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Abstract

One challenge in Natural Language Processing (NLP) area is to learn semantic representation
in different contexts. Recent works on pre-trained language model have received great atten-
tions and have been proven as an effective technique. In spite of the success of pre-trained
language model in many NLP tasks, the learned text representation only contains the correlation
among the words in the sentence itself and ignores the implicit relationship between arbitrary
tokens in the sequence. To address this problem, we focus on how to make our model effectively
learn word representations that contain the relational information between any tokens of text se-
quences. In this paper, we propose to integrate the relational network(RN) into a Wasserstein
autoencoder(WAE). Specifically, WAE and RN are used to better keep the semantic structurse
and capture the relational information, respectively. Extensive experiments demonstrate that our
proposed model achieves significant improvements over the traditional Seq2Seq baselines.

1 Introduction

Sequence problems are common in daily life that involves DNA sequencing in bioinformatics, time
series prediction in Information science, and so on. NLP tasks, such as word segmentation, named entity
recognition(NER), machine translation(MT), etc, are actually text sequence problems. For text sequence
tasks, it is required to predict or generate target sequences based on the understanding of input source
sequence, so it plays a pivotal role in NLP to deeply understand the generic knowledge representation in
different context.

To learn the features of input sequences, probabilistic graphical models, such as Hidden Markov Mod-
els(HMM) and Conditional Random Field (CRF), can use manually defined feature functions to trans-
form raw data into features, but the quality of the feature functions directly determines the quality of the
data presentation.

Because deep learning can automatically learn the useful and highly abstract features of the data via
artificial neural network(ANN), many researchers devoted themselves to using Neural Networks(NNs)
to obtain low dimensional distributed representations of input data, especially in language modeling,
using AutoEncoder(AE) (Rumelhart et al., 1988) to retain the text sequence semantic information in
different context has shown promising results. These language models are pretrained on large-scale
corpus and complex models to obtain the data representation which contains global information and
has strong generalization ability, then the latent representation can be adapted to several contexts by
fine-tuning them on various tasks. However, these models simply make use of word order information
or position information and ignore the implicit relationship between arbitrary tokens in the sequence,
resulting in learning inadequately hidden feature representations and obtaining only superficial semantic
representation. More recently, studies on attention (Bahdanau et al., 2015; Luong et al., 2015) and self-
attention(Klein and Nabi, 2019; Tan et al., 2018) mechanism demonstrate that it can effectively improve
the performance of several NLP tasks by exchanging information between sentences. However, it only
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NLP representation learning

calculates the contribution between vectors by means of weighted sum without exploring and taking
advantage of the implicit structural relationships among tokens.

In this work, we propose add relational networks(RN) (Santoro et al., 2017) to the Wasserstein Au-
toEncoder(WAE)(Kingma and Welling, 2014) on the basis of the Seq2Seq architecture to collect the
complex relationship between objects and retain the semantic structure in sentences. Specifically, to
keep the relational information and structural knowledge we add RN layer to encoder since RN inte-
grates the relational reasoning structure that can constrain the functional form of neural network and
capture the core common attributes of relational reasoning. To better capture the complex relationships
and preserve the semantic structure we use WAE as our encoder because WAE maps input sequences
into the wasserstein space that allows various other metric spaces to be embedded in it while preserving
their original distance measurements.

The main contributions of our work can be summarized as follows:

1. We put forward an innovative idea to learn more meaningful and structural word representations in
text sequneces. We consider relations between objects entail good flexibility and robustness, which
are informative and helpful.

2. We propose a WAE−RN model, which integrates WAE and RN to obtain useful and generalized
internal latent representations and the implicit relationships in the text sequencse.

3. We conducts experimental verification on two text sequence tasks named entity recognition and EN-
GE machine translation. The experimental results demonstrate our proposed model can achive better
semantic representation.

2 Related Work

2.1 AutoEncoder

Traditional AutoEncoder(AE) maps the high level characteristics of input data distribution in high di-
mension to the low(latent vector), and the decoder absorbs this low level representation and outputs the
high level representation of the same data. Many researchers have been working on how to get bet-
ter semantic representations of input sequences, methods using AE such as ELMo(Peters et al., 2018),
BERT(Devlin et al., 2019), ALBERT(Lan et al., 2020), ERNIE(Zhang et al., 2019; Sun et al., 2020),
XLNet(Yang et al., 2019), etc have been proven as effective techniques. Each model achieves the opti-
mal effect at that time due to its own advantages, and their corresponding pre-trained word vector can
still facilitate many downstream tasks even now. However, the latent representation learned by AE is
encoded and decoded just in a deterministic way and with no constraint in the hidden space, resulting in
a lack of diversity in encoding results, it was later followed by approaches based on VAE(Kingma and
Welling, 2014; Bowman et al., 2016) and WAE(Tolstikhin et al., 2018).

