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Abstract

The obstetric Electronic Medical Record (EMR) contains a large amount of medical data and
health information. It plays a vital role in improving the quality of the diagnosis assistant ser-
vice. In this paper, we treat the diagnosis assistant as a multi-label classification task and propose
a Knowledge-Enabled Diagnosis Assistant (KEDA) model for the obstetric diagnosis assistant.
We utilize the numerical information in EMRs and the external knowledge from Chinese Ob-
stetric Knowledge Graph (COKG) to enhance the text representation of EMRs. Specifically, the
bidirectional maximum matching method and similarity-based approach are used to obtain the
entities set contained in EMRs and linked to the COKG. The final knowledge representation is
obtained by a weight-based disease prediction algorithm, and it is fused with the text represen-
tation through a linear weighting method. Experiment results show that our approach can bring
about +3.53 F1 score improvements upon the strong BERT baseline in the diagnosis assistant
task.

1 Introduction

Health service relations on the health of millions of people, and it is a livelihood issue in our coun-
try. Specifically in China, which has a huge population, the total amount of medical resources is still
insufficient. The imbalance between the supply and demand for medical services is still the focus of
China’s healthcare industry. Although the implementation of China’s Universal Two-child Policy in
2016 achieved many benefits, it also leads to an increase in the proportion of older pregnant women and
the incidence of various complications (Yang and Yang, 2016). Compared to the overall supply of the
medical industry, the lack of obstetric medical resources is prominent.

Since the issue of the Basic Norms of Electronic Medical Records (Trial) (China’s Ministry of Health,
2010) by the National Health and Family Planning Medical Affairs Commission in 2010, medical institu-
tions have accumulated many obstetric Electronic Medical Records (EMRs). EMRs are detailed records
of medical activities, dominated by the semi-structured or unstructured texts. There is a lot of medical
knowledge and health information in EMRs, which is the core medical big data. The first course record
in EMRs can be divided into the chief complaint, physical examination, auxiliary examination, admitting
diagnosis, diagnostic basis, and treatment plan. In general, there is not a single diagnosis in the admit-
ting diagnosis, it usually includes normal obstetric diagnosis, medical diagnosis, and complications. As a
consequence, the diagnosis assistant task based on the Chinese obstetric EMRs can be treated as a multi-
label text classification problem, in which the different diagnoses can be regarded as the variable labels.
However, the doctor’s diagnosis and treatment process are based on comprehensive clinical experience
and knowledge in the medical field to make a diagnosis and formulate a corresponding treatment plan. At
the same time, they can also explain the corresponding diagnosis basis to the patient in detail. Therefore,
rich clinical experience and solid medical knowledge play a vital role in the diagnosis procedure. In order
to simulate the diagnosis and treatment process of doctors, we need to introduce external knowledge that
©2020 China National Conference on Computational Linguistics
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is not available in EMRs. The introduction of medical domain knowledge requires formal expression so
that it can be easily used in the diagnosis assistant model. To solve this problem, we adopt the Chinese
Obstetric Knowledge Graph (COKG)? to introduce external medical domain knowledge.

In this paper, we use the BERT (Bidirectional Encoder Representation from Transformers) (Devlin
et al., 2019) to generate the text representation of EMRs. The numerical information in EMRs is also
important for the diagnosis results, it is being used to enhance the text representation with the multi-head
self-attention (Vaswani et al., 2017). For entity acquisition, we compare the bidirectional maximum
matching method and the Bi-LSTM-CRF method respectively, and choose the former method to obtain
the entity sets from EMRs. Then the entities are linked to the COKG by a similarity-based method. Due
to the fact that the negative words in EMRs will have an impact on the semantics, we employ a negative
factor to deal with the negative words in EMRs and propose a weight-based disease prediction algorithm
to obtain the final knowledge representation. Finally, a linear weighting method is employed to fuse the
text representation and knowledge representation. The experiments on the Obstetric First Course Record
Dataset support the effectiveness of our approach.

The main contributions of this paper are summarized as follows:

* In this paper, we propose the KEDA (Knowledge-Enabled Diagnosis Assistant) model to integrate
external knowledge from COKG into diagnosis assistant task.

