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Abstract

Interpretability methods for neural networks
are difficult to evaluate because we do not un-
derstand the black-box models typically used
to test them. This paper proposes a framework
in which interpretability methods are eval-
uated using manually constructed networks,
which we call white-box networks, whose be-
havior is understood a priori. We evaluate five
methods for producing attribution heatmaps by
applying them to white-box LSTM classifiers
for tasks based on formal languages. Although
our white-box classifiers solve their tasks per-
fectly and transparently, we find that all five at-
tribution methods fail to produce the expected
model explanations.

1 Introduction

Attribution methods are a family of interpretabil-
ity techniques for individual neural network pre-
dictions that attempt to measure the importance of
input features for determining the model’s output.
Given an input, an attribution method produces a
vector of attribution or relevance scores, which is
typically visualized as a heatmap that highlights
portions of the input that contribute to model be-
havior. In the context of NLP, attribution scores
are usually computed at the token level, so that
each score represents the importance of a token
within an input sequence. These heatmaps can be
used to identify keywords upon which networks
base their decisions (Li et al., 2016; Sundararajan
et al., 2017; Arras et al., 2017a,b; Murdoch et al.,
2018, inter alia).

One of the main challenges facing the evalua-
tion of attribution methods is that it is difficult to
assess the quality of a heatmap when the network
in question is not understood in the first place. If a
word is deemed relevant by an attribution method,
we do not know whether the model actually con-
siders that word relevant, or whether the attribu-

tion method has erroneously estimated its impor-
tance. Indeed, previous studies have argued that
attribution methods are sensitive to features unre-
lated to model behavior in some cases (e.g., Kin-
dermans et al., 2019), and altogether insensitive to
model behavior in others (Adebayo et al., 2018).

To tease the evaluation of attribution methods
apart from the interpretation of models, this paper
proposes an evaluation framework for attribution
methods in NLP that uses only models that are
fully understood a priori. Instead of testing at-
tribution methods on black-box models obtained
through training, we construct white-box models
for testing by directly setting network parame-
ters by hand. Our focus is on white-box LSTMs
that implement intuitive strategies for solving sim-
ple classification tasks based on formal languages
with deterministic solutions. We apply our frame-
work to five attribution methods: occlusion (Zeiler
and Fergus, 2014), saliency (Simonyan et al.,
2014; Li et al., 2016), gradient × input, (G ×
I, Shrikumar et al., 2017), integrated gradients
(IG, Sundararajan et al., 2017), and layer-wise rel-
evance propagation (LRP, Bach et al., 2015). In
doing so, we make the following contributions.

• We construct four white-box LSTMs that can
be used to test attribution methods. We pro-
vide a complete description of our model
weights in Appendix A.1 Beyond the five
methods considered here, our white-box net-
works can be used to test any attribution
method compatible with LSTMs.

• Empirically, we show that all five attribu-
tion methods produce erroneous heatmaps for
our white-box networks, despite the models’
transparent behavior. As a preview of our re-

1We also provide code for our models at https://
github.com/yidinghao/whitebox-lstm.

https://github.com/yidinghao/whitebox-lstm
https://github.com/yidinghao/whitebox-lstm
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Task: Determine whether the input contains one of the fol-
lowing subsequences: ab, bc, cd, or dc.
Output: True, since the input aacb contains two (non-
contiguous) instances of ab.

Occlusion Saliency G × I IG LRP
a a c b a a c b a a c b a a c b a a c b
a a c b a a c b a a c b a a c b a a c b

Table 1: Sample heatmaps for two white-box networks:
a “counter-based” network (top) and an “FSA-based”
network (bottom). The features relevant to the output
are the two as and the b.

sults, Table 1 shows sample heatmaps com-
puted for two models designed to identify the
non-contiguous subsequence ab in the input
aacb. Even though both models’ outputs
are determined by the presence of the two as
and the b, all four methods either incorrectly
highlight the c or fail to highlight at least one
of the as in at least one case.

• We identify two general ways in which four
of the five methods do not behave as intended.
Firstly, while saliency, G × I and IG are theo-
retically invariant to differences in model im-
plementation (Sundararajan et al., 2017), in
practice we find that these methods can still
produce qualitatively different heatmaps for
nearly identical models. Secondly, we find
that LRP is susceptible to numerical issues,
which cause heatmaps to be zeroed out when
values are rounded to zero.

2 Related Work

Several approaches have been taken in the liter-
ature for understanding how to evaluate attribu-
tion methods. On a theoretical level, axiomatic
approaches propose formal desiderata that attribu-
tion methods should satisfy, such as implementa-
tion invariance (Sundararajan et al., 2017), input
translation invariance (Kindermans et al., 2019),
continuity with respect to inputs (Montavon et al.,
2018; Ghorbani et al., 2019), or the existence of
relationships between attribution scores and logit
or softmax scores (Sundararajan et al., 2017; An-
cona et al., 2018; Montavon, 2019). The degree
to which attribution methods fulfill these criteria
can be determined either mathematically or empir-
ically.

Other approaches, which are more experimental
in nature, attempt to directly assess the relation-
ship between attribution scores and model behav-

ior. A common test, due to Bach et al. (2015) and
Samek et al. (2017) and applied to sequence mod-
eling by Arras et al. (2017a), involves ablating or
perturbing parts of the input, from those with the
highest attribution scores to those with the lowest,
and counting the number of features that need to
be ablated in order to change the model’s predic-
tion. Another test, proposed by Adebayo et al.
(2018), tracks how heatmaps change as layers of
a network are incrementally randomized.

