
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 83–90
Online, November 20, 2020. c©2020 Association for Computational Linguistics

83

Unsupervised Evaluation for Question Answering with Transformers

Lukas Muttenthaler†‡ Isabelle Augenstein† Johannes Bjerva†�
† Dept. of Computer Science, University of Copenhagen

‡ Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig
� Dept. of Computer Science, Aalborg University

muttenthaler@cbs.mpg.de, augenstein@di.ku.dk, jbjerva@cs.aau.dk

Abstract

It is challenging to automatically evaluate the
answer of a QA model at inference time.
Although many models provide confidence
scores, and simple heuristics can go a long way
towards indicating answer correctness, such
measures are heavily dataset-dependent and
are unlikely to generalise. In this work, we
begin by investigating the hidden representa-
tions of questions, answers, and contexts in
transformer-based QA architectures. We ob-
serve a consistent pattern in the answer repre-
sentations, which we show can be used to auto-
matically evaluate whether or not a predicted
answer span is correct. Our method does
not require any labelled data and outperforms
strong heuristic baselines, across 2 datasets
and 7 domains. We are able to predict whether
or not a model’s answer is correct with 91.37%
accuracy on SQuAD, and 80.7% accuracy on
SubjQA. We expect that this method will have
broad applications, e.g., in semi-automatic de-
velopment of QA datasets.

1 Introduction

Evaluation of a QA model usually requires human-
annotated answer spans to compare a model’s out-
put with. At inference time, however, it is hard to
automatically estimate whether an extracted answer
span is correct. While many models can provide
confidence scores, and other heuristics might be
used to deduce whether a prediction is correct, such
measures are heavily dataset-dependent and are not
likely to generalise. Hence, given a new domain,
a costly procedure of human annotation needs to
be initiated in order to provide an estimate of the
model’s accuracy. However, this approach naturally
does not scale well to new unlabelled sequences.

In this work, we investigate Transformer-based
QA models. We hypothesise that hidden represen-
tations of later layers in such models contain infor-
mation related to correctness of answers. Indeed,

Figure 1: Probability Density Function of the cosine
similarities among tokens w.r.t. the true answer span
in SQuAD. Correct answer predictions (blue) tend to
have higher cosine similarities than wrong answer pre-
dictions (orange).

we observe a consistent pattern of closely clustered
answer token representations in the top three lay-
ers, whenever BERT correctly predicts an answer
span (see Figure 2). Conversely, both true and pre-
dicted answer spans are clustered together with the
remainder of the context, when an answer predic-
tion is erroneous. With clustering, we refer to the
transformation of high-dimensional token represen-
tations into 2-dimensional vector space through the
employment of PCA (Shlens, 2014), followed by
t-SNE (van der Maaten and Hinton, 2008). We fur-
thermore see that correctly identified answer spans
show a high mean cosine similarity across final
layers (Figure 1). Before computing the cosine
similarity between token representations, we apply
PCA to remove noise, and preserve 95% of the
variance in the low-rank, orthogonal representation
(see 2.4 for detailed information).

We demonstrate how this insight can be used
to predict whether or not a prediction from a
Transformer-based QA model is correct. We evalu-
ate our method across two distinct QA datasets in

84

Figure 2: Hidden representations of answers are clus-
tered separately from the remaining context for correct
answer span predictions. This clustering is obtained
by applying PCA followed by t-SNE (to save computa-
tional time), projecting the hidden representations for
each token in a randomly chosen input sequence into
R2. Blue diamonds: question. Red stars: answer. Grey
dots: context.

English, covering 7 domains. We observe that the
pattern can be used for automatic evaluation in both
SQuAD v2.0 (Rajpurkar et al., 2018a) and SubjQA
(Bjerva et al., 2020), a recently released dataset
containing subjective questions and answers across
several domains. We show that we can evaluate
such models without any labelled test data, with an
accuracy of 91.37% on SQuAD, and 80.7% accu-
racy on the more challenging and diverse SubjQA.

Contributions (i) We investigate how a
Transformer-based model encodes correct and
incorrect answer spans in its hidden representa-
tions; (ii) We propose a method to leverage the
information contained in these representations to
predict whether a given answer span prediction is
correct or not; (iii) We demonstrate that a combina-
tion of our method with simple heuristics yields
near-perfect predictions of answer correctness.

