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Abstract

How can neural networks perform so well
on compositional tasks even though they lack
explicit compositional representations? We
use a novel analysis technique called ROLE
to show that recurrent neural networks per-
form well on such tasks by converging to so-
lutions which implicitly represent symbolic
structure. This method uncovers a symbolic
structure which, when properly embedded in
vector space, closely approximates the encod-
ings of a standard seq2seq network trained to
perform the compositional SCAN task. We
verify the causal importance of the discovered
symbolic structure by showing that, when we
systematically manipulate hidden embeddings
based on this symbolic structure, the model’s
output is changed in the way predicted by our
analysis.

1 Introduction

Traditional models of cognition, and language in
particular, have relied heavily on symbol structures
and symbol manipulation. However, in the current
era, deep learning research has shown that Neural
Networks (NNs) can display remarkable degrees
of generalization on tasks traditionally viewed as
depending on symbolic structure (Wu et al., 2016;
McCoy et al., 2019a), albeit with some important
limits to their generalization (Lake and Baroni,
2018). Given that standard NNs have no obvious
mechanisms for representing symbolic structures,
parsing inputs into such structures, nor applying
compositional symbol-manipulating rules to them,
this success raises the question that we address
in this paper: How do NNs achieve such strong
performance on compositional tasks?

Could it be that NNs do learn symbolic
representations—covertly embedded as vectors in
their state spaces? McCoy et al. (2019a) showed
that when trained on highly compositional tasks,
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Goal: Interpret neural network encodings

RNN Encodin, RNN
Encoder & Decoder
jump and run twice —— Bl BEE W —— JUMP RUN RUN

jump and run left twice ——— W EEE'@EE —— JUMP LTURN RUN LTURN RUN

Method: Approximate the encod-
ings of a neural network with a more
interpretable compositional model (§4)

Step 1: Assign structural roles to words using a
learned role assigner.

Role Interpretation
Words: jump and  run  twice 2

Roles: 28 30 3 36 30

Command before “and”: Last word
“and”

11 Command after “and”: 1% word
Words: jump  and run left  twice

Roles: 28 30 11 3 36

3 Command after “and”: 2"-to-last word

36 Command after “and”: Last word

Step 2: Combine word and role vectors using a
closed-form equation with learned parameters.

Dy: filler embedding dictionary D,: role embedding dictionary

Key Value Key Value
jump [8IF 1] Role3 [Wmmm
run i Role 11 wummnin
Closed-form ion for positi dii
COMPOSITION(words) =W 3" | 1) [word,] @ D,[role;] + b= mum wman

\ J

The compositional encodings are functionally
equivalent to the RNN encodings. (§5.1)

words = jump and run twice
RNN RNN

Decoder
HEIWm FEEa — JUMPRUNRUN

COMPOSITION(words)

Decoder
BN pERm — JUMP RUN RUN
RNN(words)

The RNN encodings can be manipulated in sym-
bolic ways to alter the output. (§5.3)

RNN(jump and run twice)
EEmrmmEE —W(D;[twice] ® D,[36]) + W(Dy[thrice] ® D,[36]) =

— JUMP RUN RUN RUN
RNN Decoder

Figure 1: Summary of our approach.
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standard NNs learned representations that are func-
tionally equivalent to compositional vector embed-
dings of symbolic structures (Sec. 3). Processing
in these NN assigns structural representations to
inputs and generates outputs that are governed by
compositional rules stated over those representa-
tions. We refer to the networks we will analyze as
target NNs, because we will propose a new type
of NN (in Sec. 4)—the Role Learner (ROLE)—
which is used to analyze the target network. In
contrast with the analysis model of McCoy et al.
(2019a), which relies on a hand-specified hypothe-
sis about the structure underlying the learned rep-
resentations of the target NN, ROLE automatically
learns a symbolic structure that best approximates
the internal representation of the target network.
This yields two advantages. First, ROLE achieves
success at analyzing networks for which the under-
lying structure is unclear. We show this in Sec. 5,
where ROLE successfully uncovers the symbolic
structures learned by a seq2seq RNN trained on
the SCAN synthetic semantic parsing task (Lake
and Baroni, 2018). Second, removing the need for
hand-specified structural hypotheses reduces the
burden on the analyst, who only needs to provide
input sequences and their target NN encodings. Dis-
covering symbolic structure within a model enables
us to perform precise alterations to the internal rep-
resentations in order to produce desired alterations
in the output (Sec. 5.3). Then, in Sec. 6, we turn
briefly to partially-compositional tasks in NLP.
The novel contributions of this research are:

e ROLE, a NN module that learns to assign sym-
bolic structures to input sequences (Sec. 4).

e Demonstration that RNNs converge to compo-
sitional solutions on the synthetic SCAN task
(Sec. 5).

e A precise closed-form expression for the dis-
tributed encoding learned by an RNN trained
on SCAN, exhibiting its latent symbolic struc-
ture (Sec. 5.2).

e Demonstration of the causal relevance of this
symbolic structure by using the equation for
its vector encoding to control RNN output
through precise alteration of the RNN’s inter-
nal encoding (Sec. 5.3).

e Additional evidence showing that sentence
embedding models do not capture composi-
tional structure (Sec. 6).

