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Abstract

Named entity recognition (NER) is an important task in the natural language processing field.
Existing NER methods heavily rely on labeled data for model training, and their performance on
rare entities is usually unsatisfactory. Entity dictionaries can cover many entities including both
popular ones and rare ones, and are useful for NER. However, many entity names are context-
dependent and it is not optimal to directly apply dictionaries without considering the context.
In this paper, we propose a neural NER approach which can exploit dictionary knowledge with
contextual information. We propose to learn context-aware dictionary knowledge by modeling
the interactions between the entities in dictionaries and their contexts via context-dictionary
attention. In addition, we propose an auxiliary term classification task to predict the types of the
matched entity names, and jointly train it with the NER model to fuse both contexts and dictionary
knowledge into NER. Extensive experiments on the CoNLL-2003 benchmark dataset validate
the effectiveness of our approach in exploiting entity dictionaries to improve the performance of
various NER models.

1 Introduction

Named entity recognition (NER) aims to extract entity names from texts and classify them into several
pre-defined categories, such as person, location and organization (Levow, 2006). It is an important
task in natural language processing, and a prerequisite for many downstream applications such as entity
linking (Derczynski et al., 2015) and relation extraction (Lin et al., 2016; Luo et al., 2018; Zeng et al.,
2018). Thus, NER is a hot research topic. In this paper, we focus on the English NER task.

Many methods have been proposed for English NER, and most of them model this task as a word-level
sequence labeling problem (Chiu and Nichols, 2016). For example, Ma and Hovy (2016) proposed a
CNN-LSTM-CRF model for English NER. They used CNN to learn word representations from charac-
ters, LSTM to model the contexts of words, and CRF to decode labels. These existing NER methods
usually rely on massive labeled data for model training, which is costly and time-consuming to annotate.
When training data is scarce, their performance usually significantly declines (Peng et al., 2019). In
addition, their performance on recognizing entities that rarely or do not appear in training data is usually
unsatisfactory (Wang et al., 2019).

Fortunately, many large-scale entity dictionaries such as Wikipedia (Higashinaka et al., 2012) and
Geonames1 are off-the-shelf, and they can be easily derived from knowledge bases and webpages (Nee-
lakantan and Collins, 2014). These entity dictionaries contain both popular and rare entity names, and
can provide important information for NER models to identify these entity names. There are a few
researches on incorporating entity dictionary into NER (Liu et al., 2019; Magnolini et al., 2019) and most
of them are based on dictionary matching features. For example, Wang et al. (2019) proposed to combine
token matching features with token embeddings and LSTM outputs. However, in many cases entities
are context-dependent. For instance, in Table 1, the word “Jordan” can be a person name or a location
name in different contexts. Thus, it is not optimal to directly apply entity dictionaries to NER without
considering the contexts.

1https://www.geonames.org
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1
Jordan won against Houston.

Red: PER
Orange: ORG

Blue: LOC

He will give talks in Jordan and Houston.

2
Brown is the former prime minister.

Brown shoes are my favourate.

Table 1: Two examples of context-dependent entities.

In this paper, we propose a neural approach for named entity recognition with context-aware dictionary
knowledge (CADK). We propose to exploit dictionary knowledge in a context-aware manner by modeling
the relatedness between the entity names matched by entity dictionaries and their contexts. In addition,
we propose an auxiliary term classification task to predict the types of the matched entity names in
different contexts. Besides, we propose a unified framework to jointly train the NER model and the term
classification model to incorporate entity dictionary knowledge and contextual information into the NER
model. Extensive experiments show our approach can effectively exploit entity dictionaries to improve
the performance of various NER models and reduce their dependence on labeled data.

2 Related Work

Named entity recognition is usually modeled as a sequence labeling problem (Wan et al., 2011). Many
traditional NER methods are based on statistical sequence modeling methods, such as Hidden Markov
Models (HMM) and Conditional Random Fields (CRF) (Cohen and Sarawagi, 2004; Ratinov and Roth,
2009; Passos et al., 2014; Arora et al., 2019). Usually, a core problem in these methods is how to build
the feature vector for each word, and these features are traditionally constructed via manual feature
engineering (Ratinov and Roth, 2009). For example, Ratinov and Roth (2009) used many features such
as word n-grams, gazetteers and prediction histories as the word features. Passos et al. (2014) used
features such as character n-grams, word types, capitalization pattern and lexicon matching features. They
also incorporated lexicon embedding learned by skip-gram model to enhance the word representations.
Designing these hand-crafted features usually needs a huge amount of domain knowledge. In addition,
the feature vectors may be very sparse and their dimensions can be huge.

