
Proceedings of the 13th Workshop on Building and Using Comparable Corpora, pages 65–68
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

65

BUCC2020: Bilingual Dictionary Induction using Cross-lingual Embedding

Sanjanasri JP, Vijay Krishna Menon, Soman K P
Center for Computational Engineering and Networking (CEN), Amrita School of Engineering,

Amrita Vishwa Vidyapeetham, Coimbatore- 641112, India
{p sanjanashree, m vijaykrishna}@cb.amrita.edu, kp soman@amrita.edu

Abstract
This paper presents a deep learning system for the BUCC 2020 shared task: Bilingual dictionary induction from comparable corpora.
We have submitted two runs for this shared Task, German (de) and English (en) language pair for “closed track” and Tamil (ta) and
English (en) for the “open track”. Our core approach focuses on quantifying the semantics of the language pairs, so that semantics of
two different language pairs can be compared or transfer learned. With the advent of word embeddings, it is possible to quantify this.
In this paper, we propose a deep learning approach which makes use of the supplied training data, to generate cross-lingual embedding.
This is later used for inducting bilingual dictionaries from comparable corpora.

1. Introduction

In machine translation, the extraction of bilingual dictio-
naries from parallel corpora have been conducted very suc-
cessfully. Theoretically, it is possible to extract multilin-
gual lexical knowledge from comparable rather than from
parallel corpora as the former is more abundant than the
latter. To implement any machine learning tasks in Natu-
ral Language processing (NLP), it is necessary to quantify
the semantics (meaning) of the word in a language. Rep-
resentation of semantics of a word quantitatively is made
possible with the evolution of word embeddings (Mikolov
et al., 2013a);they are dense distributed vector representa-
tions of words. This numerical representation mimics the
linguistic phenomena such as lexical, syntactic, morpho-
logical and other complex phenomena such as ambiguity,
negation, lemmas, inference and so on. Contemporary vec-
tor training algorithms such as GloVe and Word2Vec (Pen-
nington et al., 2014; Mikolov et al., 2013c) are more ac-
curate in capturing word to word semantics than conven-
tional vector space models such as Latent Semantic Anal-
ysis (LSA) (Deerwester et al., 1990) and perform better in
almost all downstream tasks in NLP (Treviso et al., 2017;
Bansal et al., 2014; Guo et al., 2014).

In this paper, we train a transfer learning model/Deep Neu-
ral Network(DNN) using pre-trained monolingual embed-
dings of the given bilingual dictionary. Source embedding
is given to DNN, so it generates a target embedding. The
generated embedding is compared with the original (mono-
lingual) embedding to find the closest embedding. The
word corresponding to the closest embedding is identified
as the word translation of the given source word. Simply,
we perform a reverse look up to identify the correct word
translation from the original embedding given the transfer
learned embedding.

Section 2 describes the systems that are experimented for
this task. Section 3 gives the details of the data used for this
experimentation. Section 4 gives insight about the compu-
tational complexity. Section 5 details the evaluation method
carried out to justify the system. Section 6 gives the results
of the systems. Section 7 gives some concluding inferences
and remarks.

2. System Description
The main objective of this work is to develop an efficient
and accurate transfer learning method for attaining ‘cross-
lingual’ word embeddings without the large monolingual
and bilingual corpus. The system was developed in four
stages; each improving the accuracy. The test data result
submitted is run on the system that gave us the best accu-
racy. System one derives the translation matrix for the lan-
guage pair using the standard method (direct linear map-
ping) (Mikolov et al., 2013b). Given pairs of word vec-
tors in a source and target language < xi, yi >n

i=1 re-
spectively, we calculate the transformation matrix (W) be-
tween the two languages utilizing pseudo inverse X+ =
(XTX)−1XT , as follows:

XW = Y

W = X+Y
(1)