A third kind of approach evaluates the extent
to which heatmaps identify salient input features.
For example, Zhang et al. (2018) propose the
pointing game task, in which the highest-relevance
pixel for an image classifier input must belong
to the object described by the target output class.
Within this framework, Kim et al. (2018), Poerner
et al. (2018), Arras et al. (2019), and Yang and
Kim (2019) construct datasets in which input fea-
tures exhibit experimentally controlled notions of
importance, yielding “ground truth” attributions
against which heatmaps can be evaluated.

Our paper incorporates elements of the ground-
truth approaches, since it is straightforward to de-
termine which input features are important for
our formal language tasks. We enhance these ap-
proaches by using white-box models that are guar-
anteed to be sensitive to those features.

3 Formal Language Tasks

Formal languages are often used to evaluate the
expressive power of RNNs. Here, we focus on
formal languages that have been recently used to
probe LSTMs’ ability to capture three kinds of de-
pendencies: counting, long-distance, and hierar-
chical dependencies. We define a classification
task based on each of these formal languages.

3.1 Counting Dependencies

Counter languages (Fischer, 1966; Fischer et al.,
1968) are languages recognized by automata
equipped with counters. Weiss et al. (2018)
demonstrate using an acceptance task for the lan-
guages anbn and anbncn that LSTMs naturally
learn to use cell state units as counters. Merrill’s
(2019) asymptotic analysis shows that LSTM ac-
ceptors accept only counter languages when their
weights are fully saturated. Thus, counter lan-
guages may be viewed as a characterization of the
expressive power of LSTMs.

We define the counting task based on a simple
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example of a counting language.

Task 1 (Counting Task). Given a string in x ∈
{a,b}∗, determine whether or not x has strictly
more as than bs.

Example 2. The counting task classifies aaab as
True, ab as False, and bbbba as False.

A counter automaton can solve the counting
task by incrementing its counter whenever an a
is encountered and decrementing it whenever a b
is encountered. It outputs True if and only if its
counter is at least 1. We expect attribution scores
for all input symbols to have roughly the same
magnitude, but that scores assigned to a will have
the opposite sign to those assigned to b.

3.2 Long-Distance Dependencies
Strictly piecewise (SP, Heinz, 2007) languages
were used by Avcu et al. (2017) and Mahalunkar
and Kelleher (2018, 2019a,b) to test the propen-
sity of LSTMs to learn long-distance dependen-
cies, compared to Elman’s (1990) simple recur-
rent networks. SP languages are regular languages
whose membership is defined by the presence or
absence of certain subsequences, which may or
may not be contiguous. For example, ad is a sub-
sequence of abcde, since both letters of ad occur
in abcde, in the same order. Based on these ideas,
we define the SP task as follows.

Task 3 (SP Task). Given x ∈ {a,b,c,d}∗, deter-
mine whether or not x contains at least one of the
following subsequences: ab, bc, cd, dc.

Example 4. In the SP task, aab is classified as
True, since it contains the subsequence ab. Sim-
ilarly, acb is classified as True, since it contains
ab non-contiguously. The string aaa is classified
as False.

The choice of SP languages as a test for long-
distance dependencies is motivated by the fact that
symbols in a non-contiguous subsequence may oc-
cur arbitrarily far from one another. The SP task
yields a variant of the pointing game task in the
sense that the input string may or may not contain
an “object” (one of the four subsequences) that the
network must identify. Therefore, we expect an in-
put symbol to receive a nonzero attribution score
if and only if it comprises a subsequence.

3.3 Hierarchical Dependencies
The Dyck language is the language D generated
by the following context-free grammar, where ε is

the empty string.

S → SS | (S) | [S] | ε

D contains all balanced strings of parentheses
and square brackets. Since D is often viewed as
a canonical example of a context-free language
(Chomsky and Schützenberger, 1959), several re-
cent studies, including Sennhauser and Berwick
(2018), Bernardy (2018), Skachkova et al. (2018),
and Yu et al. (2019), have used D to evaluate
whether LSTMs can learn hierarchical dependen-
cies implemented by pushdown automata. Here,
we consider the bracket prediction task proposed
by Sennhauser and Berwick (2018).

Task 5 (Bracket Prediction Task). Given a prefix p
of some string in D, identify the next valid closing
bracket for p.

Example 6. The string [([] requires a prediction
of ), since the ( is the last unclosed bracket. Sim-
ilarly, (()[ requires a prediction of ]. Strings
with no unclosed brackets, such as [()], require
a prediction of None.

In heatmaps for the bracket prediction task, we
expect the last unclosed bracket to receive the
highest-magnitude relevance score.

4 White-Box Networks

We use two approaches to construct white-box
networks for our tasks. In the counter-based ap-
proach, the cell state contains a set of counters,
which are incremented or decremented through-
out the computation. The network’s final output
is based on the values of the counters. In the
automaton-based approach, we use the LSTM to
simulate an automaton, with the cell state contain-
ing a representation of the automaton’s state. We
use a counter-based network to solve the counter
task and an automaton-based network to solve
the bracket prediction task. We use both kinds
of networks to solve the SP task. All networks
perfectly solve the tasks they were designed for.
This section describes our white-box networks at
a high level; a detailed description is given in Ap-
pendix A.

In the rest of this paper, we identify the alphabet
symbols a, b, c, and d with the one-hot vectors
for indices 1, 2, 3, and 4, respectively. The vectors
f (t), i(t), and o(t) represent the forget, input, and
output gates, respectively. g(t) is the value added
to the cell state at each time step, and σ represents
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the sigmoid function. We assume that the hidden
state h(t) and cell state c(t) are updated as follows.