2 Method

2.1 Data

We experiment on two English-language QA
datasets: SQuAD v2.0 (Rajpurkar et al., 2018a)
and SubjQA (Bjerva et al., 2020). Since SQuAD
v2.0 exclusively contains objective questions that
belong to a single domain, Wikipedia, we con-
trast this with the more diverse SubjQA. Sub-
jQA is a recently developed span-selection QA
dataset that mainly consists of questions whose
answer involves subjective opinions (Bjerva et al.,
2020). Answer spans are extracted from review
paragraphs that correspond to six different domains,

namely books, electronics, groceries,
movies, restaurants, tripadvisor.

2.2 Experimental Setup

For each of our implemented QA models, we use
a pre-trained DistilBERT Transformer (Sanh et al.,
2019) with one fully-connected output layer on
top.1 Compared to BERT (Devlin et al., 2019), with
12 layers in the base model, DistilBERT only con-
tains 6 Transformer layers, without showing a sta-
tistically significant deterioration in performance
on a variety of NLP downstream tasks (Wang et al.,
2018; Rajpurkar et al., 2018a; Sanh et al., 2019).

We fine-tune BERT on either SQuAD v2.0 (Ra-
jpurkar et al., 2018a) or SubjQA (Bjerva et al.,
2020) before investigating the hidden representa-
tions. Since we analyse the similarity of hidden
representations across answer span tokens, we only
fine-tune BERT on answerable questions. Unan-
swerable questions correspond to BERT’s special
[CLS] token. Therefore, a similarity analysis of
hidden representations is not carried out for these.

2.3 Answers are Separate from the Context

In order to investigate if any patterns are visible in
the hidden representations, we project them into R2

via PCA (Shlens, 2014) and t-SNE (van der Maaten
and Hinton, 2008) at each Transformer layer. This
layer-wise analysis reveals how the model clusters
tokens in latent space at each stage of the model.
Figure 2 shows this for every token in a randomly
chosen sentence pair, for which the model correctly
answered the questions. Interestingly, the model
clusters both the question and the answer separately
from the context. We observe the same pattern with
the standard BERT model, which is in line with
one recent study (van Aken et al., 2019). It is this
pattern which we seek to investigate further.

2.4 Answer Vector Agreements

As depicted in Figure 2, the model’s hidden rep-
resentations for each token in the answer span are
clustered more closely in vector space for correct
compared to wrong answer span predictions. This
is particularly visible in the final three layers of
the model, where high-level rather than low-level
linguistic features are represented. To verify this
observation quantitatively, we compute the average
cosine similarities among all hidden representa-
tions for each token in the answer span, whenever

1https://huggingface.co/transformers/

https://huggingface.co/transformers/

85

the correct answer contains more than a single to-
ken. Hence, the following analysis was conducted
exclusively for answerable questions since the cor-
rect answer span for unanswerable questions corre-
sponds to the special [CLS] token.

Before this computation, we remove all fea-
ture representations corresponding to the special
[PAD] token and transform the matrix of hidden
representations Hi ∈ RT×D2 for each sentence
pair sequence (q, c)i into a lower-dimensional
space to remove noise and exclusively keep those
principal components that explain the most vari-
ance among the feature representations. In so do-
ing, we use PCA (Shlens, 2014) and retain 95% of
the hidden representations’ variance. This yields
a matrix of transformed hidden representations
H̃i ∈ RT×P , for each sentence pair (q, c)i. From
the transformed matrix of hidden representations,
we extract the matrix of hidden representations cor-
responding to answer span tokens H̃a(i) ∈ RTa×P

to compute the average cosine similarity solely
across all answer vectors.