VAE converts the potential representation obtained by the encoder into a probabilistic random variable
and learn a smooth potential space representation, then the decoder reconstructs the input data and out-
puts the reconstructed original data. The results have shown that VAE performs competitively compared
to traditional AutoEncoder, for example, (Zhang et al., 2016) attempts to use VAE for machine transla-
tion, which incorporate a continuous latent variable to model the underlying semantics of sentence pairs.
(Shah and Barber, 2018) specifies the prior as a Gaussian mixture model and further develop a topic-
guided variational autoencoder (TGVAE) model that is able to generate semantically-meaningful latent
representation while generating sentences. However, training on VAE often leads to the disappearance
of the KL term. In addition, VAE assumes that the latent variables follow a gaussian distribution, so only
a gaussian encoder can be used. To solve these problems, VAE is replaced with WAE by researchers.

Wasserstein Autoencoder (WAE) use the Wasserstein distance that measures the distance between two
distributions to replace the KL divergence in VAE to prevent the KL term from disappearing and help the
encoder capture useful information during training. Besides, the goal of WAE is to minimize the direct
distance between the marginal and the prior distribution and does not force the posterior of each sample
to match the prior. In this way, different samples can keep a distance from other samples, which makes
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the results generated are more diverse. For instance, (Bahuleyan et al., 2019) propose a WAE variant
that use an auxiliary loss to encourage the encoder more stochastic, their studies verified the WAE model
achieves much better reconstruction performance. Moreover, (Wang and Wang, 2019) pointed out that
the latent space is so complex that we only use standard Gaussian to assume the prior is not enough,
and then they proposed to supplement some geometric properties of input space with Riemannian metric
tensor to the latent space to learn more flexible latent distribution.

Furthermore, Warstam space is more flexible than Euclidean space, which is helpful for capturing the
complex relationships and retaining the semantic structure. Since we focus on capturing the universal
semantic representation, we choose WAE as our encoder to generate more meaningful and more flexible
latent representation while maintaining the original semantic structure.

2.2 Relational Network

Because Recurrent Neural Network(RNN) gives an output for the input at each moment combined with
the current model state, RNN-based model can only learn the sequence relation. While Convolutional
Neural Network(CNN) continuously extracts local and overall features through a series of filters, so
CNN-based model has poor ability to learn some transformation or relationship. To address this issue,
there is a simple solution, that is adding some specific learning modules such as RN to help the model
express and learn. RN is a neural network integrated with Relational reasoning structure, which aims to
constrain the functional form of the neural network to capture the core common attributes of Relational
reasoning. Almost all recent methods focus on using RN to capture the relationships between objects.
For example, (Zhang et al., 2018) introduce RN to learn better representations of the input data and
experiments on machine translation demonstrate RN can help retain relationships between words. (Chen
et al., 2019) also use RN to capture the dependencies within a sentence between any two words and verify
the effectiveness of their proposed method on two benchmark NER datasets, which all support that the
RN can model relations between the input sequences.

Inspired by the success of the RN in learning the relationships between elements, in this paper, we
directly incorporate RN into the WAE models, thus to fully learn the semantic representation and keep
the relational information and structural knowledge between sequences to the greatest extent.

3 Preliminary

Since the purpose of the proposed method is to better obtain the semantic representation of text se-
quences, we will focus on the following two issues.

3.1 The Problem of Sequence Prediction

Sequence prediction is the most basic and widely used task, such as word segmentation, part-of-
speech(POS) tagging, named entity recognition(NER), dependency analysis, etc. Essentially, it can be
viewed as a matter of classifying each element in a linear sequence according to its context representa-
tion. That is, after understanding the input sequence and extracting its useful information, the optimal
mark is made for each sequence, and then a set of globally optimal marks is selected for a given sequence
at one time.

Suppose we have an input sequence ~x of L elements, and a tag sequence ~y of the same length, i.e.
~x = (x1, x2, . . . , xL)T , ~y = (y1, y2, . . . , yL)T , where xi represents the i-th sequence and yj represents
the j-th tag, it’s also requires that the value of yj is taken from a predefined set of finite tags and i equals
j, the final goal is to assign a globally optimal label yj for each input sequence xi. End-to-end learning
is directly modeling conditional probabilities p(y|x) and then map the input sequence x1, x2, . . . , xL to
the output sequence y1, y2, . . . , yL, i.e.(1).

