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Abstract
We present an analysis of semi-supervised acoustic and language model training for English-isiZulu code-switched ASR using soap
opera speech. Approximately 11 hours of untranscribed multilingual speech was transcribed automatically using four bilingual
code-switching transcription systems operating in English-isiZulu, English-isiXhosa, English-Setswana and English-Sesotho. These
transcriptions were incorporated into the acoustic and language model training sets. Results showed that the TDNN-F acoustic models
benefit from the additional semi-supervised data and that even better performance could be achieved by including additional CNN
layers. Using these CNN-TDNN-F acoustic models, a first iteration of semi-supervised training achieved an absolute mixed-language
WER reduction of 3.4%, and a further 2.2% after a second iteration. Although the languages in the untranscribed data were unknown,
the best results were obtained when all automatically transcribed data was used for training and not just the utterances classified as
English-isiZulu. Despite reducing perplexity, the semi-supervised language model was not able to improve the ASR performance.
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1. Introduction

South Africa is a multilingual country with 11 official lan-
guages, including highly-resourced English which usually
serves as a lingua-franca. The largely multilingual popu-
lation commonly mix these geographically co-located lan-
guages in casual conversation. An ASR system deployed in
this environment should therefore be able to process speech
that includes two or more languages in one utterance.
The study and development of code-switching speech
recognition systems has recently attracted increased re-
search attention (Li and Fung, 2013; Yılmaz et al., 2018b;
Adel et al., 2015; Emond et al., 2018). Language
pairs that are of current research interest include English-
Mandarin (Li and Fung, 2013; Vu et al., 2012; Zeng et al.,
2018), Frisian-Dutch (Yılmaz et al., 2018b; Yılmaz et al.,
2018a) and Hindi-English (Pandey et al., 2018). In South
Africa, code-switching most often occurs between highly
resourced English and one of the nine under-resourced,
officially-recognised African languages.
In previous work, we showed that multilingual acous-
tic model training is effective for English-isiZulu code-
switched ASR if additional training data from closely re-
lated languages is used (Biswas et al., 2018a). However,
the 12.2 hours of training data provided by combining all
our code-switching data is still too little to develop robust
ASR systems.
A related study indicated that increasing the pool of
in-domain training data using semi-supervised training
achieved a significant improvement over the baseline
acoustic model (Biswas et al., 2019). These findings mo-
tivated us to further optimise semi-supervised acoustic and
language modelling training. Specifically, the effect of
multiple iterations of semi-supervised training along with
the application of a confidence threshold to filter the semi-
supervised data was considered. We focus our investiga-
tion on one language pair, English-isiZulu, to allow for a
detailed analysis of various aspects of the semi-supervised
training despite the limited computational resources at our

disposal.

2. Multilingual Soap Opera Corpus
The multilingual speech corpus was compiled from 626
South African soap opera episodes. Speech from these
soap operas is typically spontaneous and fast, rich in code-
switching and often expresses emotion, making it a chal-
lenging corpus for ASR development. The data con-
tains examples of code-switching between South African
English and four Bantu languages: isiZulu, isiXhosa,
Setswana and Sesotho.

2.1. Manually Transcribed Data
Four language-balanced sets, transcribed by mother tongue
speakers, were derived from the soap opera speech (van der
Westhuizen and Niesler, 2018). In addition, a large but
language-unbalanced (English dominated) dataset contain-
ing 21.1 hours of code-switched speech data was cre-
ated (Biswas et al., 2019). The composition of this larger
but unbalanced corpus is summarised in Table 2.1.. Note
that all utterances in the development and test sets contain
code-switching and that the balanced data is a subset of the
unbalanced data.