» A weight-based disease prediction algorithm named WBDP is used to limit the influence of negative
words in EMRs and generate the final knowledge representation.

2 Related Work

In this paper, we treat the obstetric diagnosis assistant task as a multi-label classification problem. The
multi-label classification in traditional machine learning is usually regarded as a binary classification
problem or adjust the existing algorithm to adapt to the multi-label classification task (Zhang and Zhou,
2007; Zhang and Zhou, 2006; Read et al., 2011; Tsoumakas et al., 2010).

With the development and application of deep learning, CNN and RNN are widely used in multi-label
text classification tasks. For example, Kurata G et al. (2016) use CNN-based word embedding to obtain
the direct relationship of the labels. Chen et al. (2017) propose a model that combined CNNs and RNNs
to represent the semantic information of the text, and modeling the high-order label association. Baker
S and Korhonen A (2017) use row mapping to hide the layers that map to the label co-occurrence based
on a CNN architecture to improve the model performance. Ma et al. (2018b) propose a multi-label
classification algorithm based on cyclic neural networks for machine translation. Yang et al. (2018)
propose a Sequence Generation Model (SGM) to solve the multi-label classification problem. In recent
years, the pre-training technology has grown rapidly, ELMo (Peters et al., 2018), OpenAl GPT (Radford
et al., 2018), and BERT (Devlin et al., 2019) model have achieved significant improvements in multiple
natural language processing tasks. They can be applied to various tasks after fine-tuning. However, due
to the little knowledge connection between specific and open domain, these models do not perform well
on domain-specific tasks. One way to solve this problem is to pre-train the model on a specific domain,
but it is time-consuming and computationally expensive for most users. The models in this way are like
ERNIE (Sun et al., 2019), BERT-WWM (Cui et al., 2019), Span-BERT (Joshi et al., 2020), RoBERTa
(Liu et al., 2019), XLNET (Yang et al., 2019b), and so on. Moreover, if we can integrate knowledge
at the fine-tuning process, it may bring better results. Several studies integrate external knowledge into
the model. Chen J et al. (2019) use BIiLSTM to model the text and introduce external knowledge
through C-ST attention and C-CS attention. Li M et al. (2020) use BiGRU to extract word features, and
use a similar matrix based on convolutional neural network and self-entity and parent-entity attention
to introduce knowledge graph information. Yang A et al. (2019a) use knowledge base embedding to
enhance the output of BERT for machine reading comprehension.

In terms of the diagnosis assistant based on Chinese obstetric EMRs, Zhang et al. (2018) utilize four
multi-label classification methods, backpropagation multi-label learning (BP-MLL), random k-labelsets
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Figure 1: The architecture of the KEDA model

(RAKEL), multi-label k-nearest neighbor (MLKNN), and Classifier Chain (CC) to build the diagnosis
assistant models. Ma et al. (2018a) fuse numerical features by employing the concatenated vector to
improve the performance of the diagnosis assistant. Zhang et al. (2019) encode EMRs with BERT, and
propose an enhanced layer to enhance the text representation for diagnosis assistant.

3 Methodology

3.1 Model Architecture

As shown in Figure 1, the KEDA model can be divided into three parts: EMRs-based module, KG-based
module, and Fusion module. For any given EMR, the EMRs-based module generates the text represen-
tation by the BERT encoder firstly, then the numerical information contained in EMR is employed to
enhance the text representation. Meanwhile, the KG-based module obtains the entities set and links to
COKG through the entity acquisition and entity linking methods. Finally, the final knowledge represen-
tation is computed by a weight-based disease prediction algorithm and fused with the text representation
through a linear weighting method. The following will introduce the implementation details of this
model.

3.2 EMRs-based Module

The function of this module is to generate the text representation of EMRs. Similar to the BERT model,
the input of KEDA model is composed of four parts: Token embedding, Position embedding, Segment
embedding, and Nums embedding which contains the numerical information in EMRs.

BERT encoder

In this paper, we utilize the BERT as an encoder to obtain the text representation of EMRs.The input text
sequence is as follows.