System two and three deploy deep learning network to learn
the mapping between two different language embeddings.
In this method we train a transfer learning model to gen-
erate cross-lingual embedding. Our method has obvious
advantages over the bilingual embedding (Chandar et al.,
2014; Gouws et al., 2015), because bilingual embeddings
might compromise semantics in order to project each lan-
guage (source and target) into the common vector space;
the semantic properties pertaining to the language might
be lost as the model considers only the common seman-
tic features between the languages. Our method generates
cross-lingual embedding by projecting the vectors of one
language into another language space without compromis-
ing the actual semantics of both the languages. Also, to
train an efficient bilingual embedding, it is necessary to
have large bilingual resources. The transfer learning model
can generate better cross-lingual embedding when trained
with as minimum as 5000 dictionary words. System two is
implemented on a Multi Layer Perceptron (MLP) and sys-
tem three uses Convolutional Neural Networks (CNN).
System four is a mere extension of the CNN with a small
topical modification. It fine tunes the pre-trained trans-
lational model (system 3) using neighbourhood relation-
ships. The systems of each language pair are implemented

66

Source embedding

Dense Layer

Dropout Layer

Projected target

embedding

Figure 1: Architecture of MLP for learning the transfer
model for cross-lingual embedding

Source embedding

1D-Max Pooling Layer

1D-Convolutional Layer

Flattening Layer

Dropout Layer

Projected target

embedding

Figure 2: Architecture of CNN for learning the transfer
model for cross-lingual embedding

as mentioned above, they are further trained over the mono-
lingual embedding of bilingual word pairs of the respective
languages.

2.1. Multi Layer Perceptron
The multi layer perceptrons (MLP) is a fully connected
DNN that holds a special place in NLP for intuitive non-
linear modeling. Our MLP topology possesses three dense
layers, that uses Rectified Linear Unit (ReLU) as its acti-
vation. The dropout layer that follows immediate to every
dense layer avoids overfitting in training. Cosine proxim-
ity is used as the loss function and RMSprop as optimizer.
Figure 1 depicts the architecture of MLP.

2.2. 1D- Convolutional Neural Network
The architecture of CNN has five layers, a CNN layer fol-
lowed by maxpooling, flatten layer, dropout layer and a
dense layer. Rectified Linear Unit (ReLU) is used as ac-
tivation function in each layer. Again, the cosine proximity
and RMSprop is used as loss function and optimizer re-
spectively for training. The CNN architecture is shown in
Figure 2.

2.3. Fine-tuned Convolutional Neural Network
(Fine-tuned CNN)

In this architecture of CNN, the translation model is trained
on neighbourhood relationship of source language word
pairs given the cosine similarity between the correspond-

Table 1: Description of Data

Language Pairs
Train

(#. of word pairs)

Test

(# of word pairs)
de - en 10095 6000
ta - en 21100 1999

ing target language word pairs as labels. The core objec-
tive of this network focuses on fine tuning the previously
learned translational model to improve on neighbourhood
relations.
For training, embeddings of randomly chosen source lan-
guage word pairs (wvsi , wvsj) from the dictionary is given
as an inputs to model1 and model2. The model1 and
model2 are identical copies of pre-trained translational
model discussed in section 2.2. The outputs of model1 and
model2, transfer learned/projected target language word
vectors (wvt∗i , wvt∗j), is passed on to the dot layer, that
computes the cosine proximity between the vectors. The
cosine distance/output of the dot layer is passed on to
dropout layer to avoid over fitting and finally passed on to
dense layer, where linear activation is used. For back prop-
agation, the cosine distance between the corresponding tar-
get language words (wti , wtj) for the source language word
(wsi , wsj) is given as labels, mean squared error and RM-
Sprop is used as a loss and optimizer respectively. Please
note, that, model1 and model2 are already trained and back
propagating with the cosine similarity of the word pairs
helps in better learning of the neighbourhood relations. The
topology of this model is shown in Figure 3

3. Data
For “closed track”, German (de) and English (en) language
pairs, we used the FastText pre-trained embeddings of
Wacky corpora (Conneau et al., 2017) and the given bilin-
gual dictionary for training. For “open track”, Tamil (ta)
and English (en) language pairs, FastText pre-trained em-
beddings of crawled web corpus (Bojanowski et al., 2017;
Pre-trained, 2019) and in-house dictionary is used. Details
of the dataset used for the tasks is shown in Table 1