Language Mono (m) CS (m) Subtotal (m) Word tokens Word types

Train

English 755.0 121.8 876.6 194 426 7 908
isiZulu 92.8 57.4 150.0 24 412 6 789
isiXhosa 65.1 23.8 88.8 13 825 5 630
Sesotho 44.7 34.0 78.6 22 226 2 321
Setswana 36.9 34.5 71.4 21 409 1 525

Dev EZ – 8.0 8.0 1 572 858

Test EZ – 30.4 30.4 5 658 3711

Total 994.4 271.5 1304.4 283 520 24 933

Table 1: Duration, in minutes (m), word type and word
token counts for the unbalanced soap opera corpus. Both
monolingual and code-switched (CS) durations are given.

2.2. Manually Segmented Untranscribed Data
In addition to the transcribed data introduced in the previ-
ous section, 23 290 segmented but untranscribed soap opera
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utterances were generated during the creation of the multi-
lingual corpus. These utterances correspond to 11.1 hours
of speech from 127 speakers (69 male; 57 female). The
languages in the untranscribed utterances are not labelled.
Several South African languages not among the five present
in the transcribed data are known to occur in these seg-
ments.

3. Semi-Supervised Training
Semi-supervised techniques were used to transcribe the
data introduced in Section 2.2. (Yılmaz et al., 2018b; Nal-
lasamy et al., 2012; Thomas et al., 2013), starting with our
best existing code-switching speech recognition system. In
this study the manually-segmented data was transcribed
twice, as illustrated in Figure 1. After each transcription
pass, the acoustic models were retrained and recognition
performance was evaluated in terms of WER.
We distinguish between the acoustic models used to tran-
scribe data (AutoT) and those that were used to evaluate
WER (ASR) on the test set introduced in Table 2.1.. These
two models differ in the composition of their training sets.
The acoustic models indicated by AutoT1 in Figure 1 were
trained on all the manually transcribed (ManT) data de-
scribed in Section 2.1. as well as monolingual data from the
NCHLT Speech Corpus (Barnard et al., 2014). These were
the best available models to start semi-supervised training.
The ManT and NCHLT data were subsequently pooled with
the transcriptions produced by the AutoT1 models to train
an updated set of acoustic models (AutoT2 in Figure 1)
which were used to obtain a new set of transcriptions of
the untranscribed data for semi-supervised training. In con-
trast, the acoustic models ASR1 and ASR2 were trained by
pooling only the ManT and AutoT soap opera data; no out-
of-domain NCHLT data was used.
Separate AutoT and ASR acoustic models are maintained
because we use only in-domain data for semi-supervised
training. This is computationally much easier, since the
out-of-domain NCHLT datasets are approximately five
times larger than the in-domain sets. However, it was found
that better performance can be achieved in the second pass
of semi-supervised training if the acoustic models maintain
a similar training set composition to that used in the first
pass. Hence, AutoT1 and AutoT2 were purpose-built, in-
termediate systems used solely to generate semi-supervised
data.
Figure 1 also shows that each untranscribed utterance was
decoded by four bilingual ASR systems. The highest con-
fidence score was used to assign a language pair label to an
utterance. In initial experiments, we added only EZ data
identified in this way to the pool of multilingual training
data. However, it was found that better performance could
be achieved when all the AutoT data was added, and this
was therefore done in the experiments reported here.
Two ways of augmenting the acoustic model training set
with automatically-transcribed data were considered. First,
all automatic transcriptions were pooled with the manually-
labelled data. Second, utterances with a recognition confi-
dence score below a threshold were excluded. The average
confidence score across each language pair was used as a
threshold. A larger variety of thresholds was not considered

for computational reasons, but this remains part of ongoing
work. Confidence thresholds were applied in three ways.

1. No threshold applied in either iteration 1 or 2 of semi-
supervised training. The ManT data (21.1 h) was
pooled with the AutoT1 data to train ASR1 and with
the AutoT2 data to train ASR2. The duration of both
AutoT1 and AutoT2 was 11.1 h.

2. Threshold applied only in iteration 1. In this case only
a subset of the AutoT1 data (4.2 h) was pooled with
the ManT data to train ASR1. All 11.1 h of AutoT2

data was used to train ASR2.