[CLS]ElectronicMedical RecordT ext|SEP]

Where [C'LS] is a specific classifier token and [SEP] is a sentence separator which is defined in BERT.
For the diagnosis assistant task, the input of the model is a single sentence.
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Enhanced Layer

The enhanced layer aims to enhance the text representation obtained by the BERT encoder through
the numerical information in EMRs. Since the maximum length of the input sequence of BERT is
512, and the average length of EMRs is about 790 characters, we need to reduce the length of the
input sequence. The information contained in the EMRs text can be divided into textual information
and numerical information. Numerical information usually includes certain examinations or indications
characterized by numerical values(For example, it contains the age, body temperature, pulse, respiration,
respiration, and so on), which is also important information for diagnosis. So we separately extract the
numerical information in EMRSs to enhance the textual information, which not only can meet the limit of
the input length, but also can better use the numerical information in the EMRs for diagnosis.

Then we adopt a multi-head self-attention proposed in Transformer (Vaswani et al., 2017) to integrate
the numerical information into text representation of EMRs, as shown in Equation (1)-(4).

Q = K =V = W5Concat([C); Numi. 1) (1
Attention(Q. K. V) = softmaz( 20 yy @
ention(Q, K,V) = softmax
Vi
head; = Attention(QWiQ, KwE v} 3
[Cl] = Concat(head;, ..., head,)W© 4)

Where [C] is the hidden layer state representation of [CLS], [C'] is the text representation after fusing
numerical information. Num; s is the Nums embedding containing M values, which is obtained by
standardizing and normalizing the numerical information in EMRs. wo, wWe WE WV, and WO are
trainable parameters, where Q € d™°%!,

3.3 KG-based Module

Entity Acquisition

Through the analysis of obstetric EMRs, we found that the entities such as symptoms, signs, and diseases
in EMRs are high-value information for the intelligent diagnosis, so we mainly identify these entities
contained in EMRs.

To achieve better performance, we compared two ways for entity acquisition. One way is a dictionary-
based method, the Chinese Symptom Knowledge Base(CSKB)!, diseases set in ICD-10, and the entity
sets of diseases and symptoms in COKG are used as dictionaries. We utilize the bidirectional maximum
matching algorithm used in Chinese word segmentation (Gai et al., 2014) for entity acquisition, the
obtained set includes a total of 9,836 entities. Another way is to use the Bi-LSTM-CRF model for entity
acquisition, the texts labeled when constructing COKG is used as the training corpus. The Detailed
analysis of experimental comparison results can be found in section 4.

Entity Linking

For the entity sets obtained above, it is necessary to establish a link relationship with the nodes in the
knowledge graph. In this paper, the similarity-based approach is used to link the entities in the knowledge
graph.

For a given identified entity E'r, we need to find the n entities that are most similar to the knowledge
graph COKG, the set of candidate entities is denote as S = {Ek,, Ek,, ..., Fk,, ..., Fx, }. Then we
calculate the similarity between entities r and k, and select the entity with the highest similarity as the
entity linked to COKG. The Levenshtein distance, Jaccard coefficient and the longest common substring
are used to calculate the similarity respectively, as shown in Equation (5)-(7).

Simy, — (CVER Ex, (IR, |Ex,])
' maz(|Eg|,|Ex,|)

&)

Thttp://www35.zzu.edu.cn/nlp/info/1015/1865.htm
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Simjecc = jaccard(bigram(|Eg|), bigram(|Exk,|)) (6)

‘ZCS(ERaEKi)’
maz(|Brl, |Ex)

S iMies = (N
These three similarity algorithms measure the similarity of two entities from different angles, and the
average value is used as the final score of the similarity of two entities, as shown in Equation (8).

Sim(Er, Exi) = (Simyq + Simjace + Simies) /3 (8)

However, the negative words in EMRs will have an impact on the semantics of components in their
jurisdiction. For example, for the descriptions of There is no discomfort such as vaginal bleeding(Jt[H
TE LI % ANiE) and There is involuntary vaginal fluid(A~ H F BIE LK) contain the negative words
JC and A~. The first word will change the actual semantics, but the latter word is only a description of
vaginal fluid.