In recent years, many neural network based NER methods have been proposed (Collobert et al., 2011;
Lample et al., 2016; Chiu and Nichols, 2016; Ma and Hovy, 2016; Peters et al., 2017; Li et al., 2017;
Rei, 2017; Peters et al., 2018; Akbik et al., 2018; Lin and Lu, 2018; Clark et al., 2018; Chen et al., 2019;
Zhu and Wang, 2019; Devlin et al., 2019). For example, Lample et al. (2016) proposed to use LSTM to
learn the contextual representation of each token based on global context in sentences and use CRF for
joint label decoding. Chiu and Nichols (2016) proposed to use CNN to learn word representations from
original characters and then learn contextual word representation using Bi-LSTM. Ma and Hovy (2016)
proposed to combine the CNN-LSTM framework with CRF for better performance. Peters et al. (2017)
proposed a semi-supervised approach named TagLM for NER by pre-training a language model on a
large corpus to provide contextualized word representations. Devlin et al. (2019) proposed a bidirectional
pre-trained language model named BERT, which can empower downstream tasks like NER by using
deep Transformers (Vaswani et al., 2017) to model contexts accurately. However, these neural network
based methods heavily rely on labeled sentences to train NER models, which need heavy effort of manual
annotation. In addition, their performance on recognizing entities which rarely or do not appear in labeled
data is usually unsatisfactory (Wang et al., 2019).

There are several approaches on utilizing entity dictionaries for named entity recognition (Cohen and
Sarawagi, 2004; Lin et al., 2007; Yu et al., 2008; Rocktäschel et al., 2013; Passos et al., 2014; Song et al.,
2015; Wang et al., 2019; Liu et al., 2019). In traditional methods, dictionaries are often incorporated as
additional features. For example, Cohen et al. (2004) proposed to extract dictionary features based on
entity matching and similarities, and they incorporated these features into an HMM based model. There
are also a few methods to incorporate dictionary knowledge into neural NER models (Chiu and Nichols,
2016; Wang et al., 2019; Liu et al., 2019). For example, Wang et al. (2019) proposed to incorporate
dictionaries into neural NER model for detecting clinical entities. They manually designed several features
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based on the matches with a clinical dictionary and then concatenated these features with the embedding
vector as the input of the LSTM-CRF model. These methods rely on domain knowledge to design these
dictionary based features, and these handcrafted features may not be optimal. Different from these
methods, in our approach we introduce a term-level classification task to exploit the useful information in
entity dictionary without manual feature engineering. We jointly train our model in both the NER and
term classification tasks to enhance the performance of NER model in an end-to-end manner.

There are also a few methods that explore to incorporate dictionary knowledge into Chinese NER
models in an end-to-end manner by using graph neural networks (Sui et al., 2019; Gui et al., 2019). For
example, Sui et al. (2019) propose a character-based collaborative graph neural network to learn the
representations of characters and words matched by dictionaries from three word-character graphs, i.e., a
containing graph that describes the connection between characters and matched words, a transition graph
that builds the connections between characters and the nearest contextual matched words, and a Lattice
graph that connects each word with its boundary characters. However, these methods mainly model the
interactions between matched entities and their local contexts, while ignore the relations between entities
and their long-distance contexts. Different from these methods, our approach can model the interactions
between the matched terms with the global contexts via entity-dictionary attention.

3 CADK Approach for NER

In this section, we introduce our NER approach with Context-Aware Dictionary Knowledge (CADK). The
architecture of our approach is illustrated in Fig. 1. Our approach mainly contains five components, i.e.,
text representation, term representation, context-dictionary attention, term classification and sequence
tagging. Next, we introduce the details of each module as follows.

3.1 Text Representation
The first module is a text representation model, which is used to learn the contextual representation of
each word in an input text. It can be implemented by various neural text representation models, such as
CNN (Zhu and Wang, 2019), LSTM (Huang et al., 2015) and GRU (Peters et al., 2017) or pre-trained
language models like ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019). We denote the word
sequence of the input text as [w1, w2, ...wN ], where N is the number of words. The text representation
model outputs a sequence that contains the contextual representation of each word, which is denoted as
R = [r1, r2, ..., rN ].