Y = (y1, y2, . . . yL) = argmax
y

p(y|x, θ) (1)
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Figure 1: Model architecture

3.2 The Problem of Sequence Generation

Sequence generation is translating the dataset into a clear narrative of human understanding based on the
real understanding of text content, such as machine translation, dialogue generation, abstract generation
and so on. We usually decompose the generation probability into the product of the generation probability
of context-related subsequence, and then use the method of auto-regression to get the text in the form of
natural language that human can understand.

Suppose the input sequence is ~x , the goal is to understand the input sequence and generate the cor-
responding output sequence ~y , i.e. ~x =

(
x1, x2, . . . x|X|

)T , ~y =
(
y1, y2, . . . y|Y |

)T , where |X| and |Y |
correspond to the length of input sequence and output sequence respectively. Different from sequence
prediction, the purpose of sequence-to-sequence learning is to model the conditional probability p(y|x)
with all the sequences before the current sequence as the condition, and then map the input sequence to
an output sequence, i.e. (2).

Y =
(
y1, y2, . . . y|Y |

)
= argmax

y
p(y|x; θ) = y arg max

 |Y |∏
i=1

p (yi|x, y<i; θ)

 (2)

4 Relational Network based WAE Model

4.1 Architecture of Proposed

In order to obtain universal semantic representations that contain structured knowledge, we propose a
Relational Network based Wasserstein AutoEncoder (WAE−RN) model, which have the ability to embed
the potential structural information contained in sequence into semantic representation. Specifically, a
relation network layer is employed to quantify the potential relationships between any two elements in
the input sequence, and then these relationships are embedded into the input sequence by WAE to get
semantic representation that contains relational information. Finally, the generic representation is sent to
different decoders to perform different downstream tasks. Next, we will elaborate our proposed model
in detail.

Proceedings of the 19th China National Conference on Computational Linguistics, pages 1172-1182,  
Hainan, China, October 30 - Novermber 1, 2020. (c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

CC
L2
02
0



NLP representation learning

4.2 The Wasserstein AutoEncoder Layer
As shown in the bottom of Fig. 1, the first encoder of WAE collects the semantic information of the
data, and the RN module learns the relational information between the outputs of RNNs, then the con-
text representation is mapped to the Wasserstein space. Compared with embedding data into Euclidean
space, which is the most common method, WAE embeds the input data into the Wasserstein space as a
probability distribution to can help us capture the complex relationship and retain the semantic structure,
so we can obtain the distribution hn =

[
~hn;~hn

]
that covers both semantic and relational information

of input data x1, x2, . . . , xL. Note that the relational network module can be placed either in front of or
behind the first encoder, our experiments showed that it is better for the named entity recognition task to
put it in the front while for the machine translation task to put it in the back.

After reparameterizing, the reconstructed hidden state hz = N
(
µz, σ

2
z

)
(where µz = f(Wµhn +

bµ), σ2z = f(Wσhn + b2σ)) is sent to the second encoder in WAE as its initial state, after that this
encoder relearns the latent representation of input data under the guidance of the hidden state obtained
in the previous step, so as to obtain the semantic representation that both follows the source semantic
information and retains the structured information. To fully exploit the relational information, we send
the representation learned by the second encoder into the relationship network again.

Different from VAE, WAE can use both Gaussian encoder and deterministic encoder. Besides, the
goal of Wasserstein distance is to minimize the direct distance between the marginal distribution and the
prior, without forcing the posterior of each sample to match the prior, so that different samples can keep
a distance from other samples to produce more diverse results.

4.3 The Relational Layer
The architecture of our RN module is shown in the upper left corner of Fig. 1, different from (Zhang
et al., 2018), our RN doesn’t use the CNN layer. Besides, to keep the original information of the input
sequence to the great extent, we don’t use any nonlinear transformations, keeping the dimensions the
same. To learn the implicit internal relation between any two elements, we use some transformation
between tensors to make objects fully connected and associated with each other, which means, for any
vector C = (~c1,~c2, . . .~cn), after concatenating, its each element ci,j = [~ci;~cj ] . Then we directly
calculate the relationships between any objects: RN(oi,j) = fφ (WMLP ci,j + bMLP ). Here, a multi-
layer perceptron is used for fφ to find the relationship between all pairwise objects and judge whether
and how they are related.

4.4 The Prediction Layer
There is no difference between the decoder used in our model and the traditional decoder. As shown in
the upper right corner of Fig. 1, for machine translation tasks, the decoder is the ordinary RNNs with
beam search layer, which generates target sequences one by one in an auto-regressive way, while for the
named entity recognition task, the decoder is the RNN network with the CRF layer.