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ g(t)

h(t) = o(t) ⊙ tanh
(
c(t)

)
4.1 Counter-Based Networks

In the counter-based approach, each position of
the cell state contains the value of a counter. To
adjust the counter in position j by some value
v ∈ (−1, 1), we set g(t)j = v, and we saturate the
gates by setting them to σ(m) ≈ 1, where m ≫ 0
is a large constant. For example, our network for
the counting task uses a single hidden unit, with
the gates always saturated and with g(t) given by

g(t) = tanh
(
u
[
1 −1

]
x(t)

)
,

where u > 0 is a hyperparameter that scales the
counter by a factor of v = tanh(u).2 When x(t) =
a, we have g(t) = v, so the counter is incremented
by v. When x(t) = b, we compute g(t) = −v, so
the counter is decremented by v.

For the SP task, we use seven counters. The
first four counters record how many occurrences
of each symbol have been observed at time step t.
The next three counters record the number of bs,
cs, and ds that form one of the four distinguished
subsequences with an earlier symbol. For exam-
ple, after seeing the input aaabbc, the counter-
based network for the SP task satisfies

c(6) = v
[
3 2 1 0 2 1 0

]⊤ .

The first four counters represent the fact that the
input has 3 as, 2 bs, 1 c, and no ds. Counter #5
is 2v because the two bs form a subsequence with
the as, and counter #6 is v because the c forms a
subsequence with the bs.

The logit scores of our counter-based networks
are computed by a linear decoder using the tanh
of the counter values. For the counting task, the
score of the True class is h(t), while the score of
the False class is fixed to tanh(v)/2. This means
that the network outputs True if and only if the
final counter value is at least v. For the SP task, the
score of the True class is h(t)5 + h

(t)
6 + h

(t)
7 , while

the score of the False class is again tanh(v)/2.

2We use u = 0.5 for the counting task, u = 0.7 for the
SP task, and m = 50 for both tasks.

4.2 Automata-Based Networks
We consider two types of automata-based net-
works: one that implements a finite-state automa-
ton (FSA) for the SP task, and one that implements
a pushdown automaton (PDA) for the bracket pre-
diction task.

Our FSA construction is similar to Korsky and
Berwick’s (2019) FSA construction for simple re-
current networks. Consider a deterministic FSA
A with states Q and alphabet Σ. To simulate
A using an LSTM, we use |Q| · |Σ| hidden
units, with the following interpretation. Suppose
that A transitions to state q after reading input
x(1),x(2), . . . ,x(t). The hidden state h(t) is a one-
hot representation of the pair

⟨
q,x(t)

⟩
, which en-

codes both the current state of A and the most
recent input symbol. Since the FSA undergoes a
state transition with each input symbol, the forget
gate always clears c(t), so that information written
to the cell state does not persist beyond a single
time step. The output layer simply detects whether
or not the FSA is in an accepting state. Details are
provided in Appendix A.3.

Next, we describe how to implement a PDA for
the bracket prediction task. We use a stack con-
taining all unclosed brackets observed in the input
string, and make predictions based on the top item
of the stack. We represent a bounded stack of size
k using 2k + 1 hidden units. The first k − 1 po-
sitions contain all stack items except the top item,
with ( represented by the value 1, [ represented
by −1, and empty positions represented by 0. The
kth position contains the top item of the stack. The
next k positions contain the height of the stack in
unary notation, and the last position contains a bit
indicating whether or not the stack is empty. For
example, after reading the input ([(() with a
stack of size 4, the stack contents ([( are repre-
sented by

c(5) =
[
1 −1 0 1 1 1 1 0 0

]⊤ .

The 1 in position 4 indicates that the top item of
the stack is (, and the 1, −1, and 0 in positions
1–3 indicate that the remainder of the stack is ([.
The three 1s in positions 5–8 indicate that the stack
height is 3, and the 0 in position 9 indicates that the
stack is not empty.

When x(t) is ( or [, it is copied to c
(t)
k , and c

(t)
k

is copied to the highest empty position in c
(t)
:k−1,

pushing the opening bracket to the stack. The
empty stack bit is then set to 0, marking the stack
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Name Formula

Saliency R
(c)
t,i (X) =

∂ŷc

∂x
(t)
i

∣∣∣
x
(t)
i =Xt,i

G × I R
(c)
t,i (X) = Xt,i

∂ŷc

∂x
(t)
i

∣∣∣
x
(t)
i =Xt,i

IG R
(c)
t,i (X) = Xt,i

∫ 1

0

∂ŷc

∂x
(t)
i

∣∣∣
x
(t)
i =αXt,i

dα

Table 2: Definitions of the gradient-based methods.

as non-empty. When the current input symbol is
a closing bracket, the highest item of positions 1
through k − 1 is deleted and copied to position
k, popping the top item from the stack. Because
the PDA network is quite complex, we focus here
on describing how the top stack item in position
k is determined, and leave other details for Ap-
pendix A.4. Let α(t) be 1 if x(t) = (, −1 if
x(t) = [, and 0 otherwise. At each time step,
g
(t)
k = tanh

(
m · u(t)

)
, where m ≫ 0 and

u(t) = 2kα(t) +
k−1∑
j=1

2j−1h
(t−1)
j . (1)

Observe that m · u(t) ≫ 0 when α(t) = 1, and
m · u(t) ≪ 0 when α(t) = −1. Thus, g(t)k contains
the stack encoding of the current input symbol if it
is an opening bracket. If the current input symbol
is a closing bracket, then α(t) = 0, so the sign of
u(t) is determined by the highest item of h(t−1)

:k−1 .

5 Attribution Methods

Let X be a matrix of input vectors, such that the
input at time t is the row vector Xt,: =

(
x(t)

)⊤
.