3.2 Term Representation
The second module is term representation, which is used to obtain the representations of the terms
matched by the entity dictionaries. Usually, entity dictionaries contain both popular (e.g., America) and
rare entity names (e.g., Chatham), and can help NER models recognize these entity names correctly. Thus,
entity dictionaries have the potential to improve the performance of NER and reduce the dependence
on labeled data. To incorporate useful information in entity dictionaries, we use them to match the
input text and obtain a candidate list with M entity terms. We denote the word sequence of the ith term
as [wi1, wi2, ...wiP ], where P represents the number of words in this term. In the term representation
module, we first use a word embedding layer to convert the sequence of words in each term into a
sequence of low-dimensional vectors. The word embedding parameters in this layer are shared with the
text representation model. The word embedding sequence of the ith term is denoted as [wi1,wi2, ...wiP ].
Then, we apply a word-level Bi-GRU network to the word embedding sequence of each term to learn
a hidden term representation. The GRU layer scans the word embedding sequence of each term in two
directions, and combines the last hidden states in both directions as the representation of this term. For
the ith term, its representation is denoted as ti. We denote the sequence of the representations of the M
matched terms as T = [t1, t2, ..., tM ].

3.3 Context-Dictionary Attention
The third module is context-dictionary attention. Many entity names are context-dependent. For example,
in the sentence “Jordan is a famous NBA player”, the word “Jordan” is in a person name, while it is
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Figure 1: The architecture of our CADK approach.

also frequently used as a location name. Thus, we propose to incorporate dictionary knowledge in a
context-aware manner by modeling the relationships between the matched entity terms and their contexts.
It is used to model the interactions between terms matched by dictionaries with the contexts in sentences.
Usually, entity names may interact with other words in the same text, and such interactions are important
for recognizing these entities. For example, in the sentence “Jordan is a basketball player”, the interaction
between the entity “Jordan” and the word “player” is very informative for identifying the type of this
entity is “person”. In addition, an entity may interact with multiple words. For instance, in the sentence
“He travels from Houston to Seattle”, the interactions between the entity “Houston” and its contexts like
“travels” and “Seattle” are useful clues for recognizing this entity. Motivated by these observations, we
propose a context-dictionary attention module to model the interactions between the terms matched by
dictionaries with all words in texts. The context-dictionary attention network takes both the sequences
of word representations R = [r1, r2, ..., rN ] and term representations T = [t1, t2, ..., tM ] (N and M
are numbers of words and terms) as inputs, and outputs dictionary-aware representations of words in
texts (denoted as D) and context-aware representations of terms (denoted as C). We use the multi-head
productive attention mechanism (Vaswani et al., 2017) to model the interactions between terms and
contexts. The dictionary-aware word representation sequence D is computed as follows:

Di = Softmax[Wi
QR(Wi

KT)T ](Wi
V T), (1)

D = Concat(D1,D2, ...,Dh), (2)

where Wi
Q, Wi

K , and Wi
V respectively stand for the parameters in the ith head for transforming the query,

key and value, h represents the number of parallel attention heads. The context-aware term representation
sequence C is computed in a similar way as follows:

Ci = Softmax[Ui
QT(Ui

KR)T ](Ui
V R), (3)

C = Concat(C1,C2, ...,Ch), (4)

where Ui
Q, Ui

K , and Ui
V are parameters. We concatenate D with the word representations R, and C

with the term representations T, in a position-wise manner. In this way, entity dictionary with contextual
information can be incorporated into a neural NER model.

CC
L 
20
20

Proceedings of the 19th China National Conference on Computational Linguistics, pages 915-926,  
Hainan, China, October 30 - Novermber 1, 2020. (c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China



Computational Linguistics

3.4 Term Classification
The fourth module is term classification, which is used to classify the types of the terms matched by
dictionaries based on the representations of terms and their interactions with the contexts. To fully exploit
the useful information in the entity dictionary, we propose an auxiliary term classification task which
predicts the type of the entity names matched by the entity dictionary. For example, in the sentence
“Michael Jordan Beats Houston Rockets”, if the terms “Michael Jordan” and “Houston Rockets” are
matched by the dictionary, our model is required to classify the types of these terms in the context of this
sentence. We use a dense layer with the softmax activation function to classify the type of each term as
follows:

ẑi = softmax(U[ci; ti] + v), (5)

where U and v are parameters, ci is the context-aware representation of the ith term, and ẑi is the
predicted type label of this term. The gold type label of the matched term can be derived from the token
labels of the input sentence. For example, if the label sequence of a sentence is “O-BLOC-ELOC-O”,
we can know that the gold type of the entity in this sentence is “location”. The loss function of the term
classification task is the cross-entropy of the gold and the predicted labels of all terms, which is evaluated
as follows:

LTerm = −
S∑

i=1

M∑
j=1

K∑
k=1

ẑijk log(zijk), (6)

where S is the number of sentences for model training, K is the number of entity categories, zijk and ẑijk
are the gold and predicted type labels of the jth term from the ith sentence in the kth category.