2 Background Related work

2.1 Compositionality

Certain cognitive tasks consist in computing a func-
tion ¢ that is governed by strict rules: e.g., if ¢ is
the function mapping a mathematical expression
to its value (e.g., mapping ‘19 — 2 x 7’ to 5), then
 obeys the rule that p(z + y) = sum(¢(x), ¢(y))
for any expressions x and y. This rule is compo-
sitional: the output of a structure (here, x + y)
is a function of the outputs of the structure’s con-
stituents (here, x and y). The rule can be stated
with full generality once the input is assigned a
symbolic structure giving its decomposition into
constituents. For a fully-compositional task, com-
pletely determined by compositional rules, a sys-
tem that can assign appropriate symbolic struc-
tures to inputs and apply appropriate compositional
rules to these structures will display full systematic
generalization: it will correctly process arbitrary
novel combinations of familiar constituents. This
is a core capability of symbolic Al systems.

Other tasks, including most natural language
tasks such as machine translation, are only par-
tially characterizable by compositional rules: nat-
ural language is only partially compositional
in nature. For example, if ¢ is the func-
tion that assigns meanings to English adjec-
tives, it generally obeys the rule that ¢(in- +
x) = mnoty(x), (e.g., p(inoffensive) =
not ¢(offensive)), yet there are exceptions:
¢(inflammable) = @(flammable). On these
“partially-compositional” tasks, this strategy of
compositional analysis has demonstrated consider-
able, but limited, generalization capabilities.

2.2 Analysis of NNs

Many past works in the rich body of literature about
analyzing NNs focus on compositional structure
(Hupkes et al., 2020, 2018; Hewitt and Manning,
2019; Li et al., 2019) and systematicity (Lake and
Baroni, 2018; Goodwin et al., 2020). Two of the
most popular analysis techniques are the behav-
ioral and probing approaches. In the behavioral
approach, a model is evaluated on a set of exam-
ples carefully chosen to require competence in par-
ticular linguistic phenomena (Marvin and Linzen,
2018; Wang et al., 2018; Dasgupta et al., 2019; Po-
liak et al., 2018; Linzen et al., 2016; McCoy et al.,
2019b; Warstadt et al., 2020). This technique can
illuminate behavioral shortcomings but says little
about how the internal representations are struc-
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tured, treating the model as a black box.

In the probing approach, an auxiliary classifier
is trained to classify the model’s internal represen-
tations based on some linguistically-relevant dis-
tinction (Adi et al., 2017; Giulianelli et al., 2018;
Conneau et al., 2018; Conneau and Kiela, 2018;
Belinkov et al., 2017; Blevins et al., 2018; Pe-
ters et al., 2018; Tenney et al., 2019). In contrast
with the behavioral approach, the probing approach
tests whether some particular information is present
in the model’s encodings, but it says little about
whether this information is actually used by the
model. Indeed, in some cases models fail despite
having the necessary information to succeed in
their representations, showing that the ability of a
classifier to extract that information does not mean
that the model is using it (Voita and Titov, 2020;
Ravichander et al., 2020; Vanmassenhove et al.,
2017).

We build on McCoy et al. (2019a), which intro-
duced the analysis task DISCOVER (DISsecting
COmpositionality in VEctor Representations):
take a NN and, to the extent possible, find an
explicitly-compositional approximation to its in-
ternal distributed representations. DISCOVER al-
lows us to bridge the gap between representation
and behavior: It reveals not only what informa-
tion is encoded in the representation, but also re-
veals this information in a way that we can ma-
nipulate to show that the information is causally
implicated in the model’s behavior (Section 5.3).
Moreover, it provides a much more comprehensive
window into the representation than the probing
approach does; while probing extracts particular
types of information from a representation (e.g.,
“does this representation distinguish between active
and passive sentences?”’), DISCOVER exhaustively
decomposes the model’s representational space. In
this regard, DISCOVER is most closely related
to the approaches of Andreas (2019), Chrupata
and Alishahi (2019), and Abnar et al. (2019), who
also propose methods for discovering a complete
symbolic characterization of a set of vector repre-
sentations, and Omlin and Giles (1996) and Weiss
et al. (2018), which also seek to extract more in-
terpretable symbolic models that approximate neu-
ral network behavior. Like Andreas (2019) and
Chrupata and Alishahi (2019), we seek to find the
structure encoded in neural networks, rather than
seeking structure directly from the data as is the
goal in grammar induction work such as Shen et al.
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(2019) and Bowman et al. (2016).

3 NN embedding of symbol structures

McCoy et al. showed that, in GRU (Cho et al.,
2014) encoder-decoder networks performing
simple, fully-compositional string manipulations,
the medial encoding (between encoder and
decoder) could be extremely well approximated,
up to an affine transformation, by Tensor Product
Representations (TPRs) (Smolensky, 1990),
which are explicitly-compositional vector em-
beddings of symbolic structures. To represent a
string of symbols as a TPR, the symbols in the
string 337 might be parsed into three constituents
{3:posl, 7: pos3, 3: pos2}, where posn is the
role of n'" position from the left edge of the
string; other role schemes are also possible,
such as roles denoting right-to-left position:
{3: third-to-last,3: second-to-last,7: last}.
The embedding of a constituent 7: pos3 is
e(7:pos3) = ep(7) ® er(pos3), where ® is
the tensor product (outer product), er,er are
respectively a vector embedding of the roles and
a vector embedding of the fillers of those roles:
the digits. The embedding of the whole string
is the sum of the embeddings of its constituents.
In general, for a symbol structure S with roles
{ry} that are respectively filled by the symbols
{fk}, eTpR(S) = Zk eF(fk) X eR(rk). The
DISCOVER task including the TPR equations is
depicted in Figure 2.