Given X , an LSTM classifier produces a vector
ŷ of logit scores. Based on X , ŷ, and possibly
a baseline input X , an attribution method assigns
an attribution score R

(c)
t,i (X) to input feature Xt,i

for each output class c. These feature-level scores
are then aggregated to produce token-level scores:

R
(c)
t (X) =

∑
i

R
(c)
t,i (X).

Broadly speaking, our five attribution methods are
grouped into three types: one perturbation-based,
three gradient-based, and one decomposition-
based. The following subsections describe how
each method computes R(c)

t,i (X).

5.1 Perturbation- and Gradient-Based
Methods

Perturbation-based methods are premised on the
idea that if Xt,i is an important input feature,
then changing the value of Xt,i would cause ŷ
to change. The one perturbation method we con-
sider is occlusion. In this method, R(c)

t,i (X) is the
change in ŷc observed when Xt,: is replaced by 0.

Gradient-based methods rely on the same intu-
ition as perturbation-based methods, but use auto-
matic differentiation to simulate infinitesimal per-
turbations. The definitions of our three gradient-
based methods are given in Table 2. The most
basic of these is saliency, which simply measures
relevance by the derivative of the logit score with
respect to each input feature. G × I attempts to im-
prove upon saliency by using the first-order terms
in a Taylor-series approximation of the model in-
stead of the gradients on their own. IG is designed
to address the issue of small gradients found in sat-
urated units by integrating G × I along the line
connecting X to a baseline input X , here taken to
be the zero matrix.

5.2 Decomposition-Based Methods
Decomposition-based methods are methods that
satisfy the relation

ŷc = R
(c)
bias +

∑
t,i

R
(c)
t,i (X), (2)

where R
(c)
bias is a relevance score assigned to the

bias units of the network. The interpretation of
equation (2) is that the logit score ŷc is “dis-
tributed” among the input features and the bias
units, so that the relevance scores form a “decom-
position” of ŷc.

The one decomposition-based method we con-
sider is LRP, which computes scores using a back-
propagation algorithm that distributes scores layer
by layer. The scores of the output layer are initial-
ized to

r
(c,output)
i =

{
ŷi, i = c

0, otherwise.

For each layer l with activation z(l), activation
function f (l), and output a(l) = f (l)

(
z(l)

)
, the rel-

evance r(c,l) of a(l) is determined by the following
propagation rule:

r
(c,l)
i =

∑
l′

∑
j

r
(c,l′)
j

W
(l′←l)
j,i a

(l)
i

z
(l′)
j + sign

(
z
(l′)
j

)
ε

,
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where l′ ranges over all layers to which l has a
forward connection via W (l′←l) and ε > 0 is a
stabilizing constant.3 For the LSTM gate interac-
tions, we follow Arras et al. (2017b) in treating
multiplicative connections of the form a(l1)⊙a(l2)

as activation functions of the form a(l1) ⊙ f (l2)(·),
where a(l1) is f (t), i(t), or o(t). The final attribu-
tion scores are given by the values propagated to
the input layer:

R
(c)
t,i (X) = r

(c,inputt)
i .

6 Qualitative Evaluation

To evaluate attribution methods under our frame-
work, we begin with a qualitative description of
the heatmaps that are computed for our white-
box networks, based on the illustrative sample of
heatmaps appearing in Table 3.

6.1 Counting Task
Occlusion, G × I, and IG are well-behaved for the
counting task. As expected, these methods assign
a a positive value and b a negative value when the
output class for attribution is c = True. When the
number of as is different from the number of bs,
occlusion assigns a lower-magnitude score to the
symbol with fewer instances. When c = False,
all relevance scores are 0. This is because ŷFalse is
fixed to a constant value supplied by a bias term,
so input features cannot affect its value.

Saliency and LRP both fail to produce nonzero
scores, at least in some cases. Saliency scores
satisfy R

(True)
t,1 (X) = −R

(True)
t,2 (X), resulting in

token-level scores of 0 for all inputs. Heatmaps #3
and #4 show that LRP assigns scores of 0 to pre-
fixes containing equal numbers of as and bs. We
will see in Subsection 7.1 that this phenomenon ap-
pears to be related to the fact that the LSTM gates
are saturated.

6.2 SP Task
We obtain radically different heatmaps for the two
SP task networks, despite the fact that they pro-
duce the same classifications for all inputs.

For the counter-based network, all methods ex-
cept for saliency assign positive scores for c =
True to symbols constituting one of the four sub-
sequences, and scores of zero elsewhere. The
saliency heatmaps do not adhere to this pat-
tern, and instead generally assign higher scores

3We use ε = 0.001.

to tokens occurring near the end of the input.
Heatmaps #7–10 show that LRP fails to assign
positive scores to the first symbol of each subse-
quence, while the other methods generally do not.4

The LRP behavior reflects the fact that the initial
a does not increment the subsequence counters,
which determine the final logit score. In contrast,
the behavior of occlusion, G × I, and IG is ex-
plained by the fact that removing either the a or
the b destroys the subsequence. Note that the as
in heatmap #9 receive scores of 0 from occlusion
and G × I, since removing only one of the two as
does not destroy the subsequence.

For the FSA-based network, saliency, G × I,
and LRP assign only the last symbol a nonzero
score when the relevance output class c matches
the network’s predicted class. IG appears to pro-
duce erratic heatmaps, exhibiting no immediately
obvious pattern. Although occlusion appears to
be erratic at first glance, its behavior can be ex-
plained by the fact that changing x(t) to 0 causes
h(t) to be 0, which the LSTM interprets as the ini-
tial state of the FSA; thus, R(c)

t (X) ̸= 0 precisely
when Xt+1:,: is classified differently from X. In
all cases, the heatmaps for the FSA-based network
diverge significantly from the expected heatmaps.