4.5 The Objective
For AE, the training objective is the cross-entropy loss or the reconstruction loss, given by Jrec(θ, φ, x) =
Eqφ(z|x) [log pθ(x|z)]. In order to compute the loss of our model, we use MMD (given as MMD =∥∥∫ k(z, ; )dp(z)−

∫
k(z, ·)dq(z)

∥∥
Hk

) to approximate Wasserstein distance, where Hk refers to the
Hilbert space defined by the kernel k, for high dimensional Gaussian function, k was usually chosen
as the inverse quadratic kernel : k(x, y) = C

C+‖x−y‖22
.

L(θ;φ;x) = Eq(x) [Jrec(θ, x) + αJtask(Φ, x)] + βMMD (3)

Thus the loss function(3) of our model consists of three terms: the first is the reconstruction loss,
which encourages the encoder to learn to reconstruct data; the second is the Wasserstein distance be-
tween the distribution of the encoder qθ(z|x) and prior p(z) (usually p is N(0, 1) ), which measures
how much information is lost when q is represented by p; the third is the task loss between the source
input x1, x2, . . . x|X| and the generated target sequences y1, y2, . . . y|Y |. However, in the experiment we
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observe that the reconstruct loss has a great influence on the results of our model, resulting in poor per-
formance. To address this problem, we impose a weight α(here α is 2) on the translation loss to balance
the influence between the task loss and the reconstruct loss. To achieve better performance, we also give
another weight β(here β is 0.0001) onMMD. To the end, our model can be trained in an end-to-end
manner by minimizing (3).

5 Experiments

In this section, we aim to investigate our model’s performance over NER and MT, where NER belongs
to the problem of sequence prediction and MT belongs to the problem of sequence generation. We first
present our experimental set up, then compare our method to other baseline systems, finally we give
some analyses about our method.

5.1 Datasets

We use two benchmark datasets: OntoNotes5.0 Chinese NER dataset(OntoNotes5.0 Ch-NER) and
IWSLT2014 German-English dataset(IWSLT14en-de) for evaluation, the details about these corpora are
shown in Table1.

Table 1: Statistics of OntoNotes5.0 Ch-NER and IWSLT2014en-de
Dataset Type Train Valid Test

Sentences 53.5k 12.8k 4.5k
OntoNotes5.0 Ch-NER Chars 750k 110k 90k

Entities 62.5k 9.1k 7.5k
IWSLT2014en-de Sentences 150k 6.9k 6.7k

5.1.1 OntoNotes5.0 Ch-NER

OntoNotes5.0 Ch-NER contains eleven different entity name types(such as PERSON, NORP, GPE, etc.)
and seven different value types(DATE, TIME, MONEY, etc.). We use the same OntoNotes data split used
for co-reference resolution in the CoNLL-2012 shared task (Pradhan et al., 2012) and convert the IOB
boundary encoding to BIO tagging scheme(B, I, O). We preprocess by filtering out char-level sentences
longer than 150 words and replacing all words that appear less than three times with an < unk > token,
but for testing data, we use the original dataset.

5.1.2 IWSLT14en-de

IWSLT14en-de contains transcripts of TED talks and translate between German and English in both
directions. Following previous works, we use the same data cleanup as (Ranzato et al., 2016). We apply
the same tokenization and truecasing using standard Moses scriptsto both our model and baseline. For
training data, sentences longer than 50 tokens were chopped and rared words were replaced by a special
< unk > token, for testing data, we also use the original version of testing files.

5.2 Experimental Setting

For NER task, we use strong bidirectional Long Short Term Memory with CRF(Bi-LSTM-CRF) base-
line, but for MT the baseline is a standard implementation of Bi-LSTM seq2seq model with dot-product
attention (Bahdanau et al., 2015; Luong et al., 2015) and for decoding we use a beam width of 10 and
limit the max sequence length to 100. Detail hyper-parameters can be found in Table2.