Therefore, we utilize the negative factor f,., to limit the influence of negative words on semantics.
If the negative words that do not change or partially change semantics, the entities described by those
words will be linked to COKG, and the negative factor is 1 or 0.5, respectively. For those negative words
that will change semantics, their negative factor is -1.

Diseases Weighted Computation

Through entity linking above, we can obtain the symptoms set Sg = {Sgr,, SRy ---s SR;s ---» SR,, } and
the diseases set Dr = {(dgr, : fRry),(dRry : fRy)s-s(dR; : fR)s - (AR, : fR,)}, Where fr, is the
frequency of disease entity and fr, < fr, < ... < fr, < ... < fRr,.

Then we propose a weight-based disease prediction algorithm named WBDP. The disease and symp-
tom sets in COKG are denoted as Dy and Si. Through the matching of tail entities, we can get a set
D, = {di,,d;,, ..., di]., ...,d;, } of n candidate disease entities in COKG for symptom sp,, the disease
candidate set corresponding to all symptoms is denoted as D. For each disease d;; in candidate set D,
there is a symptom set Sg,; = { Sdij1y Sdij2s -5 Sdijls -+ Sdy M+ containing m symptoms in COKG asso-
ciated with it, and Q;; = Sr N Sg,;. The purpose of WBDP is to compute the weight of disease d;;, as
shown in Equation (9).

freg X p(SR,, dij) |D|
Wdix = () IOg
J EqreQij p(ar, dij) 21D+ 1

5Ri€SR

©))

Where |D;| and |D| are the number of diseases in set D; and D, fy, is the negative factor of sg,,
p(Sg,,d;j) is the co-occurrence probability of symptom sg, and disease d;; in COKG.

We adopt two methods to deal with the disease set Dg contained in EMRs. If the disease negative
factor fe4 is -1, it will be removed from the candidate set. Otherwise, if the candidate set associated
with symptoms already contains dg,, the weight WC,lRi will be computed according to the Wy R and the

frequency fg,, as shown in Equation (10).

IR

b 10
ZfRiEDR le) 1o

Wi, = W, (1

If the candidate set associated with symptoms does not contain dp,, it will be add to the candidate set.
Its weight is 5 times of the average weight, where [ is a hyper-parameter and 5 > 1, the Equation is
shown in (11). It is means that the diseases in EMRs have more influence on the diagnosis results than
the symptoms.

Wi, = freg % 2= S W, an

‘D| d;€Dise
1
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Figure 2: The fusion module of KEDA model

3.4 Fusion Module

The fusion module is aimed to integrate the output of the KG-based module into the output of the EMRs-
based module. Inspired by the method proposed by (Chen et al., 2019), we employ a linear weighting
method to fuse those representations, as shown in Figure 2.

The output of KG-based module and EMRs-based module is denoted as K = [k1, ko, ..., k;, ..., k4] and
E = le1, e, ..., €, ..., e4], Where k; is the normalized representation of the weights mentioned above. The
fusion process is shown in Equation (12).

1
1 —exp(—(viei + (1 —vi)ki))

ci=o(viei+ (1 —v)ki) = (12)

Where o is the sigmoid function,  can be seen as a soft switch to adjust the importance of two
representations. There are various ways to set the . The simplest one is to treat 7y as a hyper-parameter
and manually adjust. Alternatively, it can also be learned by a neural network automatically, as shown in
Equation (13).

= o(WT[K; E] +b) (13)
Where W and b are trainable parameters.

3.5 Training

To train the KEDA model, the objective function is to minimize the cross-entropy in Equation (14).

N
Z yilog P; + (1 — y;) log(1 — P,))] (14)

Where y; € {0,1}, N is the number of labels, and P is the model’s prediction.

4 Experiments

4.1 The Procedure of Diagnosis Assistant

As shown in Figure 3, the procedure of diagnosis assistant can be divided into four parts: entity acqui-
sition, entity linking, disease weighted computation, and weights fusion. For any given EMR, we obtain
the entity sets through entity acquisition firstly, then the entities in those sets are linked to the COKG by
a similarity-based method. As a result, we can get the disease nodes set and symptom nodes set from
COKG. The WBDP algorithm is employed to compute the disease weights, and the negative factor f,eg
is used to limit the influence of negative words in EMRs for disease or symptom entities. Ultimately, the
disease weights are regarded as the final knowledge representation to fuse the text representation so that
we can get the diagnosis results.
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Figure 3: The procedure of diagnosis assistant

4.2 Dataset

We conducted experiments on the obstetric first course record dataset and COKG.