At a high level, these role embeddings serve
a similar purpose as positional embeddings in a
Transformer (Vaswani et al., 2017), in that they
are vector embeddings of a token’s position in a
sequence. The roles discussed above—and the posi-
tional embeddings used in Transformers—illustrate
role schemes based on sequential position; non-
sequential role schemes such as positions in a tree
are also possible. McCoy et al. (2019a) showed
that,for a given seq2seq architecture learning a
given string-mapping task, there exists a highly
accurate TPR approximation of the medial encod-
ing, given an appropriate pre-defined role scheme.
The main technical contribution of the present pa-
per is the Role Learner (ROLE) model, an RNN
that learns its own role scheme to optimize the fit
of a TPR approximation to a given set of internal
representations in a pre-trained target NN. This
makes the DISCOVER framework more general by
removing the need for human-generated hypothe-



E———> Decoder E < Z fi®r;

Encoder

| Tensor Product = |
(Encoder E=) fiorn

Tensor Product | | 2
Encoder B | =

Figure 2: The DISCOVER task and functions. At the
top is the target network and question we pose: is the
internal embedding a TPR? The middle row is the TPE
which follows the provided equation. We train the TPE
to minimize the MSE between £ and E. In the bottom
row, we evaluate our model by passing the approxima-
tions through the decoder and checking the substitu-
tion accuracy — the proportion of examples for which
the approximated encoding E yields the correct output
when provided to the decoder .

ses about the role schemes the network might be
implementing. Learned role schemes, we will see
in Sec. 5.1, can enable good TPR approximation of
networks for which human-generated role schemes
fail.

4 The Role Learner (ROLE) Model

ROLE! produces a vector-space embedding of an
input string of 7' symbols S = s1s2 ... s by pro-
ducing a TPR T(S) and then passing it through an
affine transformation. ROLE is trained to approxi-
mate a pre-trained target string-encoder £. Given a
set of N training strings {S(!), ..., (")} ROLE
minimizes the total mean-squared error (MSE) be-
tween its output W T(S()) 4 b and £(s?).
ROLE is an extension of the Tensor-Product En-
coder (TPE) introduced in McCoy et al. (2019a)
(as the “Tensor Product Decomposition Network™)
and depicted in Figure 3. Crucially, ROLE is
not given role labels for the input symbols, but
learns to compute them. More precisely, it learns a
dictionary of ny dr-dimensional role-embedding
vectors, R € RU@*"r_and, for each input sym-
bol s, computes a soft-attention vector a; over
these role vectors: the role vector assigned to s;
is then the attention-weighted linear combination

!Code available at https://github.com/
psoulos/role-decomposition.

241

LI [el ]

}Linear

_
i | o | G
® 00 06

Figure 3: The Tensor Product Encoder architecture.
The fillers (yellow circles) and roles (blue circles) are
first vectorized with an embedding layer. These two
vector embeddings are combined by an outer product
to produce the green matrix representing the TPR of
the constituent. All of the constituents are summed to-
gether to produce the TPR of the sequence, and then
a linear transformation is applied to resize the TPR to
the target encoder’s dimensionality. ROLE replaces the
role embedding layer and directly produces the blue
role vector.

of role vectors, 7, = R a;. ROLE simultaneously
learns a dictionary of ng dp-dimensional symbol-
embedding filler vectors F' € R *"F  the ¢
column of which is fj, the embedding of symbol
type ¢; ¢ € 1,...,ny where np is the size of the
vocabulary of symbol types. The TPR generated
by ROLE is thus T(S) = Z?:l Fr(s,) ® 71, where
7(s¢) is symbol s;’s type. Finally, ROLE learns
an affine transformation to map this TPR into R¢,
where d is the dimension of the representations of
the encoder £.

ROLE uses an LSTM (Hochreiter and Schmidhu-
ber, 1997) to compute the role-assigning attention-
vectors a; from its learned embedding F' of the
input symbols s;: at each ¢, the hidden state
of the LSTM passes through a linear layer and
then a softmax to produce a; (depicted in Fig-
ure 4). Let the t'" LSTM hidden state be g; €
R, let the output-layer weight-matrix have rows
k; € R and let the columns of R be v, €
R with p=1...,ng. Thenr, = Ra;, =
Dok v softmax(k;qt): the result of query-key
attention (e.g., Vaswani et al., 2017) with query g
to a fixed external memory containing key-value
pairs {(k,, ”p)]’zir

Since a TPR for a discrete symbol structure de-
ploys a discrete set of roles specifying discrete
structural positions, ideally a single role would be
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Figure 4: The role learning module. The role attention
vector a; is encouraged to be one-hot through regular-
ization; if a; were one-hot, the produced role embed-
ding r; would correspond directly to one of the roles
defined in the role matrix R. The LSTM can be unidi-
rectional or bidirectional.

selected for each s;: a; would be one-hot. ROLE
training therefore deploys regularization to bias
learning towards one-hot a; vectors (based on the
regularization proposed in Palangi et al. (2017), de-
veloped for the same purpose). See Appendix A.2
for the precise regularization terms that we used.
It is essential to note that, while we impose this
regularization on ROLE, there is no explicit bias
favoring discrete compositional representations in
the target encoder £: any such structure that ROLE
finds hidden in the representations learned by &
must result from biases implicit in the vanilla RNN-
architecture of £ when applied to its target task.