6.3 Bracket Prediction Task

The heatmaps for the PDA-based network also dif-
fer strikingly from those of the other networks,
in that the gradient-based methods never assign
nonzero scores. This is because equation (1)
causes g(t) to be highly saturated, resulting in zero
gradients. In the case of LRP, the matching bracket
is highlighted when c ̸= None. When the match-
ing bracket is not the last symbol of the input, the
other unclosed brackets are also highlighted, with
progressively smaller magnitudes, and with brack-
ets of the opposite type from c receiving negative
scores. This pattern reflects the mechanism of (1),
in which progressively larger powers of 2 are used
to determine the content copied to c

(t)
k . When the

relevance output class is c = None, LRP assigns
opening brackets a negative score, revealing the
fact that those input symbols set the bit c(t)2k+1 to in-
dicate that the stack is not empty. Although occlu-
sion sometimes highlights the matching bracket, it
does not appear to be consistent in doing so. For
example, it fails to highlight the matching bracket

4Although it is difficult to see, IG assigns a small positive
score to the bs in heatmaps #7 and #8.
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Network # c Target Occlusion Saliency G × I IG LRP

Counting

1 True True a a a b b a a a b b a a a b b a a a b b a a a b b
2 True False b b b a a b b b a a b b b a a b b b a a b b b a a
3 True False a a a b b b a a a b b b a a a b b b a a a b b b a a a b b b
4 True False a a b b b a a b b b a a b b b a a b b b a a b b b
5 False True a a a b b a a a b b a a a b b a a a b b a a a b b
6 False False a a b b b a a b b b a a b b b a a b b b a a b b b

SP (Counter)

7 True True a c b a c b a c b a c b a c b
8 True True a c b b a c b b a c b b a c b b a c b b
9 True True a a c b a a c b a a c b a a c b a a c b
10 True True a b c a b a b c a b a b c a b a b c a b a b c a b
11 True False a a c c a a c c a a c c a a c c a a c c
12 False True a c b a c b a c b a c b a c b
13 False False a a c c a a c c a a c c a a c c a a c c

SP (FSA)

14 True True a c b a c b a c b a c b a c b
15 True True a c b b a c b b a c b b a c b b a c b b
16 True True a a c b a a c b a a c b a a c b a a c b
17 True True a b c a b a b c a b a b c a b a b c a b a b c a b
18 True False a a c c a a c c a a c c a a c c a a c c
19 False True a c b a c b a c b a c b a c b
20 False False a a c c a a c c a a c c a a c c a a c c

Bracket (PDA)

21 ] ] ( [ [ ( [ ( [ [ ( [ ( [ [ ( [ ( [ [ ( [ ( [ [ ( [
22 ) ) ( [ [ ( [ ] ( [ [ ( [ ] ( [ [ ( [ ] ( [ [ ( [ ] ( [ [ ( [ ]
23 None None ( [ [ ] ] ) ( [ [ ] ] ) ( [ [ ] ] ) ( [ [ ] ] ) ( [ [ ] ] )
24 ] ] [ ( [ ] [ ( ) [ ( [ ] [ ( ) [ ( [ ] [ ( ) [ ( [ ] [ ( ) [ ( [ ] [ ( )
25 ) ] [ ( [ ] [ ( ) [ ( [ ] [ ( ) [ ( [ ] [ ( ) [ ( [ ] [ ( ) [ ( [ ] [ ( )

Table 3: Selected heatmaps based on R
(c)
t (X). Red represents positive values and blue represents negative values.

Heatmaps with all values within the range of ±1× 10−5 are shown as all 0s.

u v ŷTrue Saliency G × I IG
0.6 0.537 0.151 a c c b a c c b a c c b
0.7 0.604 0.533 a c c b a c c b a c c b
0.8 0.664 0.581 a c c b a c c b a c c b
1 0.762 0.642 a c c b a c c b a c c b
4 0.999 0.761 a c c b a c c b a c c b
8 1.000 0.762 a c c b a c c b a c c b

16 1.000 0.762 a c c b a c c b a c c b
64 1.000 0.762 a c c b a c c b a c c b

Table 4: Gradient-based heatmaps of R
(True)
t (accb)

for the counter-based SP network, with 0.6 ≤ u ≤ 64.

in heatmap #21, and highlights one other bracket
in heatmaps #23–24.

7 Detailed Evaluations

We now turn to focused investigations of particular
phenomena that attribution methods exhibit when
applied to white-box networks. Subsection 7.1 be-
gins by discussing the effect of network saturation
on the gradient-based methods and LRP. In Sub-
section 7.2 we apply Bach et al.’s (2015) ablation
test to our attribution methods for the SP task.

7.1 Saturation

As mentioned in the previous section, network
saturation causes gradients to be approximately
0 when using sigmoid or tanh activation func-
tions. To test how attribution methods are affected

m σ(m) c(t) Accuracy % Blank
4 0.982 −8.74 × 10−3 90.1 0.2
5 0.993 −3.48 × 10−3 96.1 2.2
6 0.998 −1.32 × 10−3 99.8 6.5
7 0.999 −4.91 × 10−4 100.0 22.0
8 1.000 −1.81 × 10−4 100.0 42.1
9 1.000 −6.68 × 10−5 100.0 69.9

10 1.000 −2.46 × 10−5 100.0 92.3
11 1.000 −9.05 × 10−6 100.0 98.7
12 1.000 −3.33 × 10−6 100.0 99.8

Table 5: The results of the LRP saturation test, includ-
ing the value of m, the average value of c(t) when the
counter reaches 0, the network’s testing accuracy, and
the percentage of examples with blank heatmaps for
prefixes with equal numbers of as and bs.

by saturation, Table 4 shows heatmaps for the in-
put accb generated by gradient-based methods
for different instantiations of the counter-based SP
network with varying degrees of saturation. Re-
call from Section 4 that counter values for this net-
work are expressed in multiples of the scaling fac-
tor v. We control the saturation of the network
via the parameter u = tanh−1(v). For all three
gradient-based methods, scores for a decrease and
scores for b increase as u increases. Additionally,
saliency scores for the first c decrease when u in-
creases. When u = 8, v is almost completely satu-
rated, causing G × I to produce all-zero heatmaps.
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On the other hand, IG is still able to produce
nonzero heatmaps even at u = 64. Thus, IG is
much more resistant to the effects of saturation
than G × I.