2.5 Average Cosine Similarity
The average cosine similarity among the rows of
the answer representation matrix H̃a(i) ∈ RTa×P

is computed as follows,

cosH̃(a)i
= 2

∑Ta
j

∑Ta
k(k>j) cos(H

jT

a(i), H
kT

a(i)) ∈ RP

TaTa − Ta
,

(1)

where the cosine similarity between two non-
zero vectors u and v is defined as,

cos(u,v) =
u · v
‖u‖‖v‖ =

∑n
i=1 uivi√∑n

i=1 u
2
i

√∑n
i=1 v

2
i

(2)

Since the cosine similarity is a symmetric metric
we can compute the sum exclusively over the upper
triangular of the similarity matrix (i.e., ∀k > j),
thus saving computational time. The computation
from Equation 1 is performed for the two sets of
correct and erroneous answer span predictions sep-
arately to inspect potential differences between the
two w.r.t. their average cosine similarities. This
was done at each Transformer layer l ∈ L, where
L = 6, to examine shifts in the cosine similarity
distributions across space.

2T is equal to the number of tokens in a sentence pair
(q, c)i without appended [PAD] tokens and D = 768 which
is the model’s hidden size in each layer.

2.6 Probability Distributions in Correct and
Erroneous Answers

Based on having observed this pattern, we investi-
gate how it extends to correct and incorrect answer
span predictions. Figure 1 shows that the proba-
bility to observe a high internal cosine similarity,
cosH̃(a)i

, in later layers is significantly higher for
correct compared to erroneous answer span predic-
tions.

We can formalise the pattern by investigating
the cumulative distribution function of the repre-
sentations (CDF). The probability pl(cdf) that an
observed cosH̃(a)i

at Transformer layer l lies in-
between two cosine values can be obtained through
the following interpolation,

(3)
pl(cdf) = P (cosl

H̃(a)
≤ cosl

H̃(a)i
+ ∆)

− P (cosl
H̃(a)

≤ cosl
H̃(a)i

−∆),

where cosl
H̃(a)

denotes the train distribution of

cosl
H̃(a)(i ∈N)

w.r.t. either correct or erroneous an-

swer span predictions, and ∆ is a hyperparameter
that refers to the boundaries of the CDF interval.
∆ is set to .1 for all experiments, and pl(cdf) is com-
puted ∀ l ∈ L.

We compare the distribution cosl
H̃(a)

correspond-
ing to correct and erroneous answer span predic-
tions respectively against each other ∀ l ∈ L. We
apply independent t-tests, and adjust p-values post-
hoc using Bonferroni correction to counteract the
multiple comparisons problem. Analyses are per-
formed for both development and test sets.

Table 1 shows that µ with respect to cosl
H̃(a)

is
significantly higher (p ≤ 1e−4) for correct com-
pared to erroneous answer span predictions for
Transformer layers 5 and 6 across datasets. Apart
from SQuAD’s test set, the same observation holds
for Transformer layer 4. This is in line with both
boxplots, CDFs and PDFs, and indicates that an
incorrect predictions starts being erroneous at layer
4. This information can be conveniently lever-
aged for downstream applications, which is what
we show in the following section by applying it to
the evaluation of QA.

2.7 Predicting Answer Correctness
We train a simple feed-forward neural network
(FFNN) with one hidden layer to predict whether
the fine-tuned QA-model made an erroneous or cor-
rect answer span prediction for an input sequence
xi. The FFNN is defined as follows,

86

LAYER \ SOURCE SQUAD SUBJQA

DEV TEST DEV TEST

p-value diff. p-value diff. p-value diff. p-value diff.

LAYER 1 .121 +.037 .312 +.031 .012 −.028 .000*** −.034
LAYER 2 .069 +.040 .256 +.021 .020 −.036 .001** −.031
LAYER 3 .007** +.054 .419 +.028 .185 −.027 .232 −.020
LAYER 4 .002** +.061 .422 +.023 .000*** +.089 .000*** +.109
LAYER 5 .000*** +.151 .000*** +.094 .000*** +.115 .000*** +.133
LAYER 6 .000*** +.157 .000*** +.095 .000*** +.116 .000*** +.129

Table 1: Differences between correct and erroneous answer span predictions with respect to cosH̃(a) (see Equa-
tion 1) at every Transformer layer. p-values refer to statistically significant differences according to Bonferroni
corrected independent t-tests (p < .05 =*, p < .01 = **, p < .001 = ***, p = .000 ≤ 1e− 4). The difference in
mean cosine similarities between prediction sets is captured by the diff. column. + indicates higher cosH̃(a) values
for correct answer span predictions. Highly statistically significant differences (***) are marked in bold face.

zi = WM×M
i xM×1i + bM×1i (4)

yi = σ(W 1×M
i zM×1i + b1×1i), (5)

where σ denotes the sigmoid function. The sig-
moid function was applied to the FFNN’s raw out-
put logits since an answer span prediction could
either be correct or incorrect.