5 The SCAN task

Returning to our central question from Sec. 1, how
can neural networks without explicit compositional
structure perform well on fully-compositional
tasks? Our hypothesis is that, though these models
have no constraint forcing them to be composi-
tional, they still have the ability to implicitly learn
compositional structure. To test this hypothesis,
we apply ROLE to a standard RNN-based seq2seq
model (Sutskever et al., 2014) trained on a fully
compositional task. Because the RNN has no con-
straint forcing it to use TPRs, we do not know a
priori whether there exists any solution that ROLE
could learn; thus, if ROLE does learn anything it
will be a significant empirical finding about how
these RNNs operate.

We consider the SCAN task (Lake and Ba-
roni, 2018), which was designed to test compo-
sitional generalization and systematicity. SCAN
is a synthetic semantic parsing task: an in-
put sequence describing an action plan, e.g.,

jump opposite left, is mapped to a sequence
of primitive actions, e.g., TL TL JUMP (see Sec. 5.3
for a complex example). We use TL to abbreviate
TURN_LEFT, sometimes written LTURN; similarly,
we use TR for TURN_RIGHT. The SCAN mapping
is defined by a complete set of compositional rules
(Lake and Baroni, 2018, Supplementary Fig. 7).

5.1 The compositional structure of SCAN
encoder representations

For our target SCAN encoder £, we trained a stan-
dard GRU with one hidden layer of dimension 100
for 100,000 steps (batch-size 1) with a dropout of
0.1 on the simple train-test split (hyperparameters
determined by a limited search; see Appendix A.3).
& achieves 98.47% (full-string) accuracy on the
test set. Thus £ provides what we want: a stan-
dard RNN achieving near-perfect accuracy on a
non-trivial fully compositional task.

After training, we extract the final hidden em-
bedding from the encoder for each example in the
training and test sets. These are the encodings
we attempt to approximate as explicitly compo-
sitional TPRs. We provide ROLE with 50 roles
to use as it wants (hyperparameters described in
Appendix A.4). We evaluate the substitution ac-
curacy that this learned role scheme provides in
three ways. The continuous method tests ROLE in
the same way as it was trained, with input symbol
s; assigned role vector r, = R a;. The continu-
ous method does not produce a discrete set of role
vectors because the linear layer that generates a; al-
lows for continuously-valued weights. The remain-
ing two methods test the efficacy of a truly discrete
set of role vectors. First, in the snapped method,
a; is replaced at evaluation time by the one-hot
vector m, singling out role m; = argmax(a;):
ry = R m,. This method serves the goal of enforc-
ing the discreteness of roles, but it is expected to
decrease performance because it tests ROLE in a
different way than it was trained. Our final evalu-
ation method, the discrete method, uses discrete
roles without having such a train/test discrepancy
by using a two-stage process. In the first stage, the
snapped method is used to output one-hot vector
roles m; for every symbol in the dataset. In the
second stage, we train a TPE which does not learn
roles but rather uses the one-hot vector m; as input
during training. In this case, ROLE acts as an auto-
matic data labeler, assigning a role to every input
word.
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Continuous Snapped Discrete

LTR

RTL Bi Tree Wickel BOW

94.83% 81.71% £ 7.28 92.44%

6.68%

6.96% 10.72% 4.31% 44.00% 4.52%

Table 1: Mean substitution accuracy for learned (bold) and hand-defined role schemes on SCAN across three
random initializations. Standard deviation was below 1% for all schemes except for snapped. Substitution accuracy
is measured by feeding ROLE’s approximation to the target decoder. (Sec. 5.1)

For comparison, we also train TPEs using a vari-
ety of discrete hand-crafted role schemes: left-to-
right (LTR), right-to-left (RTL), bidirectional (Bi),
tree position, neighbor-based Wickelrole (Wickel),
and bag-of-words (BOW) (descriptions of these
role schemes are in Appendix A.1).

The mean substitution accuracy from these dif-
ferent methods is shown in Table 1. All of the
predefined role schemes provide poor approxima-
tions, none surpassing 44.00% accuracy. The role
scheme learned by ROLE does significantly better
than any of the predefined role schemes: when
tested with the basic, continuous role-attention
method, the accuracy is 94.83%.

The success of ROLE tells us two things. First,
it shows that the target model’s compositional be-
havior relies on compositional internal represen-
tations: it was by no means guaranteed to be the
case that ROLE would be successful here, so the
fact that it is successful tells us that the encoder
has learned compositional representations. Sec-
ond, it adds further validation to the efficacy of
ROLE, because it shows that it can be a useful
analysis tool in cases of significantly greater com-
plexity than the simple string manipulation tasks
studied in McCoy et al. (2019a). In fact, it allows
us to write in closed form the embedding e(S)
of an input S = s;...s7 that is learned by the
SCAN encoder, to an excellent degree of approx-
imation (as measured by substitution accuracy):
e(s) = WZ?:I fT(St) @ Tp(sy) T b, where 7(s¢)
is symbol s;’s type, p(s¢) is the role assigned to
st by the algorithm discussed next, and the matri-
ces W, F' = [fi... fop], and R = [r1 ... 7]
and bias vector b are learned by ROLE. Note that
this expression is bilinear, even though the GRU
encoder that generates it includes nonlinearities.