According to Sundararajan et al. (2017),
gradient-based methods satisfy the axiom of im-
plementation invariance: they produce the same
heatmaps for any two networks that compute the
same function. This formal property is seemingly
at odds with the diverse array of heatmaps appear-
ing in Table 4, which are produced for networks
that all yield identical classifiers. In particular,
the networks with u = 8, 16, and 64 yield qual-
itatively different heatmaps, despite the fact that
the three networks are distinguished only by dif-
ferences in v of less than 0.001. Because the
three functions are technically not equal, imple-
mentation invariance is not violated in theory; but
the fact that IG produces different heatmaps for
three nearly identical networks shows that the in-
tuition described by implementation invariance is
not borne out in practice.

Besides the gradient-based methods, LRP is
also susceptible to problems arising from satura-
tion. Recall from heatmaps #3 and #4 of Table 3
that for the counting task network, LRP assigns
scores of 0 to prefixes with equal numbers of as
and bs. We hypothesize that this phenomenon is
related to the fact c(t) = 0 after reading such pre-
fixes, since the counter has been incremented and
decremented in equal amounts. Accordingly, we
test whether this phenomenon can be mitigated by
desaturating the gates so that c(t) does not exactly
reach 0. Recall that the white-box LSTM gates ap-
proximate 1 ≈ σ(m) using a constant m ≫ 0. We
construct networks with varying values of m and
compute LRP scores on a randomly generated test-
ing set of 1000 strings, each of which contains at
least one prefix with equal numbers of as and bs.
In Table 5 we report the percentage of examples
for which such prefixes receive LRP scores of 0,
along with the network’s accuracy on this testing
set and the average value of c(t) when the counter
reaches 0. Indeed, the percentage of prefixes re-
ceiving scores of 0 increases as the approximation
c(t) ≈ 0 becomes more exact.

7.2 Ablation Test

So far, we have primarily compared attribution
methods via visual inspection of individual exam-
ples. To compare the five methods quantitatively,

Method SP (Counter) SP (FSA)
Occlusion 61.8±12.2 52.6±11.7
Saliency 97.8±1.1 96.0±2.5
G × I 65.7±14.4 96.0±2.5
IG 47.5±7.6 94.9±2.9
LRP 64.3±12.7 96.0±2.5

Random 96.1±2.5
Optimal 42.7±3.8

Table 6: Mean and standard deviation results of the ab-
lation test, normalized by string length and expressed
as a percentage. “Optimal” is the best possible score.

we apply the ablation test of Bach et al. (2015)
to our two white-box networks for the SP task.5

Given an input string classified as True, we iter-
atively remove the symbol with the highest rele-
vance score, recomputing heatmaps at each itera-
tion, until the string no longer contains any of the
four subsequences. We apply the ablation test to
100 randomly generated input strings, and report
the average percentage of each string that is ab-
lated in Table 6. A peculiar property of the SP
task is that removing a symbol preserves the valid-
ity of input strings. This means that, unlike in NLP
settings, our ablation test does not suffer from the
issue that ablation produces invalid inputs.

Saliency, G × I, and LRP perform close to the
random baseline on the FSA network; this is unsur-
prising, since these methods only assign nonzero
scores to the last input symbol. While Table 3
shows some variation in the IG heatmaps, IG also
performs close to the random baseline. Only oc-
clusion performs considerably better, since it is
able to identify symbols whose ablation would de-
stroy subsequences.

On the counter-based SP network, IG performs
remarkably close to the optimal benchmark, which
represents the best possible performance on this
task. Occlusion, G × I, and LRP achieve a sim-
ilar level of performance to one another, while
saliency performs worse than the random baseline.

8 Conclusion

Of all the heatmaps considered in this paper, only
those computed by G × I and IG for the counting
task fully matched our expectations. In other cases,
all attribution methods fail to identify at least some
of the input features that should be considered rel-
evant, or assign relevance to input features that do

5We do not consider the counting task because its
heatmaps are already easy to understand, and we do not con-
sider the PDA network because the gradient-based methods
fail to produce nonzero heatmaps for that network.
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not affect the model’s behavior. Among the five
methods, saliency achieves the worst performance:
it never assigns nonzero scores for the counting
and bracket prediction tasks, and it does not iden-
tify the relevant symbols for either of the two SP
networks. Saliency also achieves the worst perfor-
mance on the ablation test for both the counter-
based and the FSA-based SP networks. Among
the four white-box networks, the two automata-
based networks proved to be much more challeng-
ing for the attribution methods than the counter-
based networks. While the LRP heatmaps for
the PDA network correctly identify the matching
bracket when available, no other method produces
reasonable heatmaps for the PDA network, and all
five methods fail to interpret the FSA network.