2.8 Model training

SQUAD SUBJQA

DEV TEST DEV TEST

700 843 475 1145

Table 2: Number of examples in the leveraged develop-
ment (i.e., train) and test sets.

Each FFNN is trained for a maximum number
of 25 epochs until convergence. For optimization,
we use Adam (Kingma and Ba, 2015) with a learn-
ing rate of η = .01 and a weight decay of .005
(this is equivalent to the L2 norm). Gradients are
clipped whenever ||∂L∂θ || ≥ 10. Input sequences are
presented to the model in mini-batches of 8. The
FFNN is implemented in PyTorch (Paszke et al.,
2019). Both BERT for QA and the FFNN are
trained and evaluated on a single Titan X GPU
with 12 GB memory. Usually, a dataset is split into
three parts, namely a train, a development, and a
test set, where the latter two splits together com-
prise approx. 20-30% of the original dataset. Note
that train and test datasets for SQuAD are equally
large, and for SubjQA the test set even contains
more than twice as many examples as the train set

(see Table 2). Our train sets are the actual develop-
ment sets (excluding unanswerable questions) with
respect to the official QA datasets since we do not
want to perform computations on hidden represen-
tations the QA model did produce during training.
As such, we ascertain that the FFNN is trained on
data the BERT model has never encountered during
QA training. Hence, we cannot leverage develop-
ment sets, and are limited to small training sets,
which in turn further enhances the generalisability
and potential of our approach.

We leverage one of the following three feature
sets as inputs to the FFNN,

1. Raw. For each sentence pair, xi, we extract
cosH̃(a)i

and the standard deviation (s) w.r.t.
the vector of cosine similarities among the
rows of the matrix H̃a(i) ∈ RTa×P , where
i 6= j, at every Transformer layer. Hence,
M = 2× L.

2. Approximation. We multiply element-
wise or concatenate pl(cdf) ∀ l ∈ L with the
raw cosine vector (see above). However,
instead of knowing to which train distribu-
tion the observed cosl

H̃(a)i
belongs, we ap-

proximate pl(cdf) at test time with weighting
cosl

H̃(a)
w.r.t. correct and erroneous predic-

tions differently (see Section 2.9). Hence,
M = 2 × L (weighting) or M = 2 × 2 × L
(concat).

3. CDF-aware. Instead of approximating
pl(cdf), the model is aware of whether an ob-
served cosl

H̃(a)i
must be interpolated given

the distribution of correct or erroneous predic-
tions. Again, the vector of pl(cdf) ∀ l ∈ L is
concatenated or multiplied element-wise with

87

the raw cosine vector. Hence,M = 2×2×L
(concat) or M = 2 × L (weighting). This
shows whether the FFNN benefits from infor-
mation about the true train CDFs, establishing
the performance ceiling when approximating
pl(cdf) without information loss.

2.9 Approximating CDFs

Since at test time we are not aware of whether a
BERT for QA model predicted an answer span cor-
rectly or erroneously, we have implemented two
different weighting strategies to approximate the
true pl(cdf) ∀ l ∈ L. cosl

H̃(a)
denotes the train distri-

bution of cosl
H̃(a)i

∀ i ∈ N with respect to either
erroneous or correct answer span predictions. Note,
one must interpolate cosl

H̃(a)i
given either of the

two train distributions to yield pl(cdf). Thus, one is
required to infer to which of the two train distri-
butions an observed cosl

H̃(a)i
at test time probably

belongs to. We approximated as follows,

1. Distance. Here, we simply compute the
distance between an observed cosl

H̃(a)i
to the

centroid of each of the two train distributions
cosl

H̃(a)
. We leveraged the inverse distance as

wl
i, such as,

wl
i(correct) = 1− (cosl

H̃(a)i
−µli(correct))

wl
i(incorrect) = 1− (cosl

H̃(a)i
−µli(incorrect)),

(6)

where an wl
i is higher, if cosl

H̃(a)i
happens to

be closer to the mean of a train distribution.