3. Threshold applied in both iteration 1 and iteration 2.
This resulted in a 4.2 h subset of AutoT1 used to train
ASR1 and a 4.3 h subset of AutoT2 used to train ASR2.

These three scenarios are indicated by NT , TP1 and TP1P2

respectively in Table 3., which shows the number of utter-
ances assigned to each language pair. The total number of
utterances and corresponding duration of the data included
in the training set is shown in the last column.

Pass EZ EX ES ET TOTAL

1
NT

7 951 3 796 11 415 128 23 290 (11.1 h)
2 9 347 2 145 5 415 6 381 23 290 (11.1 h)

1
TP1

3 704 1 731 5 338 58 10 831 (4.2 h)
2 7 888 1 756 8 798 4 869 23 290 (11.1 h)

1
TP1P2

3 704 1 731 5 338 58 10 831 (4.2 h)
2 3 686 834 4 115 2 320 10 955 (4.3 h)

Table 2: Number of utterances assigned to each language
pair for automatically transcribed (AutoT) data.

4. Experiments
4.1. Language Modelling
The English-isiZulu vocabulary consisted of 11 292 unique
word types and was closed with respect to the training, de-
velopment and test sets. The SRILM toolkit (Stolcke, 2002)
was used to train a bilingual trigram language model (LM)
using the transcriptions described in Section 2.1. This LM
was interpolated with two monolingual trigrams trained on
471 million English and 3.2 million isiZulu words of news-
paper text, respectively. The interpolation weights were
chosen to minimise the development set perplexity. The re-
sulting language model was further interpolated with LMs
derived from the transcriptions produced by the process il-
lustrated in Figure 1 to obtain a semi-supervised LM.

4.2. Acoustic Modelling
All ASR experiments were performed using the Kaldi
toolkit (Povey and others, 2011) and the data described
in Section 2. The automatic transcription systems were
implemented using factorized time-delay neural networks
(TDNN-F) (Povey et al., 2018). For multilingual training,
the training sets of all four language pairs were combined.
However, the acoustic models were language dependent
and no phone merging across languages took place.
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Figure 1: Semi-supervised training framework for English-isiZulu code-switched (CS) ASR.

A context-dependent GMM-HMM was trained to provide
the alignments for neural network training. Three-fold
data augmentation was applied prior to feature extraction
(Ko et al., 2015) and the acoustic features comprised 40-
dimensional MFCCs (without derivatives), 3-dimensional
pitch features and 100-dimensional i-vectors for speaker
adaptation.
We used two types of neural network-based acoustic model
architectures: (1) TDNN-F with 10 time-delay layers fol-
lowed by a rank reduction layer trained using the Kaldi
Librispeech recipe (version 5.2.164) and (2) CNN-TDNN-
F consisting of two CNN layers followed by the TDNN-F
architecture. TDNN-F models have been shown to be ef-
fective in under-resourced scenarios (Povey et al., 2018).
The locality, weight sharing and pooling properties of the
CNNs have been shown to benefit ASR (Abdel-Hamid et
al., 2014). The default recipe parameters were used during
neural network training. In a final training step the multi-
lingual acoustic models were adapted with English-isiZulu
code-switched speech.

5. Results and Discussion
5.1. Language Modelling
Table 5.1. shows the test set perplexities (PP) for the LM
configurations described in Section 4.1. The baseline lan-
guage model, LM0, was trained on the English-isiZulu
acoustic training data transcriptions as well as monolingual
English and isiZulu text (Biswas et al., 2018b). LM0 was
also interpolated with trigram LMs trained on the 1-best
and 10-best outputs of AutoT2 respectively. MPP indicates
monolingual perplexity and is calculated over monolingual
stretches of text only, omitting points at which the language
alternates. CPP indicates code-switch perplexity and is cal-
culated only over language switch points. Therefore CPP
indicates the uncertainty of the first word following a lan-
guage switch.
Table 5.1. shows that, relative to the baseline, adding au-
tomatically generated English-isiZulu transcriptions to the
language model training data improves the overall perplex-
ity for both the development and test sets. The per-language
results show that this improvement is due to a lower isiZulu