Taken together, our results suggest that attri-
bution heatmaps should be viewed with skepti-
cism. This paper has identified cases in which
heatmaps fail to highlight relevant features, as well
as cases in which heatmaps incorrectly highlight
irrelevant features. Although most of the meth-
ods perform better for the counter-based networks
than the automaton-based networks, in practical
settings we do not know what kinds of computa-
tions are implemented by a trained network, mak-
ing it impossible to determine whether the network
under analysis is compatible with the attribution
method being used.

In future work, we encourage the use of our four
white-box models as qualitative benchmarks for
evaluating interpretability methods. For example,
the style of evaluation we have developed can be
replicated for attribution methods not covered in
this paper, including DeepLIFT (Shrikumar et al.,
2017) and contextual decomposition (Murdoch
et al., 2018). We believe that insights gleaned from
white-box analysis can help researchers choose be-
tween different attribution methods and identify ar-
eas of improvement in current techniques.
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Klaus-Robert Müller, and Wojciech Samek. 2017a.
“What is relevant in a text document?”: An inter-
pretable machine learning approach. PLOS ONE,
12(8):e0181142.
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Dähne, Dumitru Erhan, and Been Kim. 2019. The
(Un)reliability of Saliency Methods. In Woj-
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A Detailed Descriptions of White-Box
Networks

This appendix provides detailed descriptions of
our four white-box networks.

A.1 Counting Task Network
As described in Subsection 4.1, the network for
the counting task simply sets g(t) to v = tanh(u)
when x(t) = a and −v when x(t) = b. All
gates are fixed to 1. The output layer uses h(t) =
tanh

(
c(t)

)
as the score for the True class and v/2

as the score for the False class.

g(t) = tanh
(
u
[
1 −1

]
x(t)

)
f (t) = σ(m)

i(t) = σ(m)

o(t) = σ(m)

ŷ(t) =

[
1
0

]
h(t) +

[
0

v/2

]
A.2 SP Task Network (Counter-Based)
The seven counters for the SP task are imple-
mented as follows. First, we compute g(t) under
the assumption that one of the first four counters is
always incremented, and one of the last three coun-
ters is always incremented as long as x(t) ̸= a.

g(t) = tanh

u


I4

0 1 0 0
0 0 1 0
0 0 0 1

x(t)


Then, we use the input gate to condition the last
three counters on the value of the first four coun-
ters. For example, if h(t−1)1 = 0, then no as have
been encountered in the input string before time t.
In that case, the input gate for counter #5, which
represents subsequences ending with b, is set to
i
(t)
5 = σ(−m) ≈ 0. This is because a b encoun-

tered at time t would not form part of a subse-
quence if no as have been encountered so far, so
counter #5 should not be incremented.

i(t) = σ

2m


0 0

1 0 0 0
0 1 0 1
0 0 1 0

0

h(t−1)

+m
[
1 1 1 1 −1 −1 −1

]⊤)
All other gates are fixed to 1. The output layer sets
the score of the True class to h

(t)
5 +h

(t)
6 +h

(t)
7 and

the score of the False class to v/2.

f (t) = σ(m1)

o(t) = σ(m1)

ŷ(t) =

[
0 1 1 1
0 0 0 0

]
h(t) +

[
0

v/2

]
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A.3 FSA Network
Here we describe a general construction of an
LSTM simulating an FSA with states Q, accepting
states QF ⊆ Q, alphabet Σ, and transition func-
tion δ : Q × Σ → Q. Recall that h(t) contains a
one-hot representation of pairs in Q×Σ encoding
the current state of the FSA and the most recent in-
put symbol. The initial state h(0) = 0 represents
the starting configuration of the FSA.

At a high level, the state transition system works
as follows. First, g(t) first marks all the positions
corresponding to the current input x(t).6

g
(t)
⟨q,x⟩ =

{
v, x = x(t)

0, otherwise

The input gate then filters out any positions that do
not represent valid transitions from the previous
state q′, which is recovered from h(t−1).

i
(t)
⟨q,x⟩ =

{
1, δ(q′, x) = q

0, otherwise

Now, we describe how this behavior is imple-
mented in our LSTM.

The cell state update is straightforwardly imple-
mented as follows:

g(t) = tanh
(
uW (c,x)x(t)

)
,

where

W
(c,x)
⟨q,x⟩,j =

{
1, j is the index for x
0, otherwise.

Observe that the matrix W (c,x) essentially con-
tains a copy of I4 for each state, such that each
copy is distributed across the different cell state
units designated for that state.

The input gate is more complex. First, the bias
term handles the case where the current case is the
starting state q0. This is necessary because the ini-
tial configuration of the network is represented by
h(0) = 0.

b
(i)
⟨q,x⟩ =

{
m, δ(q0, x) = q

−m, otherwise

The bias vector sets i(t)⟨q,x⟩ to be 1 if the FSA tran-
sitions from q0 to q after reading x, and 0 other-
wise. We replicate this behavior for other values

6We use v = tanh(1) ≈ 0.762.

of h(t−1) by using the weight matrix W (i,h), tak-
ing the bias vector into account:

i(t) = σ
(
W (i,h)h(t−1) + b(i)

)
,

where

W
(i)
⟨q,x⟩,⟨q′,x′⟩ =

{
m− b

(i)
⟨q,x⟩, δ(q′, x) = q

−m− b
(i)
⟨q,x⟩, otherwise.

The forget gate is fixed to −1, since the state needs
to be updated at every time step. The output gate
is fixed to 1.

f (t) = σ(−m1)

o(t) = σ(m1)

The output layer simply selects hidden units that
represent accepting and rejecting states:

ŷ(t) = Wh(t),

where

Wc,⟨q,x⟩ =


1, c = True and q ∈ QF

1, c = False and q /∈ QF

0, otherwise.

