works (Sha et al., 2018; Liu et al., 2018).

3.1 Trigger Extraction

Trigger extraction aims to predict whether a token is a start or an end of a trigger for type
label l. A token ci is predicted as the start of a trigger with probability for type label l through
feeding it into a fully-connected layer with sigmoid activation function:

P l
T s(ci) = σ(W l

T sβ(ci) + blT s) (2)

while as the end with probability:

P l
T e(ci) = σ(W l

T eβ(ci) + blT e) (3)

where we utilize subscript“s”to denote“start”and subscript“e”to denote“end”. WTs and bTs

are respectively the trainable weights and bias of binary classifier that targets to detect starts
of triggers’labels, while WTe and bTe are respectively the trainable weights and bias of another
binary classifier that targets to detect ends of triggers’labels. β is the BERT embedding. Set
thresholds of detecting starts and ends as δl = {δls, δle}, δls and δle are respectively the thresholds
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of binary classifiers that targets to detect starts and ends of triggers’labels. If P l
T s(ci) > δls,

token ci is identified as the start of type label l. if P l
T e(ci) > δle, token ci is identified as the end

of type label l.

3.2 Argument Extraction

Once the triggers and their type labels have been identified, we come to the argument
extraction component. Argument classification is converted to event relation extraction for
triple < t, r, a >. Note that when the sentence is identified as “Other” type, we simply skip the
following operation for argument role extraction. To better learn the inter-dependencies among
the multiple events appearing in one sentence, we randomly pick one of predicted triggers in
a sentence during the training phase, while in the evaluation phase, all the predicted triggers
are picked in turn to predict corresponding arguments and roles played in the triggering events.
We integrate information of predicted trigger word to argument extraction component. In ACE
corpus, more than 98.5% triggers contain no more than 3 characters, so we simply pick the
embedding vectors of start βs(ci) and end βe(cj) of one predicted trigger word t, and then
generate representation of trigger word β(t) by averaging these two vectors.

β(t) =
(βs(ci) + βe(cj))

2
(4)

When obtain representations of trigger words β(t), we add original embedding generated
by BERT and β(t) together:

β
′
(s) = β(s) + β(t) (5)

After integrate information of predicted trigger word to BERT sentence encoding, feed β
′
(s)

into a full-connected layer with sigmoid activation function. A token ck is predicted as the start
of an argument triggered by word t which plays role r with probability:

PAs(ck, r|t) = σ(W r
Asβ

′
(ck) + brAs) (6)

while as the end triggered by word t with probability:

PAe(ck, r|t) = σ(W r
Aeβ

′
(ck) + brAe) (7)

where WAe and bAs are respectively the trainable weights and bias of binary classifier that targets
to detect starts of arguments’roles, while WAe and bAe are respectively the trainable weights
of the other binary classifier that detects ends of arguments’ roles. Set thresholds of detecting
starts and ends as εr = {εrs, εre}, εrs and εre are respectively the thresholds of binary classifiers
that target to detect starts and ends of triggers’labels. If PAs(ck, r|t) > εrs ,token ck is identified
as the start of argument role r. if PAe(ck, r|t) > εre, token ck is identified as the end of argument
role r. Algorithm 1 is utilized to detect each token to determine triggers, types, arguments and
roles.
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3.3 Model Training

We train the joint model and define LT as the loss function of all binary classifiers that are
responsible for detecting triggers, shown as follows:

LT =
1

m× n
(

m∑
l=0

n∑
i=0

−logP l
T s(ci) +

m∑
l=0

n∑
i=0

−logP l
T e(ci)) (8)

LT denotes the average of cross entropy of output probabilities of all binary classifiers which
detect starts and ends of triggers on each type label. In the same way, we define LA as the loss
function of all binary classifiers that are responsible for detecting event relation triples:

LA =
1

m× n
(

m∑
r=0

n∑
i=0

−logPAs(ck, r|t) +
m∑
r=0

n∑
i=0

−logPAe(ck, r|t)) (9)

Where m denotes the sum of event label types and argument role types. LA denotes the average
of cross entropy of output probabilities of all binary classifiers which detect starts and ends of
arguments on each role. The final loss function LE = LT + LA. We minimize the final loss
function to optimize the parameters of the model.