5.2 Interpreting the learned role scheme

By analyzing the roles assigned by ROLE to the
sequences in the SCAN training set, we created
a symbolic algorithm for predicting which role
will be assigned to each filler. This section cov-
ers the primary factors of the algorithm, while the
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entire algorithm is described in Appendix A.5 and
discussed at additional length in Appendix A.6.
Though the algorithm was created based only on se-
quences in the SCAN training set, it is equally suc-
cessful at predicting which roles will be assigned to
test sequences, exactly matching ROLE’s predicted
roles for 98.7% of sequences.

The algorithm illuminates how the filler-role
scheme encodes information relevant to the task.
First, one of the initial facts that the decoder must
determine is whether the sequence is a single com-
mand, a pair of subcommands connected by and, or
a pair of subcommands connected by after; such
a determination is crucial for knowing the basic
structure of the output (how many actions to per-
form and in what order). We have found that role
30 is used for, and only for, the filler and, while
role 17 is used in and only in sequences containing
after (usually with after as the filler bound to
role 17). Thus, the decoder can use these roles to
tell which basic structure is in play: if role 30 is
present, it is an and sequence; if role 17 is present,
it is an after sequence; otherwise it is a single
command.

Once the decoder has established the basic syn-
tactic structure of the output, it must then fill in the
particular actions. This can be accomplished using
the remaining roles, which mainly encode absolute
position within a subcommand. For example, the
last word of a subcommand before after (e.g.,
jump left after walk twice) is always assigned
role 8, while the last word of a subcommand after
after (e.g., jump left after walk twice) is al-
ways assigned role 46. Therefore, once the decoder
knows (based on the presence of role 17) that it
is dealing with an after sequence, it can check
for the fillers bound to roles 8 and 46 to begin to
figure out what the two subcommands surrounding
after look like. The identity of the last word in a
subcommand is informative because that is where a
cardinality (i.e., twice or thrice) appears if there
is one. Thus, by checking what filler is at the end of
a subcommand, the model can determine whether
there is a cardinality present and, if so, which one.



ROLE itself does not provide an interpretation
for the symbolic structure it generates, but we have
shown that this structure can be successfully inter-
preted by humans. By contrast, it is very difficult
to interpret the continuous neuron values of RNN
representations; even the rare successful cases of
doing so, such as Lakretz et al. (2019) and Mu
and Andreas (2020), only interpret a few isolated
units, while we were able to exhaustively explain
the entire symbolic structure discovered by ROLE.

5.3 Precision constituent-surgery on internal
representations produces desired outputs

The substitution-accuracy results above show that
if the entire learned representation is replaced by
ROLE’s approximation, the output remains correct.
But do the individual word embeddings in this TPR
have the appropriate causal consequences when
processed by the decoder?

To address this causal question (Pearl, 2000),
we actively intervene on the constituent struc-
ture of the internal representations by replac-
ing one constituent with another syntactically
equivalent one,” and see whether this produces
the expected change in the output of the de-
coder. We take the encoding generated by
the RNN encoder £ for an input such as
jump opposite left, subtract the vector embed-
ding of the opposite constituent, add the embed-
ding of the around constituent, and see whether
this causes the output to change from the correct
output for jump opposite left (TL TL JUMP)
to the correct output for jump around left
(TL JUMP TL JUMP TL JUMP TL JUMP). The roles
in these constituents are determined by the algo-
rithm of Appendix A.5. If changing a word leads
other roles in the sequence to change (according to
the algorithm), we update the encoding with those
new roles as well. Such surgery can be viewed as
a more general extension of the analogy approach
used by Mikolov et al. (2013) for analysis of word
embeddings. An example of applying a sequence
of five such constituent surgeries to a sequence is
shown in Figure 5 (left). Even long sequences of
such replacements produce the expected change in
the decoder’s output with high accuracy (Figure 5,

We extract syntactic categories from the SCAN grammar
(Lake and Baroni, 2018, Supplementary Fig. 6) by saying that
two words belong to the same category if every occurrence of
one could be grammatically replaced by the other. We do not
replace occurrences of and and after since the presence of
either of these words causes substantial changes in the roles
assigned within the sequence (Appendix A.5).

right), indicating that the compositional structure
discovered by ROLE does play a central causal role
in the model’s behavior.

6 Partially-compositional NLP tasks

The previous sections explored fully-compositional
tasks where there is a strong signal for composi-
tionality. In this section, we explore whether the
representations of NNs trained on tasks that are
only partially-compositional also capture composi-
tional structure. Partially-compositional tasks are
especially challenging to model because a fully-
compositional model may enforce compositionality
too strictly to handle the non-compositional aspects
of the task, while a model without a compositional
bias may not learn any sort of compositionality
from the weak cues in the training set.