2. CDF properties. In this approximation,
we exploited the mathematical properties of
CDFs. In general, the smaller |P (cosl

H̃(a)
≤

cosl
H̃(a)i

) − P (cosl
H̃(a)

≥ cosl
H̃(a)i

)| is, the
higher is the likelihood that an observed
cosl

H̃(a)i
belongs to this CDF as it denotes

the area under the curve with the highest prob-
ability mass, which is considered the center.
Hence, we exploited the inverse of the ob-
tained value as wl

i, such as,

wl
i(correct) =

1− |P (cosl
H̃(a) (correct)

≤ cosl ˜H(a)i
)

− P (cosl
H̃(a) (correct)

≥ cosl
H̃(a)i

)|

wl
i(incorrect) =

1− |P (cosl
H̃(a) (incorrect)

≤ cosl
H̃(a)i

)

− P (cosl
H̃(a) (incorrect)

≥ cosl
H̃(a)i

)|,
(7)

where wl
i becomes large, the smaller

|P (cosl
H̃(a)

≤ cosl
H̃(a)i

) − P (cosl
H̃(a)

≥
cosl

H̃(a)i
)| is.

For both approaches, we approximated the true
p(cdf)

l
i through a weighted sum of p(cdf)li(correct)

and p(cdf)li(incorrect) through the following compu-
tation,

(8)

p(cdf)
l
i =

1

2
×(p(cdf)

l
i(correct) × wl

i(correct))

+ (p(cdf)
l
i(correct) × wl

i(incorrect))

In initial experiments, we examined both ap-
proximation strategies. Due to Distance result-
ing in higher macro F1-scores than approximating
through CDF properties, results are reported
only for Distance. However, the difference be-
tween the two approaches was not significant, and
might require further examination in follow-up
studies.

Baselines We compare the features obtained with
our method against the following three baselines:
(i) Majority, (ii) QA concat (hidden rep-
resentations of question and answer), and (iii)
Heuristic (e.g. n-gram overlap features).

1. Majority. This approach simply predicts
the most common class (i.e., correct or erro-
neous answer span prediction).

2. QA concat. Concatenation of the average
hidden representation w.r.t. the predicted an-
swer span and question at last Transformer
layer, where xi ∈ R2×768. Hence, M =
1536.

3. Heuristic. Intuitively reasonable features,
where xi ∈ R9. Hence, M = 9.

(a) length of the predicted answer span;

88

METHOD \ SOURCE SQUAD SUBJQA

MAJORITY 45.65% 42.11%
QA CONCAT 63.62% 46.44%
HEURISTIC 87.23% 61.90%

cosraw 49.19% 69.36%
cosweight 63.63% 58.44%
cosconcat 55.28% 68.14%

HEURISTIC ⊕ cosraw 87.90% 74.56%
HEURISTIC ⊕ cosweight 88.43% 72.29%
HEURISTIC ⊕ cosconcat 88.33% 76.42%

cosweight (CDF-aware) 78.58% 83.38%
cosconcat (CDF-aware) 69.14% 90.46%

Table 3: Macro F1-scores for the binary classifica-
tion task of predicting whether a fine-tuned BERT for
QA model correctly or incorrectly predicted an answer
span. F1-scores were averaged over five different ran-
dom seeds. Best scores are depicted in bold face.

(b) average n-gram overlap between pre-
dicted answer and question (i.e., BLEU
score);

(c) cosine similarity between the average
hidden representation w.r.t. the predicted
answer span and question at last Trans-
former layer;

(d) vector of unigram, bigram, and trigram
overlaps between predicted answer and
question, normalized by the number of
tokens in the answer and the question.