Algorithm 1 trigger and argument identification
Input: P l

T s,P l
T e,PAs, PAe,predicted trigger matrix TP ,predicted argument matrix AP , sentence

s, label list L
Output: predicted trigger list LT , length of LT l, predicted argument list LA

1: Take out matrix St of ids and labels of starts that satisfy P l
T s > δls from TP and matrix Et

of ids and labels of ends that satisfy P l
T e > δle from AP

2: for each (ids,ls) in St do
3: for each (ide,le) in Et do
4: if ids < ide&ls == le then
5: trigger ← s[ids − 1, ide]
6: label← L[le]
7: Append[trigger, label]toLT
8: break
9: end if

10: end for
11: end for
12: return Lt
13: if LT then
14: for i = 0→ l do
15: Take out matrix Sai of ids and labels of starts that satisfy PAs > εrs from AP and

matrix Eai of ids and labels of ends that satisfy PAe > εre for ith trigger from AP
16: for each (idsi,rsi) in Sai do
17: for each (idei,rei) in Eai do
18: if idsi < idei&rsi == rei then
19: argument← s[idsi − 1, idei]
20: role← L[rei]
21: Append[argument, role]toLA
22: break
23: end if
24: end for
25: end for
26: end for
27: end if
28: return LA
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4 Experiments

We evaluate JMCEE framework on the ACE 2005 dataset that contains 633 Chinese docu-
ments. We follow the same setup as (Chen and Ji, 2009; Lin et al., 2018; Zeng et al., 2016), in
which 549/20/64 documents are used for training/development/test set. The proposed model
is compared with the following state-of-the-art methods:

1) DMCNN (Chen et al., 2015) adopts dynamic multi-pooling CNN to extract sentence-level
features automatically.

2) Rich-C (Chen and Ng, 2012) is a joint-learning, knowledge-rich approach including
character-based features and discourse consistency features, which is the feature-based state-
of-art system.

3) C-BiLSTM (Zeng et al., 2016) designs a convolutional Bi-LSTM model which conduct
Chinese event extraction from perspective of a character-level sequential labeling paradigm.

4) NPNs (Lin et al., 2018) performs event extraction in a character-wise paradigm, where
a hybrid representation for each character is learned to capture both structural and semantic
information from both characters and words.

ACE 2005 dataset annotates 33 event subtypes and 35 role classes. The tasks of event
trigger classification and argument classification in this paper are combined into a 70-category
task along with “None” word and “Other” type. In order to evaluate the effectiveness of our
proposed model, we evaluate models by micro-averaged Precision (P), Recall (R) and F1-score
followed the computation measures of Chen and Ji (2009). The following criteria are utilized to
evaluate the performance of predicted results:

1) A trigger prediction is correct only if its span and type match with the golden labels.
2) An argument prediction is correct only if its span, role, related trigger and trigger type

match with the golden labels.
It is worth noting that all the predicted roles for an argument are required to match with

the golden labels, instead of just one of them. We take a further step to see the impacts of
pipelined model and joint model. The pipelined model called MCEE which identifies triggers
and arguments in two separate stages based our classification algorithm. The highest F-score
parameters on the development set are picked and listed in Table 1.

Hyper-parameter Trigger classification Argument classification
character embedding 768 768
maximum length 510 510
batch size 8 8
learning rate of Adam 0.0005 0.0005
classification thresholds [0.5,0.5,0.5,0.5] [0.5,0.4,0.5,0.4]

Table 1: Hyper-parameters for experiments.

4.1 Overall Results

Table 2 shows the results of trigger extraction on ACE 2005. As is seen, our JMCEE
framework achieves the best F1 scores for trigger classification among all the compared methods.
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Note that the results of Rich-C could obtain more accurate estimation of model performance
since it performed 10-fold cross-validation experiments. However, our JMCEE gains at least 8%
F1-score improvements on trigger classification task on ACE 2005, which steadily outperforms all
baselines. The improvement on the trigger extraction is quite significant, with a sharp increase
of near 10% on the F1 score compared with these conventional methods.

Model Trigger identification Trigger classification
P R F1 P R F1

DMCNN 66.6 63.6 65.1 61.6 58.8 60.2
Rich-C 62.2 71.9 66.7 58.9 68.1 63.2

C-BiLSTM 65.6 66.7 66.1 60.0 60.9 60.4
NPNs 75.9 61.2 67.8 73.8 59.6 65.9

MCEE(BERT-Pipeline) 82.5 78.0 80.2 72.6 68.2 70.3
JMCEE(BERT-Joint) 84.3 80.4 82.3 76.4 71.7 74.0

Table 2: Comparison of different methods on Chinese trigger extraction on ACE 2005 test set.
Bold denotes the best result.