We test four sentence encoding models for com-
positionality: InferSent (Conneau et al., 2017),
Skip-thought (Kiros et al., 2015), Stanford Sen-
timent Model (SST) (Socher et al., 2013), and
SPINN (Bowman et al., 2016). For each of these
models, we extract the encodings for the SNLI
premise sentences (Bowman et al., 2015). We use
the extracted embeddings to train ROLE with 50
roles available (additional training information pro-
vided in Appendix A.8).

As a baseline, we also train TPEs that use pre-
defined role schemes (hyperparameters described
in Appendix A.7). For all of the sentence embed-
ding models except Skip-thought, ROLE with con-
tinuous attention provides the lowest mean squared
error at approximating the encoding (Table 2). The
BOW (bag-of-words) role scheme represents a TPE
that uses a degenerate ‘compositional’ structure
which assigns the same role to every filler; for each
of the sentence embedding models tested except for
SST, performance is within the same order of mag-
nitude as structure-free BOW. Parikh et al. (2016)
found that a bag-of-words model scores extremely
well on Natural Language Inference despite having
no knowledge of word order, showing that struc-
ture is not necessary to perform well on the sorts
of tasks commonly used to train sentence encoders.
Although not definitive, the ROLE results provide
no evidence that these models’ sentence embed-
dings possess compositional structure.

In future work, it would be interesting to per-
form a similar analysis on Transformer architec-
tures (Vaswani et al., 2017). Such models have
displayed impressive syntactic generalization (Hu
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run: 11 left:36 twice:8 after:43 jump: 10 opposite:17 right:4 thrice:46 —

TR TR JUMP TR TR JUMP TR TR JUMP TL RUN TL RUN
—run:11 + look:11 —

TR TR JUMP TR TR JUMP TR TR JUMP TL LOOK TL LOOK
— jump:10 4+ walk:10 —

TR TR WALK TR TR WALK TR TR WALK TL LOOK TL LOOK
— left:36 + right:36 —

TR TR WALK TR TR WALK TR TR WALK TR LOOK TR LOOK
— twice:8 + thrice:8 —

TR TR WALK TR TR WALK TR TR WALK TR LOOK

TR LOOK TR LOOK
— opposite: 17 + around: 17 —

TR WALK TR WALK TR WALK TR WALK TR WALK TR WALK

TR WALK TR WALK TR WALK TR WALK TR WALK TR WALK

TR LOOK TR LOOK TR LOOK

Accuracy by number of substitutions

100

80

Accuracy

40

20

5
Number of substitutions

Figure 5: Left: Example of successive constituent surgeries. The roles assigned to the input symbols are indicated
in the first line (e.g., run was assigned role 11). Altered output symbols are in blue. The model produces the
correct outputs for all cases shown here. Right: Mean constituent-surgery accuracy across three runs. Standard
deviation is below 1% for each number of substitutions. (Sec. 5.3)

Continuous Snapped Discrete LTR RTL Bi Tree BOW
InferSent 4.05e-4 4.15e-4  5.776e-4 8.2le-4 9.70e-4 9.16e-4 7.78e-4 4.34e-4
Skip-thought 9.30e-5 9.32e-5 9.85e-5 991e-5 1.78¢-3 3.95¢-4 9.64e-5 8.87e-5
SST 5.58e-3 6.72e-3  6.48e-3 8.35e-3 9.29e-3 8.55¢-3 5.99e-3  9.38e-3
SPINN 139 151 147 .184 .189 181 178 176

Table 2: MSE loss for learned (bold) and hand-crafted role schemes on sentence embedding models. (Sec. 6)

etal., 2020) and few-shot learning of compositional
tasks (Brown et al., 2020), both of which suggest
that they learn substantial degrees of compositional
structure; thus, ROLE may be more likely to dis-
cover meaningful structure in Transformers than
in the sentence-embedding models in Table 2. Fur-
ther work has found impressive degrees of syn-
tactic structure in Transformer encodings (Hewitt
and Manning, 2019), suggesting that there may
well be compositional structure for ROLE to pick
up on. The main difficulty in applying ROLE to
Transformers—and the reason we did not include
Transformers in our study—is that the sentence
representation used by a Transformer is typically
viewed as a variable-sized collection of vectors,
whereas ROLE requires single-vector representa-
tions; this discrepancy must be overcome if ROLE
is to be applied to Transformers.

One past work (Jawahar et al., 2019) has ap-
plied ROLE’s precursor (the TPDN of McCoy et al.
(2019a)) to Transformer representations by choos-
ing the [CLS] token of BERT (Devlin et al., 2019)
as the single-vector sentence encoding to decom-
pose. Jawahar et al. found that these encodings
were approximated better by human-specified tree-
position roles than by other human-specified can-
didates (e.g., left-to-right and right-to-left roles).
By removing the constraint of requiring human-

designed role schemes, ROLE may be able to dis-
cover other role schemes that approximate BERT’s
encodings even more closely.

7 Conclusion

We have introduced ROLE, a neural network that
learns to approximate the representations of an ex-
isting target neural network £ using an explicit
symbolic structure. ROLE successfully discovers
symbolic structure in a standard RNN trained on
the fully-compositional SCAN semantic parsing
task, even though the RNN has no such structure
explicitly present in its architecture. This yields a
closed-form equation for the RNN’s encoding of
any input string. When applied to sentence em-
bedding models trained on partially-compositional
tasks, ROLE performs better than hand-specified
hypothesized structures but still provides little evi-
dence that the sentence encodings represent com-
positional structure.