3 Results

3.1 Unsupervised QA Evaluation

Table 3 shows that solely exploiting cosH̃(a) or ad-
ditionally informing the model about p(cdf) out-
performs all baselines for two out of three ap-
proaches when evaluating on SubjQA (rightmost
column). Interestingly, results slightly differ when
examining QA-performance for SQuAD (centre
column). The heuristics baseline yields a macro
F1-score of 87.23%, outperforming the two other
baselines by a large margin, and performing better
than our proposed approaches. However, concate-
nating the features from the heuristics baseline with
raw or approximation, further improves upon
this strong baseline across both datasets, achiev-
ing 88.43% and 76.42% macro F1 for SQuAD
and SubjQA respectively. For SubjQA, this leads
to an absolute improvement of 14.5% over the
strongest baseline, and suggests that information
about cosH̃(a) is decisive to predict a QA model’s
answer span prediction with respect to this dataset.

The results obtained from the CDF-aware model
show that further informing the model about p(cdf)
∀ l ∈ L has enormous potential to predict whether
a BERT for QA model made a mistake or not. The
F1-score of 90.46% indicates that mistakes might
be predicted almost faultlessly by more sophisti-
cated approximation methods, even without con-
catenating heuristic features.

Scaling cos H̃(a)i
l with p(cdf)li appears to work

better for SQuAD than concatenating cosl
H̃(a)i

and

pl(cdf)i
, whereas it is the other way around for

SubjQA. Hence, combining the two information
sources is crucial across datasets but which merg-
ing strategy works best is dataset dependent, and
might be a function of dataset complexity or num-
ber of context domains since these are the variables
in which SubjQA and SQuAD differ.

3.2 Error analysis
We investigate two examples where HEURISTIC

features alone did not suffice to yield a correct pre-
diction. Given the question from SQuAD “What
term did Eisenhower use to describe the character
of communism?”, the heuristic fails to identify the
model’s output as an incorrect answer. Similarly,
given the question from SubjQA “Are there any
reviews on bath options at this hotel?” and the cor-
rect model answer “great bathroom”, the heuristic
fails to identify this as a correct answer. The con-
catenation of cosH̃(a), and additional information
about p(cdf) were necessary to obtain correct pre-
dictions. We further see that the observed cosH̃(a)
values are in line with our qualitative and statistical
analyses. cosH̃(a) is significantly higher in the final
three Transformer layers for a correct prediction,
and remains unchanged for erroneous predictions
(see Table 4 for more details).

4 Related Work

Since automatic evaluation is considered an impor-
tant topic in other areas of NLP, e.g. MT (Papineni
et al., 2002) and summarisation (Owczarzak et al.,
2012), we want to draw attention to such techniques
for QA. To the best of our knowledge, ours is the
first proposal unsupervised QA evaluation method.

One recent study which we take inspiration from
present a layer-wise analysis of BERT’s Trans-
former layers to investigate how BERT answers
questions (van Aken et al., 2019). For each Trans-
former layer, they project the model’s hidden repre-
sentations into R2 to illustrate how BERT clusters

89

SOURCE SQUAD SUBJQA

Question ”What term did Eisenhower use to describe the
character of communism?”

”Are there any reviews on bath options at this
hotel?”

Answer ”atheistic” ”great bathroom”

BERT QA incorrect correct

HEURISTIC correct 7 incorrect 7

HEURISTIC ⊕ cosw incorrect 3

HEURISTIC ⊕ cosc correct 3

cosl
H̃(a)

∀l ∈ L [0.07, 0.16, 0.26, 0.27, 0.31, 0.20] [0.06, 0.14, 0.29, 0.62, 0.63, 0.55]

Table 4: Error analysis. cosl
H̃(a)

is presented for each of the six Transformer layers.

different parts of an input sequence while searching
for an answer span. We replicate their findings for
SQuAD, and show that this insight holds across
two datasets and seven domains through observing
the same patterns w.r.t. SubjQA. However, we use
this qualitative analysis just as an initial step from
which we start extracting information to develop
an unsupervised QA evaluation method.

Arkhangelskaia and Dutta (2019) investigate
which tokens in sentence pairs receive particular
attention by BERT’s self-attention mechanisms to
answer a question, and how the multi-headed at-
tention weights change across the different layers.
Similarly to van Aken et al. (2019), the authors
did solely conduct a qualitative analysis of the
model. Contrary to van Aken et al. (2019), the
study focuses on a single implementation of BERT
and exclusively exploited SQuAD (Rajpurkar et al.,
2016, 2018b) without inspecting BERT’s behaviour
with respect to other, more challenging QA datasets
where contexts belong to different domains. The
latter is particularly important for real-world set-
tings, which is why we also evaluate on SubjQA.