Obstetric First Course Record Dataset. The first course records include 24,339 EMRs from mul-
tiple hospitals in China. They were pre-processed through the steps of anonymization, data cleaning,
structuring, and diagnostic label standardization. 21,905 of them were used for training and 2,434 were
used for testing.

COKG. COKG uses the MeSH-like framework as the knowledge ontology to define the entity and
relationship description system with obstetric diseases as the core. It contains knowledge from various
sources such as the professional thesaurus, obstetrics textbooks, clinical guidelines, network resources,
and other multi-source knowledge. COKG includes a total of 15,249 kinds of relations. Among them,
5,790 kinds of relations are semi-automatically extracted, and 9,459 kinds of relations are automatically
extracted. The number and source of relations are shown in Table 1.

4.3 Experimental Setup

In this paper, the EMRs are preprocessed by de-identifying, data cleaning, structuring, data filtering, and
standardization of diagnostic labels. During the data filtering process, the information that is duplicated
and has little effect on the diagnosis is removed. On the one hand, it can meet the limitation of the input
length of the BERT model, and on the other hand, it can also retain the useful information. The version
of BERT model we used is BERT-base-Chinese, the main parameters are hidden size 768, max position
embedding 512, num attention heads 12, num hidden layers 12, maximum input length 512, learning rate
5e-5, batch size 6, training epoch 20. All our experiments are run on an RTX2080ti GPU(12G).

4.4 Results

Experimental results on the obstetric first course record dataset are shown in Table 2. F1 (F1-micro),
Hamming Loss, One Error, and AP (Average Precision) were used as evaluation metrics. BERT indicates
the results of the baseline Google BERT, SGM is the results of SGM(Sequence Generation Model)(Yang
et al., 2018), BERT+A, and BERT+A-AP are from (Zhang et al., 2019), which experiments are carried
out on the same dataset as this paper. The KG-based means only use knowledge graph information, and
KEDA is our proposed model.
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Table 1: The relations statistics in COKG.

Relation Semi-automatic extraction Automatic extraction Total
disease-disease 1,053 942 1,995
disease-symptom 1,680 3,199 4,879
disease-anatomic site 78 63 141
disease-check 529 815 1,344
disease-medicine 447 612 1,059
disease-operation 225 2 227
disease-other treatments 323 0 323
disease-prognosis 17 0 17
disease-epidemiology 160 84 244
disease-sociology 878 367 1,245
disease-others 170 2,889 3,059
disease-synonym 262 486 748

Table 2: The results on obstetric first course record dataset.

Model F1(%) Hamming Loss One Error AP(%)
SGM 60.00 0.0200 0.0630 39.00
BERT 79.58 0.0132 0.0961 84.97
BERT+A 80.26 0.0129 0.0863 85.42
BERT+A-AP  80.28 0.0129 0.0891 85.74
KG-based 53.57 0.0220 0.2417 52.13
KEDA 83.11 0.0143 0.00152 88.90

From Table 2, it can be seen that the improvements in our model over the BERT baseline and other
results from (Zhang et al., 2019) are significant and consistent overall evaluation metrics. The AP of
KG-based is only 52.13%, which is far lower than the result of KEDA. There may be two reasons for
this situation, one of them may be some diagnoses are not obstetric diseases. Another possibility is that
COKG is constructed from multi-source texts, which have different levels of detail for different diseases,
it may make the number of triples of some diseases insufficient for accurate prediction.

Although the KG-based method does not have an advantage in various indicators, the results of the
KEDA are better than BERT and others, indicating that the fusion of knowledge graph can improve
the performance of diagnosis assistant. By further analyzing the diagnostic labels in the results, we
find that the integration of knowledge graph is more obvious for the improvement of low-frequency
labels. For example, the label Placental abruption(ii #; 5-3]) only appeared 5 times in the dataset,
due to the scarcity of samples, it is difficult to make accurate predictions using only the BERT-based
method. But there are 47 triplets in COKG that describe its symptoms, signs, and related diseases. After
introducing the corresponding knowledge graph information, the accuracy of this type of disease has
been significantly improved.