4. Computational Complexity
To induce a word translation for the source word, we per-
form a reverse look up of the transfer learned target vector
with the original target monolingual embedding. Given a
set of source and target word < wsi , wti > and their corre-
sponding embeddings (original monolingual embeddings)
< wvsi , wvti > and transfer learned target embedding<
wvt∗i >. For every query source word wsi , the correct
target word wti is identified by locating the target em-
bedding wvti that is the closest neighbour to the transfer
learned/projected target word embedding wvt∗i , where co-
sine similarity is computed as a measure between the em-
bedding.
However, performing the reverse lookup is computation-
ally intensive. For instance, the embedding size of each test
data (German (de) and Tamil(ta)) is ∈ R2000×300 and En-
glish pre-trained Wacky and Crawled web corpus is approx-
imately 2 billion words. Henceforth, the size of original

67

Src_wrd1 embedding

1D-Max Pooling Layer

1D-Convolutional Layer

Flatten Layer

Dropout Layer

Projected target wrd1

embedding

Dot Layer

1D-Convolutional Layer

1D-Max Pooling Layer

Flatten Layer

Dropout Layer

Src_wrd2 embedding

Projected target wrd2

embedding

Dropout Layer

Cosine similarity of target word pair

cosine (tword1, tword2)

Figure 3: Architecture of CNN for learning the transfer model based on neighbourhood relations for cross-lingual embed-
ding

embedding is ∈ R2E9×300. The word vectors are of double
data type (8 bytes). The cartesian product of the original
embedding and transfer learned test embedding would sum
upto size of ∈ R4E12×300 (approximately, four trillion).
Computing such huge dataset takes months for a normal
computer system to compute. This complex computation is
deployed to the cluster using Apache Spark R© Framework.
The word pairs are filtered based on cosine similarity. The
figure 4 shows the architecture.

5. Evaluation Tasks
We know that word embeddings translate semantic rela-
tionships to spatial distances, in a good word embedding
model the semantically related word pairs in a languages
are expected to have closer spatial distance (higher simi-
larity score) in their respective embeddings. We use this
linguistic aspect to evaluate our cross-lingual word embed-
dings. Here, we treat the original (monolingually trained)
embedding as our ground truth and compare the global
neighbourhood behavior of the generated embeddding. Al-
gorithm 1 explains this. The original (monolingual pre-
trained) and transfer learned embedding are represented as
OrigV ec and TransV ec; N represents the size of the test
set. The similarity metric between two words vectors a and
b is computed using cosine distance as given in Equation 2.

cos(a, b) =
aT b

||a||.||b||
(2)

6. Results
The percentage accuracy of the test data on transfer learned
model of each language pairs, German-English (de-en) and
Tamil-English (ta-en), tested over various systems is shown

Algorithm 1: Algorithm for computing percentage ac-
curacy for global neighbourhood behaviour of the trans-
fer learned embeddings
Input: Input:OrigV ec, TransV ec
Output: Output: Accuracy

k, i← 0
for i < N do

for j < N do
CosOrigV ec[k] =
cos(OrigV ec[i], OrigV ec[j])
CosTransV ec[k] =
cos(TransV ec[i], T ransV ec[j])
k = k + 1

end for
end for
sum, i← 0
for i < N ∗N do
grad = CosOrigV ec[i]− CosTransV ec[i]
tmp = grad ∗ grad
sum = sum+ tmp

end for
RMSE = sqrt(sum/(N ∗N))
PerErr = (RMSE/2) ∗ 100
Accuracy = 100− PerErr

in Table 2. In fine-tuned CNN network (CNN+NN), the
dictionary is inducted by passing test data to model1 and
the output of model1 is calculated for percentage accuracy
on global neighbourhood. From the results in Table 2, it is
evident that CNN+NN network outperforms the other three
models in each language pair. Henceforth, the final result
submitted for the shared task is run on CNN+NN network

68

C
a

rt
e

si
a

n

P
a

ra
ll

e
li

ze
 T

e
xt

 F
il

e

Original Embedding

Text File

Transformed Embedding

Text File

TransVec_RDD

OrigVec_RDD

P
a

ir
 (

O
ri

g
,

T
ra

n
s)

 R
D

D

(G
ro

u
p

B
y
,

S
o

rt
,

F
il

te
r)

D
a

ta
 F

ra
m

e
 C

o
n

v
e

rs
io

n

C
o

si
n

e
 S

im
il

a
ri

ty

M
A

P
 R

D
D

(O
ri

g
,

T
ra

n
s,

 C
o

si
n

e)

D
a

ta
 F

ra
m

e

S
a

v
e

a
s

T
ex

t
F

il
e

Figure 4: Block diagram for reverse look up of dictionary using Apache Spark R© Framework

model.