While this work has shown that NNs can con-
verge to TPRs to solve compositional tasks, it is
still unknown how the weights in the NN actu-
ally convert the raw input into a TPR. To inves-
tigate this process, in future work we plan to ap-
ply our technique to representations of partial se-
quences. For instance, when the complete input
is jump right twice, the target RNN must first
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represent jump right as a well-formed TPR at the
point when only those two words have been en-
countered. The representation then needs to be
updated when the next word, twice, is encoun-
tered. By studying the nature of that update, we
can gain insight into how the target model builds
up a TPR from the input elements.

Uncovering the latent symbolic structure of
NN representations learned for fully-compositional
tasks is a significant step towards explaining how
NNs achieve the level of compositional generaliza-
tion that they do. In addition, by illuminating short-
comings in the representations learned for standard
tasks that are not fully-compositional, ROLE can
help suggest types of inductive bias for improv-
ing models’ generalization with standard, partially-
compositional datasets.
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A Appendix

A.1 Designed role schemes

We use six hand-specified role schemes as a base-
line to compare the learned role schemes against.
Examples of each role scheme are shown in Table
3.

1. Left-to-right (LTR): Each filler’s role is its
index in the sequence, counting from left to
right.

2. Right-to-left (RTL): Each filler’s role is its
index in the sequence, counting from right to
left.

3. Bidirectional (Bi): Each filler’s role is a pair
of indices, where the first index counts from
left to right, and the second index counts from
right to left.

4. Tree: Each filler’s role is given by its posi-
tion in a tree. This depends on a tree parsing
algorithm.

5. Wickelroles (Wickel): Each filler’s role is a
2-tuple containing the filler before it and the
filler after it. (Wickelgren, 1969)

6. Bag-of-words (BOW): Each filler is assigned
the same role. The position and context of the
filler is ignored.

A.2 ROLE regularization

Letting A = {a;}._,, the regularization term ap-
plied during ROLE training is R = A\(R; + Rs +
R3), where \ is a regularization hyperparameter
and:

T ngr
Ri(A) = Z Z[at]p(l = lad]p);
t=1 p=1
T nRr
Ry(A) = - Z Z[at}i;
t=1 p=1
R3(A) = ([salp(1 — [saly))®

p=1

Since each a; results from a softmax, its elements
are positive and sum to 1. Thus the factors in
R;i(A) are all non-negative, so R; assumes its
minimal value of 0 when each a; has binary el-
ements; since these elements must sum to 1, such
an a; must be one-hot. Ry(A) is also minimized
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when each a; is one-hot because when a vector’s
L' norm is 1, its L2 norm is maximized when it
is one-hot. Although each of these terms individ-
ually favor one-hot vectors, empirically we find
that using both terms helps the training process.
In a discrete symbolic structure, each position can
hold at most one symbol, and the final term Rj3
in ROLE’s regularizer R is designed to encourage
this. In the vector s, = Z?Zl a;, the pth element
is the total attention weight, over all symbols in
the string, assigned to the p™ role: in the discrete
case, this must be 0 (if no symbol is assigned this
role) or 1 (if a single symbol is assigned this role).
Thus R3 is minimized when all elements of s are
0O or 1 (R3 is similar to Ry, but with squared terms
since we are no longer assured each element is at
most 1). It is important to normalize each role em-
bedding in the role matrix R so that small attention
weights have correspondingly small impacts on the
weighted-sum role embedding.

A.3 RNN trained on SCAN

To train the standard RNN on SCAN, we ran a lim-
ited hyperparameter search similar to the procedure
in Lake and Baroni (2018). Since our goal was to
produce a single embedding that captured the entire
input sequence, we fixed the architecture as a GRU
with a single hidden layer. We did not train models
with attention, to investigate whether a standard
RNN could capture compositionality in its single
bottleneck encoding. The remaining hyperparame-
ters were hidden dimension and dropout. We ran
a search over the hidden dimension sizes of 50,
100, 200, and 400 as well as dropout with a value
of 0, .1, and .5 applied to the word embeddings
and recurrent layer. Each network was trained with
the Adam optimizer (Kingma and Ba, 2015) and
a learning rate of .001 for 100,000 steps with a
batch-size of 1. The best performing network had
a hidden dimension or 100 and dropout of .1.

A.4 ROLE trained on SCAN

For the ROLE models trained to approximate the
GRU encoder trained on SCAN, we used a filler
dimension of 100, and a role dimension of 50 with
50 roles available. For training, we used the Adam
(Kingma and Ba, 2015) optimizer with a learn-
ing rate of .001, batch size 32, and an early stop-
ping patience of 10. The role assignment module
used a bidirectional 2-layer LSTM (Hochreiter and
Schmidhuber, 1997). We performed a hyperpa-
rameter search over the regularization coefficient A



|3 1 1 6 |5 2 3 1 9 7
Left-to-right | 0 1 2 3 0 1 2 3 4 5
Right-to-left | 3 2 1 0 5 4 3 2 1 0
Bidirectional | (0,3) (1,2) (2,1) 3,0)|@©,5 1,49 2,3 @3,2) & 1) (6,0
Wickelroles | #_1 3.1 1.6 1.# #2 53 2.1 39 1.7 9#
Tree L RLL RLR RR LL LRLL LRLR LRRL LRRR R
Bag of words | rg To To Io Io To Io To Io To

Table 3: The assigned roles for two sequences, 3116 and 523197. Table reproduced from McCoy et al. (2019a).

using the values in the set [.1, .02, .01]. The best
performing value was .02, and we used this model
in our analysis.