For NER task, we use the entity level accuracy rate, recall rate and F1 value to calculate the score and
report standard F1-score for CoNLL NER tasks (Pradhan et al., 2012). For MT task, we adopt BLEU
for translation quality evaluation and calculate the BLEU scores on test set using Moses multi-bleu.perl
script.
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Table 2: Hyper-Parameter Settings
Learning rate 1e−3

Learning rate decay 0.5
Batch size 64
Clip norm 5.0
Embedding dim 256
Hidden dim 256
Latent dim 32
Dropout 0.3
Uniform init 0.1
Patience 20

Table 3: Corpus BLEU scores (%) on IWSLT14en-de translation tasks
IWSLT14Ge− En(BLEU) IWSLT14En−Ge(BLEU)

2017RaphaelShu 29.56 -
2018PoSenHuang 30.08 25.36
2019BryanEikema 28.0 23.4
Ours
RNN−attn(baseline) 27.84 23.74
RNN−attn−RN 28.18(0.3 ↑) 23.95(0.2 ↑)
WAE(d)−attn 28.55(0.7 ↑) 24.24(0.5 ↑)
WAE(d)−attn−RN 28.87(0.9 ↑) 24.46(0.7 ↑)

5.3 Results and Analysis

In order to enhance the fairness of the comparisons and verify the solidity of our improvement, we train 5
times with random uniform distribution initialization and report average results of our proposed model as
well as our re-implemented baselines. Note that we just use simple Seq2Seq architecture as our baseline
and don’t add any other methods(such as label smoothing, tied embedding, BPE, pre-trained word vector,
etc) to the baseline, because our goal is to demonstrate that our proposed method can yield a more general
semantic representation, rather than further boost performance.

5.3.1 Results on Machine Translation

For IWSLT14en-de translation tasks, we use deterministic encoder rather than Gaussian encoder for
largely alleviating the training difficulties. We show the test results of different models in Table3.

The former lines in the table list the performance of previous methods. (Shu and Nakayama, 2018)
propose compress word embedding to directly learn the discrete codes via deep compositional code learn-
ing, improving the BLEU scores from 29.45% to 29.56%. Using SleepWAke Networks (SWAN) that is
a segmentation-based sequence modeling method to explicitly model the phrase structure in output se-
quences, (Huang et al., 2018) achieves the state-of-the-art results at that time. (Eikema and Aziz, 2019)
use Auto-Encoding Variational NMT model to generate source and target sentences jointly from a shared
latent representation, achieving de→en and en→de BLEU scores of 28.0% and 23.4% respectively.

The latter lines show the performance of ours, we can see that our proposed WAE−RN model achieves
significant improvement over the baseline system. It demonstrates that our model can capture more
useful information and improve the performance of NMT system. In particular, our proposed model
outperforms the baseline by 0.9% BLEU points, while only use RN and DAE improves the baseline
0.3% and 0.7% respectively, which effectively illustrate that the combine of RN and WAE can both
collect the complex relationship and retain the semantic structure between objects.
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Table 4: The evaluation results on OntoNotes5.0 Chinese NER task
method P(%) R(%) F

CoNLL2012 78.20 66.45 71.85
Ours
BiLSTM−CRF (baseline) 73.08 69.20 71.08
BiLSTM−CRF−SelfAttn 70.93 67.10 68.96
BiLSTM−CRF−LM 72.69 69.59 71.11
BiLSTM−CRF−RN 73.43 69.71 71.52
WAE−CRF 72.79 69.61 71.17
WAE−CRF−RN (best) 73.09 70.76 71.90(0.8 ↑)

Figure 2: Performance of our model and baseline on each category.

5.3.2 Results on Sequence Labeling
For OntoNotes5.0 Chinese NER task, we use Gaussian encoder. As shown in Table4, the first results
is from the CoNLL-2012 Shared Task (Pradhan et al., 2013) and the others are ours, we can observe
that WAE−RN can significantly outperforms our re-implemented baseline by 0.8, which demonstrates
the robustness of our models. As depicted in Fig. 2, we can see that our method performs well on
most categories, such as ’ORDINAL’, ’NORP’, ’LANGUAGE’, etc, and slightly below baseline on the
categories of ’PERSON’, ’ORG’ and ’TIME’. It also should be noted that our model can’t find the entity
named ’PRODUCT’, which is the smallest number of entities in the training dataset. From the results,
we can observe that our proposed model does have a positive impact on learning word representation.

Besides, we also conduct experiments using different models to explain the the performance promotion
of each module, experimental results on NER task confirm the effectiveness of our proposed model,
similar as shown in MT tasks.

6 Conclusion

This paper presents a WAE−RN model for text sequence tasks, which aims at learning word representa-
tiosn containing structured knowledge. To be specific, to preserve the semantic structure between objects,
we propose use WAE as the model’s encoder. To capture the core common attributes of relational rea-
soning, we introduce RN. Both of which combine well to learn the generic representation that contains
relational information. Experimental results on MT and NER tasks demonstrate that the proposed model
leads to significant improvements. In the future, we plan to extend the general representation to transfer
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learning.
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