Table 2: Percentage Accuracy of transfer model of various
systems

Models Language pairs
de - en ta - en

Linear Mapping 73.01 76.05
MLP 80.67 85.52
CNN 85.16 90.33

CNN+NN 89.91 93.65

7. Conclusion
In this paper, we were able to generate bilingual dictionary
for language pairs, German-English (de-en) and Tamil-
English (ta-en) by using ‘cross-lingual’ embeddings (vec-
tors in separate space, mapped) that is trained on neighbour-
hood relationship between source language word pairs. As
word embedding has no ground truth to evaluate the cross-
lingual embedding, we also proposed an evaluation method
to validate the model.
For ‘de-en’ and ‘ta-en’ language pairs, the model is trained
with 10095 and 21100 FastText pre-trained monolingual
embedding of bilingual words. We started with linear
mapping system, as the results were not satisfactory, we
moved on to deep learning network. In deep network, CNN
gave better accuracy than MLP. Hence, the CNN network
was further fine-tuned with a neighbourhood information of
source language. This gave the best accuracy among every
other systems. Henceforth, test data was run on this system.
The core system generates the transfer learned/projected
target embedding for the given source embedding. The
generated target embedding is compared with the origi-
nal monolingual target embedding to find the correct target
word translation for the source word. To do this reverse
lookup process, Apache Spark R© Scala language APIs is
utilized to manage the computational complexity and speed
up.

Bibliographical References
Bansal, M., Gimpel, K., and Livescu, K. (2014). Tailoring

continuous word representations for dependency parsing.
In Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short
Papers), pages 809–815. Association for Computational
Linguistics.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword informa-
tion. Transactions of the Association for Computational
Linguistics, 5:135–146.

Chandar, A. P. S., Lauly, S., Larochelle, H., Khapra, M. M.,
Ravindran, B., Raykar, V. C., and Saha, A. (2014). An
autoencoder approach to learning bilingual word repre-
sentations. CoRR, abs/1402.1454.

Conneau, A., Lample, G., Ranzato, M., Denoyer, L., and
Jégou, H. (2017). Word translation without parallel data.
CoRR, abs/1710.04087.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent se-
mantic analysis. JOURNAL OF THE AMERICAN SOCI-
ETY FOR INFORMATION SCIENCE, 41(6):391–407.

Gouws, S., Bengio, Y., and Corrado, G. (2015). Bilbowa:
Fast bilingual distributed representations without word
alignments. In ICML, volume 37 of JMLR Workshop and
Conference Proceedings, pages 748–756.

Guo, J., Che, W., Wang, H., and Liu, T. (2014). Revisiting
embedding features for simple semi-supervised learning.
In EMNLP.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. CoRR, abs/1301.3781.

Mikolov, T., Le, Q. V., and Sutskever, I. (2013b). Ex-
ploiting similarities among languages for machine trans-
lation. CoRR, abs/1309.4168.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.,
and Dean, J. (2013c). Distributed representations of
words and phrases and their compositionality. CoRR,
abs/1310.4546.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
EMNLP, volume 14, pages 1532–1543.

Pre-trained, E. (2019).
https://github.com/Kyubyong/wordvectors, June.

Treviso, M. V., Shulby, C. D., and Aluı́sio, S. M. (2017).
Evaluating word embeddings for sentence boundary de-
tection in speech transcripts. CoRR, abs/1708.04704.

	Introduction
	System Description
	Multi Layer Perceptron
	1D- Convolutional Neural Network
	Fine-tuned Convolutional Neural Network (Fine-tuned CNN)

	Data
	Computational Complexity
	Evaluation Tasks
	Results
	Conclusion