LM PP (dev) PP MPPE MPPZ MPP CPP

LM0 (baseline) 425.8 601.7 121.2 777.8 358.1 3 292.0
LM0 + 1-best 416.1 587.4 123.1 743.6 351.1 3 160.3
LM0 + 10-best 408.2 583.6 124.4 722.8 346.9 3 205.2

Table 3: Perplexity of bilingual English-isiZulu trigram
LMs.

perplexity, while English suffers a small deterioration. CPP
is reduced when incorporating the 1-best automatic tran-
scriptions but less so when incorporating the 10-best. This
indicates that the code-switches present in the 1-best out-
puts are more representative of the unseen test set switches
than those present in the 10-best output.

5.2. Acoustic Modelling
ASR performance was evaluated on the English-isiZulu test
set for various configurations of the ASR1 and ASR2 sys-
tems.

5.2.1. ASR1

Table 5.2.1. reports WER results for different configura-
tions of ASR1. Previously-reported results using a balanced
subset of the corpus described in Section 2.1. are repro-
duced in rows 1 and 2. Language specific WERs are pro-
vided for the test set but not the development set.
The results in row 4 of the table show that, when the
TDNN-F network is preceded by two CNN layers, test
set recognition performance improves by 1.9% absolute.
Row 5, on the other hand, shows that the inclusion
of the automatically-transcribed English-isiZulu utterances
reduces the test set WER of the TDNN-F models by 1.8%
absolute. This improvement increases by an additional
0.8% absolute when including all the automatically tran-
scribed data and not just the English-isiZulu utterances, as
shown in row 6. Row 7 shows that the performance of the
CNN-TDNN-F system is also enhanced by including the
automatically transcribed data. In all the above cases, the
WER improvements are seen not only overall but also in
the English and isiZulu language-specific error rates.
Finally, the results in row 8 illustrate the impact of apply-
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ing a confidence threshold to decide which automatically-
transcribed utterances to include in the training set. The
values in the table indicate that the mixed WER deterio-
rates marginally and that the English WER improves at the
cost of a higher isiZulu WER.

System configuration Dev Test WERE WERZ

1
ManT (balanced)

TDNN-LSTM (Biswas et al., 2018a)
47.4 55.8 50.0 60.1

2
ManT (balanced)
TDNN-BLSTM (Biswas et al., 2018b)

47.1 53.1 47.6 57.2

3
ManT (baseline)
TDNN-F

41.3 47.4 41.8 51.8

4
ManT
CNN-TDNN-F

40.8 45.6 40.0 49.9

5
ManT + AutoT1 (EZ,NT )
TDNN-F

41.2 45.7 39.6 50.3

6
ManT + AutoT1 (All,NT )
TDNN-F

39.5 44.9 38.9 49.6

7
ManT + AutoT1 (All,NT )
CNN-TDNN-F (Biswas et al., 2019)

38.2 44.0 37.9 48.7

8
ManT + AutoT1 (All,TP1)
CNN-TDNN-F

38.8 44.2 36.6 50.1

Table 4: WER (%) on the English-isiZulu development
(dev) and test sets for different configurations of ASR1.

5.2.2. ASR2

The results for the second iteration of semi-supervised
training are reported in Table 5.2.2.. In all cases the ManT
data was pooled with all the AutoT data and not just the
EZ sub-set as was done in row 5 of Table 5.2.1.. Only
the results using the CNN-TDNN-F acoustic models are
shown, since this gave consistently superior performance
in Table 5.2.1..