A.4 PDA Network

Finally, we describe how the PDA network for
the bracket prediction task is implemented. Of
the four networks, this one is the most intricate.
Recall from Subsection 4.2 that we implement a
bounded stack of size k using 2k+1 hidden units,
with the following interpretation:

• c
(t)
:k−1 contains the stack, except for the top

item

• c
(t)
k contains the top item of the stack

• c
(t)
k+1:2k contains the height of the stack in

unary notation

• c2k+1 is a bit, which is set to be positive if the
stack is empty and nonpositive otherwise.

We represent the brackets (, [, ), and ] in one-
hot encoding with the indices 1, 2, 3, and 4, re-
spectively. The opening brackets ( and [ are rep-
resented on the stack by 1 and −1, respectively. T
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We begin by describing g(t). Due to the com-
plexity of the network, we describe the weights
and biases individually, which are combined as fol-
lows.

g(t) = tanh
(
m

(
z(g,t)

))
, where

z(g,t) = W (c,x)x(t) +W (c,h)h(t−1) + b(c)

First, the bias vector sets c(t)2k+1 to be 1, indicating
that the stack is empty. This ensures that the initial
hidden state h(t) = 0 is treated as an empty stack.

b(c) =

[
0

2

]
W (c,x) serves three functions when x(t) is an open
bracket, and does nothing when x(t) is a closing
bracket. First, it pushes x(t) to the top of the stack,
represented by c

(t)
k . The values ±2k are deter-

mined by equation (1) in Subsection 4.2. Second,
it sets g(t)

k+1:2k to 1 in order to increment the unary
counter for the height of the stack. Later, we will
see that the input gate filters out all positions ex-
cept for the top of the stack. Finally, W (c,x) sets
the empty stack indicator to −1, indicating that the
stack is not empty.

W (c,x) =


0 0 0 0

2k −2k 0 0

1 1 0 0

−2 −2 0 0


W (c,h) performs two functions. First, it completes
equation (1) for c

(t)
k , setting it to be the second-

highest stack item from the previous time step.
Second, it copies the top of the stack to the first
k− 1 positions, with the input gate filtering out all
but the highest position.

W (c,h) =


0 1 0 0

2 4 · · · 2k−1 0 0 0

0 0 0 0

0 0 −1 0


Finally, the −1s serve to decrease the empty stack
indicator by an amount proportional to the stack
height at time t − 1. Observe that if x(t) is a clos-
ing bracket and h(t−1) represents a stack with only
one item, then

W
(c,x)
2k+1,:x

(t) +W
(c,h)
2k+1,:h

(t−1) + b
(c)
2k+1

= −1 + 2 = 1,

so the empty stack indicator is set to 1, indicating
that the stack is empty. Otherwise,

W
(c,x)
2k+1,:x

(t) +W
(c,h)
2k+1,:h

(t−1) ≤ −2,

so the empty stack indicator is nonpositive.
Now, we describe the input gate, given by the

following.

i(t) = σ
(
m

(
z(i,t)

))
z(i,t) = W (i,x)x(t) +W (i,h)h(t−1) + b(i)

W (i,x) sets the input gate for the first k − 1 po-
sitions to 0 when x(t) is a closing bracket. In that
case, an item needs to be popped from the stack, so
nothing can be copied to these hidden units. When
x(t) is an opening bracket, W (i,x) sets i

(t)
k = 1,

so that the bracket can be copied to the top of the
stack.

W (i,x) = 2

 0 0 −1 −1

1 1 0 0

0


W (i,h) uses a matrix Tn ∈ Rn×n, defined below.

Tn =


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1
0 0 0 . . . 0 1


Suppose v represents the number s in unary nota-
tion: vj is 1 if j ≤ s and 0 otherwise. Tn has the
special property that Tnv is a one-hot vector for s.
Based on this, W (i,h) is defined as follows.

W (i,h) = 2

 0

(Tk):k−1,:
0

(Tk):k−1,:
0

0


W

(i,h)
:k−1,k+1:2k contains Tk, with the last row trun-

cated. This portion of the matrix converts h(t−1)
k+1:2k,

which contains a unary encoding of the stack
height, to a one-hot vector marking the position
of the top of the stack. This ensures that, when
pushing to the stack, the top stack item from time
t − 1 is only copied to the appropriate position of
h
(t)
:k−1. The other copy of Tk, again with the last

row omitted, occurs in W
(i,h)
k+2:2k,k+1:2k. This copy

of Tk ensures that when the unary counter for the
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stack height is incremented, only the appropriate
position is updated. Finally, the bias vector en-
sures that the top stack item and the empty stack
indicator are always updated.

b(i) =


−1

1

−1

1


The forget gate is responsible for deleting por-

tions of memory when stack items are popped.

f (t) = σ
(
m

(
z(f,t)

))
z(f,t) = W (f,x)x(t) +W (f,h)h(t−1) + b(f)

W (f,x) first ensures that no stack items are deleted
when an item is pushed to the stack.

W (f,x) = 2


1 1 0 0

0 0 0 0

1 1 0 0

0 0 0 0


Next, W (f,h) marks the second highest stack posi-
tion and the top of the unary counter for deletion,
in case an item needs to be popped.

W (f,h) = 2

 0

− (Tk)2:,:
0

−Tk

0

0


Finally, the bias term ensures that the top stack
item and empty stack indicator are always cleared.

b(i) =


1

−1

1

−1


To complete the construction, we fix the output

gate to 1, and have the output layer read the top
stack position:

o(t) = σ(m1)

ŷ(t) = Wh(t),

where

Wc,j =


1, c = ) and j = k

−1, c = ] and j = k

1, c = None and j = 2k + 1

0, otherwise.