4.5 The Results of Entity Acquisition

As mentioned above, in order to choose a better entity acquisition method, we compared the bidirectional
maximum matching and Bi-LSTM-CRF on the manually labeled 100 EMRs, the results are shown in
Table 3. It is can be seen that the effect of the bidirectional maximum matching method is better than Bi-
LSTM-CREF in testing. Bi-LSTM-CREF is trained on texts such as obstetric teaching materials, national
norms, clinical practice, etc.

The differences in training data and test data may have an impact on the effectiveness of the model.
The dictionaries of the bidirectional maximum matching method come from CSKB and ICD-10, which
are more suitable for the description and content in obstetric EMRs. This may be one of the reasons for
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Table 3: The results of entity acquisition.

Method F1(%) P(%) R(%)
Bidirectional Maximum Matching 89.42 8520 94.10
Bi-LSTM-CRF 86.53 88.10 85.03

Table 4: The setting of hyper-parameter v on KEDA.

¥ F1(%) P(%) R(%) AP(%)
0.1 62.46 6325 6023 64.70
0.3 64.24 6532 63.68 66.57
0.5 7530 77.38 74.19  78.95
0.7 7723 79.86 7452  80.90
0.9 7125  73.19 68.26  74.28

Trained 83.11 87.21 79.36 88.90

its better effect on entity acquisition.

4.6 The Setting of Hyper-Parameter ~

The goal of this part is to verify the effectiveness of the fusion module. Firstly, We manually tune the
hyper-parameter ~y to explore the relative importance of EMRs-based and KG-based. We adjust v from
0 to 1 with an interval of 0.2, and the results are shown in Table 4. When  is equal to O or 1, the model
will become the KG-based or EMRs-based, its results can be found in Table 2. From these results, the
model with v = 0.7 performs best. When v gradually increases, the model performs better, but after 0.7,
the performance of the KEDA will decline. This shows that too much introduction of knowledge will
also affect the overall performance of the model.

Moreover, the hyper-parameter -y is treated as a trainable parameter to train with the model, the results
are shown in the last row of Table 4. Compared with manual adjustment, the way to use y as a trainable
parameter is a better choice.

4.7 Error Analysis

In this section, we analyze the bad cases induced by our KEDA model. Most of bad cases can be divided
into two categories.

First, some entities in EMRs are not obstetric disease or symptom, which can not find their corre-
sponding nodes in COKG. For example, those entities like otitis media("H B-R), glaucoma(F Yt:HR) and
so on, there are not enough descriptions in COKG. Thus, the model can not make the correct diagnosis.

Second, COKG is constructed on multi-source obstetric disease texts, which have different levels of
detailed description of different diseases. Among them, the proportion of diseases with less than 10
triplets accounts for more than 60%. If some diseases have fewer triplets in COKG, the model also
cannot achieve good performance.

5 Conclusion

In this paper, the obstetric diagnosis assistant task is treated as a multi-label classification problem.
We propose a KEDA model for this task, which integrates the numerical information from EMRs and
external knowledge from COKG to improve the performance of diagnosis. We utilize the bidirectional
maximum matching method to get the entities in EMRs, and the similarity-based approach is used to link
the entities in knowledge graph COKG. Then we propose a WBDP algorithm to compute the weights
of the entities in the candidate set. Finally, a linear weighting method is employed to fuse the text
representation and knowledge representation. The results on the obstetric EMRs support the effectiveness
of our approach compared to the BERT model. It turns out that even though the pre-training of BERT
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involves a large number of corpora, the knowledge graph of the specific domain can still provide useful
information.

In the future, we will incorporate more valuable information into deep neural networks to further
improve the performance of the diagnosis assistant. We find that some disease entities in EMRs are not
included in COKG(For example, the disease entity ’patella fracture’ is a diagnosis label in EMRs, but it
is not an obstetric disease), to introduce other knowledge graphs that contain more disease entities is an
effective feature for diagnosis.
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