3.5 Sequence Tagging
The last module is sequence tagging. Usually the label at each position may have relatedness with the
previous ones. For example, in the BIOES tagging scheme, the label “I-LOC” can only appear after
“B-LOC” and “I-LOC”. Thus, a CRF layer is usually employed to jointly decode the label sequence. Given
a tag sequence y = [y1, y2, ..., yN ], the score of the tag sequence y in sentence x is defined as:

s(x,y) =

N∑
i=1

Ui,yi +

N−1∑
i=1

Ayi,yi+1 , (7)

where Ui,yi is the unary score of assigning the tag yi to the ith token, and Ayi,yi+1 represents the score of
jumping from tag yi to yi+1. The unary score Ui is calculated as:

Ui = Wuhi + bu, (8)

where Wu and bu are trainable parameters. In CRF, the likelihood probability of the tag sequence y is
formulated as:

p(y|x) = es(x,y)∑
y′∈Yx e

s(x,y′)
, (9)

where Yx represents the set of all possible tag sequences. Then the loss function of the NER task is
evaluated as:

LNER = −
∑
yi∈S

log(p(yi|xi)), (10)

where S denotes the training dataset, and yi is the ground-truth tag sequence of sentence xi.
To incorporate the useful information in entity dictionary into NER models more effectively, we

propose a unified framework based on multi-task learning to jointly train our model in both NER and term
classification tasks. The final loss function is the weighted summation of the NER and term classification
loss, which is formulated as follows:

L = (1− λ)LNER + λLTerm, (11)

where LNER is the loss of CRF model, λ ∈ [0, 1] is a coefficient to control the relative importance of the
term classification task.
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Model 10% 25% 100%
P R F P R F P R F

LSTM-CRF 84.23 88.22 86.18 87.75 87.86 87.81 90.75 90.14 90.36
LSTM-CRF+Feature 84.90 89.02 86.91 88.33 88.40 88.37 91.14 90.18 90.66
LSTM-CRF+GNN 85.54 88.74 87.11 88.53 88.56 88.54 90.99 90.51 90.75
LSTM-CRF+CADK 85.94 89.27 87.58 89.34 88.72 89.03 91.58 90.81 91.19
TagLM 85.63 88.70 87.14 88.64 89.05 88.85 92.01 91.40 91.71
TagLM+Feature 85.77 90.14 87.90 89.44 89.25 89.35 92.41 91.64 92.02
TagLM+GNN 86.27 90.02 88.10 89.79 89.34 89.56 92.62 91.91 92.26
TagLM+CADK 86.56 90.68 88.57 89.98 90.14 90.06 93.03 92.33 92.68
ELMo 85.34 89.24 87.25 88.76 89.13 88.95 92.42 92.23 92.30
ELMo+Feature 86.01 89.96 87.94 89.51 89.39 89.45 92.73 92.19 92.46
ELMo+GNN 86.71 89.97 88.31 89.70 89.65 89.68 92.92 92.28 92.60
ELMo+CADK 87.09 90.36 88.70 90.40 89.82 90.11 93.49 92.57 93.03
BERT 84.76 87.87 86.29 87.91 88.11 88.01 91.89 91.23 91.49
BERT+Feature 85.48 88.86 87.14 88.60 88.43 88.51 91.99 91.41 91.70
BERT+GNN 85.73 88.72 87.20 88.65 88.90 88.77 92.12 91.64 91.88
BERT+CADK 86.20 89.30 87.72 89.19 89.32 89.26 92.40 92.00 92.20

Table 2: Performance of different NER methods under different ratios of training data. P, R, F respectively
stand for precision, recall and Fscore.