Table 3 shows results of argument extraction. Compared with these baselines, our JMCEE
is at least 3% higher over other models on F1-score on argument classification task. While the
improvement in argument extraction is not so obvious comparing to trigger extraction. This
is probably due to the rigorous evaluation metric we have taken and the difficulty of argument
extraction. Note that by our approach we identify 89% overlap roles in test set. Moreover,
results show that our joint model substantially outperforms the pipelined model whether on
trigger classification or argument classification. It is seen that joint model enables to capture the
dependencies and interactions between the two subtasks and communicate deeper information
between them, and thus improves the overall performance.

Model Argument identification Argument classification
P R F1 P R F1

Rich-C 43.6 57.3 49.5 39.2 51.6 44.6
C-BiLSTM 53.0 52.2 52.6 47.3 46.6 46.9

MCEE(BERT-Pipeline) 59.5 40.4 48.1 51.9 37.5 43.6
JMCEE(BERT-Joint) 66.3 45.2 53.7 53.7 46.7 50.0

Table 3: Comparison of different methods on Chinese argument extraction on ACE 2005 test
set. Bold denotes the best result.

4.2 The Effect of Classification Thresholds

The effectiveness of thresholds settings for the trigger and argument classification is studies
in this subsection. Table 4 lists the results of thresholds settings of the starts and ends of both
two tasks. Specially, we tune two set of thresholds of starts and ends of trigger and arguments
through setting δl to be 0.5, 0.5 and setting εr ranging from 0.5 to 0.4. Then, set δl to be 0.5, 0.4
and set εr ranging from 0.5 to 0.4. By analyzing the results, we find that the best performance
of JMCEE on trigger extraction is achieved with parameters 0.5, 0.5, 0.5, 0.5, while the best
performance of JMCEE on argument extraction is achieved with parameters 0.5, 0.4, 0.5, 0.4.
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It suggests that when the ends of thresholds of both trigger and argument classification are set
to be 0.4 could identify more candidate triggers and arguments. More candidate triggers could
contribute to identifying arguments as we incorporate inter-dependencies between event triggers
and argument roles in our joint extraction architecture, while the increased triggers could bring
more noise to trigger classification with decreasing on the F1 score.

δl εr Trigger classification Argument classification
Start End Start End P R F1 P R F1
0.5 0.5 0.5 0.5 76.4 71.7 74.0 53.4 43.7 48.0
0.5 0.5 0.5 0.4 71.2 68.9 70.0 50.3 44.9 47.5
0.5 0.5 0.4 0.5 74.1 69.6 71.8 52.6 45.7 48.9
0.5 0.4 0.5 0.5 74.6 69.2 71.8 49.5 44.2 46.7
0.5 0.4 0.5 0.4 73.8 71.4 72.6 53.7 46.7 50.0
0.5 0.4 0.4 0.5 72.0 70.7 71.3 47.8 47.5 47.7

Table 4: Results of thresholds settings for the start and end of trigger and argument classification.
Bold denotes the best result

Overall, the experimental results are remarkable facts given that our framework achieves
better performance without any external and manually-generated features. We consider this as
a strong promise toward our proposed joint framework which could be used as a good starting
point.

5 Conclusions

In this paper, we propose a simple yet effective joint Chinese multiple events extraction
framework which jointly extracts triggers and arguments by adopting a pre-trained BERT en-
coder without elaborate engineering features. Our contribution in this work is as follows:

1) Event relation triple is defined and incorporated into our framework to learn inter-
dependencies among event triggers, arguments and arguments roles, which solves the roles over-
lap problem.

2) Our framework performs event extraction in a character-wise paradigm by utilizing mul-
tiple sets of binary classifiers to determine the spans, which allows to extract multiple events
and relation triples and avoids Chinese language specific issues such as word-trigger mismatch
and word boundary problem.

Experiments have shown that our method outperforms conventional methods. We believe
our proposed framework could be applied to many other NLP tasks for exploiting inner com-
position structure during extraction, such as Entity Relation Extraction. Our future work will
focus on data generation to enrich training data and try to extend our framework to the open
domain.
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