Training data LM Dev Test WERE WERZ

1
ManT + AutoT2

(NT)
LM0 38.6 42.5 36.2 47.6

2
ManT + AutoT2

(TP1)
LM0 38.0 43.1 37.5 47.4

3
ManT + AutoT2

(TP1P2)
LM0 40.1 43.9 34.2 51.3

4
ManT + AutoT2

(NT, tuned)

LM0 36.5 41.9 33.0 48.8
5 LM0 + 1-best 36.5 41.8 33.9 47.9
6 LM0 + 10-best 36.7 42.0 34.0 48.1

Table 5: WER (%) on the English-isiZulu development
(dev) and test sets for different configurations of ASR2.

A comparison between row 1 in Table 5.2.2. and row 7 in
Table 5.2.1. reveals that a second pass of retraining affords
a further 1.5% absolute reduction in test set WER. This was
found to be statistically significant at more than 95% confi-
dence level using bootstrap interval estimation (Bisani and
Ney, 2004). Retraining ASR2 with a threshold applied only
to the output of AutoT1 results in a slightly higher WER on
the test set (row 2). Applying thresholds in both passes (row
3) improved the English WER but resulted in a substan-
tial deterioration in isiZulu WER. This result suggests that,
for the threshold value used here, English benefits from the
exclusion of low-confidence automatically transcribed data
while isiZulu does not. Thus, further study on the optimum
threshold configuration is required.

The results in row 4 of Table 5.2.2. show that a further 0.6%
absolute WER reduction can be achieved for the test set by
tuning the learning rate during adaptation. Rows 5 and 6
show that retraining the LM on text that includes automatic
transcriptions hardly influences recognition performance.
Thus, although semi-supervised training led to apprecia-
ble improvements in the acoustic models, the correspond-
ing positive effects on the language model were marginal.
A detailed analysis of different ASR outputs is shown in
Table 5.2.2.. The analysis confirms that semi-supervised
training resulted in substantial improvements in the English
and isiZulu word correct accuracy. The results also reveal a
substantial improvement in bigram correct accuracy at the
1 464 code-switch points occurring in the test set, where
bigram correct accuracy (%) is defined as the percentage of
words correctly recognised immediately after code-switch
points.

Accuracy (%)
Table 4
(Row 3)

Table 4
(Row 4)

Table 4
(Row 7)

Table 4
(Row 8)

Table 5
(Row 4)

Eng token correct 59.8 61.5 64.5 65.4 68.8
Zul token correct 50.1 51.4 53.2 51.6 53.5
Word correct after switch 53.4 55.6 58.3 57.6 60.9
Zul word correct after switch 49.7 51.4 53.6 51.6 54.4
English word correct after switch 56.7 59.3 62.5 62.9 66.7
Language correct after switch 76.8 76.9 79.1 79.0 81.6
Code-switch bigram correct 29.0 30.8 33.3 32.2 35.6

Table 6: Detailed analysis of ASR accuracy for different
acoustic models.

6. Conclusion
We have applied semi-supervised training to improve ASR
for under-resourced code-switched English-isiZulu speech.
Four different automatic transcription systems were used
in two phases to decode 11 hours of multilingual, manu-
ally segmented but untranscribed soap opera speech. We
found that by including CNN layers, CNN-TDNN-F acous-
tic models outperformed TDNN-F models on the code-
switched speech. Furthermore, semi-supervised training
provided a further absolute reduction of 5.5% in WER for
the CNN-TDNN-F system. While the automatically tran-
scribed English-isiZulu text data reduced language model
perplexity, this improvement did not lead to a reduction
in WER. By selective data inclusion using a confidence
threshold, approximately 60% of the automatically tran-
scribed data could be discarded at minimal loss in recog-
nition performance. A more thorough investigation of this
threshold remains part of ongoing work. We also aim to
further extend the pool of training data by incorporating
speaker and language diarisation systems to allow auto-
matic segmentation of new audio.
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