4 Experiments

4.1 Dataset and Experimental Settings

Our experiments were conducted on the CoNLL-2003 dataset (Tjong Kim Sang and De Meulder, 2003),
which is a widely used benchmark dataset for NER. This dataset contains four different types of named
entities, i.e., locations, persons, organizations, and miscellaneous entities that do not belong in the three
previous categories. Following previous works (Ratinov and Roth, 2009), we used the BIOES labeling
scheme. In our experiments, we used an entity dictionary provided by (Higashinaka et al., 2012), which is
derived from the WikiPedia database. This dictionary contains 297,073,139 entity names. The coefficient
λ in Eq. (11) was 0.4. We used Adam (Kingma and Ba, 2014) with gradient norms clipped at 5.0
as the optimizer for model training, and the learning rate was 0.001. The batch size was 64. These
hyperparameters were tuned on the validation set. Each experiment was repeated 5 times independently,
and the average performance in terms of precision, recall and Fscore were reported.

4.2 Comparison with Baseline Methods

To verify the effectiveness of the proposed CADK method, we compare several popular models and
their variants using different methods for incorporating entity dictionaries. The methods to be compared
including: (1) LSTM-CRF (Huang et al., 2015), a neural NER method that uses LSTM to learn word
representations and CRF to decode labels; (2) TagLM (Peters et al., 2017), a neural NER model which
uses GRU networks and a pre-trained language model to learn word representations, and uses CRF to
decode labels; (3) ELMo (Devlin et al., 2019), a pre-trained language model with bidirectional deep LSTM
network. We apply an LSTM-CRF network based on the contextualized word embeddings generated
by the ELMo model; (4) BERT (Devlin et al., 2019), a pre-trained language model with bidirectional
transformers. We fine-tune the BERT-base version in the NER task; The methods for incorporating entity
dictionaries including: (a) Feature (Wang et al., 2019), incorporating entity dictionaries using feature
engineering. We combines the dictionary matching features with the hidden representations learned by the
aforementioned methods; (b) GNN (Sui et al., 2019), using graph neural networks to incorporate entity
dictionary knowledge; (c) CADK, our proposed method with context-aware dictionary knowledge.

We randomly sampled different ratios (i.e., 10%, 25% and 100%) of samples from the data for model
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Figure 2: Effectiveness of the context-dictionary attention module.

training to evaluate these methods under different amounts of labeled data. The results are summarized in
Table 2.2 From Table 2, we find that when the training data is scarce, the performance of the methods
without dictionary knowledge declines significantly. This is probably because these neural network based
methods are data-intensive and require a large amount of labeled data for model training. When training
data is scarce, many entities in the test set are unseen in the training data, making it difficult for existing
NER methods to recognize them. Compared with methods without dictionaries, the methods that consider
dictionary knowledge achieve better performance, and their advantage is larger when training data is more
scarce. This is probably because incorporating dictionary knowledge can help recognize unseen or rare
entities more effectively, which can reduce the dependency on labeled data. In addition, compared with
the methods using dictionary matching features, the methods that can model the contexts of matched
entities (GNN and CADK) perform better. This is probably because manually crafted features may be not
optimal to utilize entity dictionaries, and the contexts of the matched entity names in different texts are not
considered. Besides, our CADK method is better than the GNN method in exploiting dictionary knowledge
for NER. Different from the GNN method that can only model the local contexts of matched entity names,
in our approach we use the context-dictionary attention model to capture the global contexts of the
matched terms, and we jointly train our model in both NER and term classification tasks to incorporate
dictionary knowledge in a unified framework. Thus, our method can exploit dictionary information more
accurately to improve neural NER model.

4.3 Effectiveness of Context-Dictionary Attention

In this section, we conduct several ablation studies to validate the effectiveness of the context-dictionary
attention module in our CADK method. Since it mainly aims to generate the dictionary-aware word
representation and the context-aware term representation, we compare the performance of ELMo-CADK
under different ratios of training data by removing one or both of them. The results are shown in Fig. 3.
According to the results, we find that the dictionary-aware word representation can effectively improve
the performance of our approach. This is because the dictionary-aware word representation encodes
the information of the entities matched by dictionaries, which is helpful for recognizing them more
accurately. In addition, incorporating the context-aware term representation can also improve the model
performance. This is because many entities are context-dependent, and modeling their relations with the
contexts is beneficial for NER. These results show the effectiveness of context-dictionary attention in
injecting context-aware dictionary knowledge into neural NER models.

2The performance of BERT is surprisingly unsatisfactory though we used the officially released model and carefully tuned
hyperparameters.
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Figure 4: Model performance under different dictionary size.