5 Discussion

The heuristic method we investigate in this work,
based on features such as n-gram overlap between
question and answer, yielded surprisingly high re-
sults on SQuAD. On the other hand, the results for
SubjQA were quite low when using the heuristic
only. This shows that, although a simple heuristic
might be sufficient for a single dataset, it does not
necessarily generalise across datasets and domains.

Conversely, our proposed method, which takes

answer span similarities into account, was highly
successful on SubjQA without the need for any
heuristic features, but only outperformed the
SQuAD baseline by 15-20% macro F1 score. Com-
bining the two methods yielded the best results
across both data sets and all domains. This demon-
strates that the information contained in the heuris-
tic approach and in our proposed method are com-
plementary.

5.1 Error analysis
The concatenation of cosH̃(a), and further informa-
tion about p(cdf) were necessary to obtain correct
predictions. The observed cosH̃(a) values are in
line with our qualitative and statistical analyses.
cosH̃(a) is significantly higher in the final three
Transformer layers for a correct prediction, and
remains unchanged for erroneous predictions (see
last row in Table 4). It is interesting to note that for
a correct answer span prediction cosH̃(a) increases
considerably from layer 3 to layer 4, but no notable
change can be observed thereafter.

6 Conclusion

We have shown that the hidden representations of
answers in transformer-based models can be used
to predict whether or not that answer is correct. In
combination with heuristic methods, we are able
to predict the correctness of answers with a macro
F1 score of 88.38% for SQuAD and 76.42% for
SubjQA. Apart from the applications in unsuper-
vised evaluation of QA, we expect that this method
can be applied to semi-automatic generation of QA
datasets.

90

Acknowledgements

The authors would like to thank the anonymous
reviewers for their feedback which contributed to
improving the final version of the paper.

References
Betty van Aken, Benjamin Winter, Alexander Löser,

and Felix A. Gers. 2019. How does bert answer
questions? a layer-wise analysis of transformer rep-
resentations. In Proceedings of the 28th ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’19, page 1823–1832, New
York, NY, USA. Association for Computing Machin-
ery.

Ekaterina Arkhangelskaia and Sourav Dutta. 2019.
Whatcha lookin’ at? deeplifting bert’s attention in
question answering. CoRR, abs/1910.06431.

Johannes Bjerva, Nikita Bhutani, Behzad Golshan,
Wang-Chiew Tan, and Isabelle Augenstein. 2020.
SubjQA: A dataset for Subjectivity and Review
Comprehension. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Karolina Owczarzak, John M. Conroy, Hoa Trang
Dang, and Ani Nenkova. 2012. An assess-
ment of the accuracy of automatic evaluation
in summarization. In Proceedings of Workshop
on Evaluation Metrics and System Comparison
for Automatic Summarization@NACCL-HLT 2012,
Montrèal, Canada, June 2012, 2012, pages 1–9. As-
sociation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018a.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 2: Short Papers, pages 784–789.
Association for Computational Linguistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018b.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 2: Short Papers, pages 784–789.
Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.
The Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Jonathon Shlens. 2014. A tutorial on principal compo-
nent analysis. CoRR, abs/1404.1100.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2018. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understand-
ing. In Proceedings of the Workshop: Analyzing
and Interpreting Neural Networks for NLP, Black-
boxNLP@EMNLP 2018, Brussels, Belgium, Novem-
ber 1, 2018, pages 353–355. Association for Com-
putational Linguistics.

https://doi.org/10.1145/3357384.3358028
https://doi.org/10.1145/3357384.3358028
https://doi.org/10.1145/3357384.3358028
http://arxiv.org/abs/1910.06431
http://arxiv.org/abs/1910.06431
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://www.aclweb.org/anthology/W12-2601/
https://www.aclweb.org/anthology/W12-2601/
https://www.aclweb.org/anthology/W12-2601/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1404.1100
http://arxiv.org/abs/1404.1100
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446