4.4 Performance on Rare Entities

In this section, we explore the influence of incorporating dictionary knowledge on recognizing the entities
rarely appearing in the training data. We evaluate the recall of the entities in the test set with different
appearance times in the training data. We conduct experiments under 25% of training data and the results
of the ELMo+CADK model are shown in Fig. 3, which reveals two findings. First, the performance on
entities that do not or rarely appear in the training data is much lower than recognizing common entities.
This result shows that rare entities are more difficult to recognize. Second, our approach can effectively
improve the performance on entities that rarely appear in the training data. This is because our approach
can utilize dictionary knowledge to help neural NER model recognize these rare entities more accurately.

4.5 Influence on Dictionary Size

In this section, we study the influence of the size of entity dictionaries. We randomly sampled different
ratios of entities from the dictionary for entity matching and compare the performance of the ELMo-CADK
model under 25% of training data. The results are shown in Fig. 4. We find that the model performance
consistently improves when the dictionary size grows. This is because a larger dictionary usually has
better entity coverage, and our approach can exploit richer information from the entity dictionary to help
recognize entities more accurately.
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Figure 5: The performance of our approach with different λ values under different ratios of training data.

4.6 Influence of Hyper-parameters

In this section we explore the influence of an important hyper-parameter on our approach, i.e., λ in
Eq. (11), which is used to control the relative importance of the term classification loss. The experimental
results on λ using the ELMo-CADK model with 25% of training data are shown in Fig. 5. According
to Fig. 5, the performance of our approach improves when λ increases. However, when λ becomes too
large the performance declines. This is because when λ is too small, the useful information in the term
classification task is not fully exploited. Thus, the performance is sub-optimal. When λ goes too large, the
auxiliary task is dominant and the NER task is not fully respected. Thus, the performance of our approach
is also sub-optimal. These results lead to a moderate selection of λ (e.g., 0.4).

4.7 Case Study

In this section, we conducted several case studies to better understand our approach in incorporating
dictionary knowledge in a context-aware manner. Several representative samples are shown in Table 3.
This experiment is conducted using 10% of training data. According to Table 3, incorporating entity
dictionaries can help a NER model better recognize rare entities. For example, “Partizan” is a name of
a football team, which only appears once in the training set. The basic NER model recognized it as a
person name, while the approaches using dictionaries can make correct predictions. Our approach can
also correctly recognize the context-dependent entities which the basic model and the model based on
dictionary features fail to recognize. For example, the entity “Florida” is recognized as a location by
ELMo and ELMo+Feature, since it is usually used as a location name. Our approach can recognize this
entity correctly based on its contexts. These results show that our approach can effectively exploit the
useful information in entity dictionaries with contextual information.

Next, we visualize the attention weights in the context-dictionary attention to better understand the
interactions between contexts and matched terms. The visualization results are shown in Fig. 6. According
tothe results, we can see that our approach can effectively model the interactions between entity terms and
contexts. For example, in Fig. 6(a), the interaction between the word “Jacques” and the term “Jacques
Villeneuve” is highlighted, which is important for identifying the word “Jacques” belongs to an entity
name. In addition, in Fig. 6(b), the interaction between the term “Jacques Villeneuve” and the word “his”
is also highlighted, which is an important clue for inferring the type of this entity is “person”. These results
indicate that our approach can effectively capture the relationships between the entity names matched by
dictionaries and their contexts to learn context-aware dictionary knowledge.
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Example Method NER result

1
ELMo Third one-day match : December 8, in Karachi.

ELMo+Feature Third one-day match : December 8, in Karachi.
ELMo+CADK Third one-day match : December 8, in Karachi.

2
ELMo Partizan - Dejan Koturovic 21

ELMo+Feature Partizan - Dejan Koturovic 21
ELMo+CADK Partizan - Dejan Koturovic 21

3
ELMo Bolesy (Florida manager John Boles) told me ...

ELMo+Feature Bolesy (Florida manager John Boles) told me ...
ELMo+CADK Bolesy (Florida manager John Boles) told me ...

Table 3: Several named entity recognition examples. Red, orange, and blue words represent the predicted
person, location and organization entities respectively.
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Figure 6: Visualization of the attention weights in the context-dictionary attention network.

5 Conclusion

In this paper we propose a neural NER approach which can incorporate entity dictionaries with contextual
information. In our approach, we propose a context-dictionary attention network to model the interactions
between entity names matched by dictionaries and their contexts in texts. In addition, we propose an
auxiliary term classification task to classify the types of the terms matched by dictionaries based on
contexts, and we jointly train our model in both NER and term classification tasks to incorporate the
information of entity dictionaries and contexts into NER. Extensive experiments on the CoNLL-2003
benchmark dataset show that our approach can effectively improve the performance of NER especially
when training data is insufficient.
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