The algorithm below characterizes our post-hoc
interpretation of which roles the Role Learner will
assign to elements of the input to the SCAN model.
This algorithm was created by hand based on an
analysis of the Role Learner’s outputs for the el-
ements of the SCAN training set. The algorithm
works equally well on examples in the training set
and the test set; on both datasets, it exactly matches
the roles chosen by the Role Learner for 98.7% of
sequences (20,642 out of 20,910).

A.5 A role-assignment algorithm implicitly
learned by the SCAN seq2seq encoder

The input sequences have three basic types that
are relevant to determining the role assignment:
sequences that contain and (e.g., jump around
left and walk thrice), sequences that contain af-
ter (e.g., jump around left after walk thrice), and
sequences without and or after (e.g., turn opposite
right thrice). Within commands containing and or
after, it is convenient to break the command down
into the command before the connecting word and
the command after it; for example, in the command
jump around left after walk thrice, these two com-
ponents would be jump around left and walk thrice.

e Sequence with and:

— Elements of the command before and:

+ Last word: 28

+ First word (if not also last word): 46

* opposite if the command ends with
thrice: 22

* Direction word between opposite and
thrice: 2

* opposite if the command does not
end with thrice: 2
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- E

* Direction word after opposite but not
before thrice: 4

x around: 22

x Direction word after around: 2

x Direction word between an action
word and twice or thrice: 2

lements of the command before and:

* First word: 11

x Last word (if not also the first word):
36

x Second-to-last word (if not also the
first word): 3

* Second of four words: 24

— and: 30

e Sequence with after:

- E

-E

lements of the command before after:

x Last word: 8
* Second-to-last word: 36

* First word (if not the last or second-
to-last word): 11

x Second word (if not the last or
second-to-last word): 3
lements of the command after after:

x Last word: 46

* Second-to-last word: 4

* First word if the command ends with
around right: 4

+ First word if the command ends with
thrice and contains a rotation: 10

* First word if the command does not
end with around right and does not
contain both thrice and a rotation: 17

* Second word if the command ends
with thrice: 17

x Second word if the command does
not end with thrice: 10



— after: 17 if no other word has role 17
or if the command after after ends with
around left; 43 otherwise

e Sequence without and or after:

— Action word directly before a cardinality:
4

— Action word before, but not directly be-
fore, a cardinality: 34

— thrice directly after an action word: 2
— twice directly after an action word: 2

— opposite in a sequence ending with twice:
8

— opposite in a sequence ending with
thrice: 34

— around in a sequence ending with a car-
dinality: 22

— Direction word directly before a cardi-
nality: 2

— Action word in a sequence without a car-
dinality: 46

— opposite in a sequence without a cardi-
nality: 2

— Direction after opposite in a sequence
without a cardinality: 26

— around in a sequence without a cardinal-
ity: 3

— Direction after around in a sequence
without a cardinality: 22

— Direction directly after an action in a se-
quence without a cardinality: 22

To show how this works with an example, consider
the input jump around left after walk thrice. The
command before after is jump around left. left, as
the last word, is given role 8. around, as the second-
to-last word, gets role 36. jump, as a first word that
is not also the last or second-to-last word gets role
11. The command after after is walk thrice. thrice,
as the last word, gets role 46. walk, as the second-
to-last word, gets role 4. Finally, after gets role 17
because no other elements have been assigned role
17 yet. These predicted outputs match those given
by the Role Learner.

A.6 Discussion of the algorithm

We offer several observations about this algorithm.

1. This algorithm may seem convoluted, but a
few observations can illuminate how the roles
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assigned by such an algorithm support suc-
cess on the SCAN task. First, a sequence will
contain role 30 if and only if it contains and,
and it will contain role 17 if and only if it
contains after. Thus, by implicitly checking
for the presence of these two roles (regardless
of the fillers bound to them), the decoder can
tell whether the output involves one or two
basic commands, where the presence of and
or after leads to two basic commands and the
absence of both leads to one basic command.
Moreover, if there are two basic commands,
whether it is role 17 or role 30 that is present
can tell the decoder whether the input order
of these commands also corresponds to their
output order (when it is and in play, i.e., role
30), or if the input order is reversed (when it
is after in play, i.e., role 17).

With these basic structural facts established,
the decoder can begin to decode the specific
commands. For example, if the input is a
sequence with aftfer, it can begin with the
command after after, which it can decode by
checking which fillers are bound to the rele-
vant roles for that type of command.

It may seem odd that so many of the roles
are based on position (e.g., “first word”
and “‘second-to-last word™), rather than more
functionally-relevant categories such as “di-
rection word.” However, this approach may ac-
tually be more efficient: Each command con-
sists of a single mandatory element (namely,
an action word such as walk or jump) followed
by several optional modifiers (namely, rota-
tion words, direction words, and cardinalities).
Because most of the word categories are op-
tional, it might be inefficient to check for the
presence of, e.g., a cardinality, since many se-
quences will not have one. By contrast, every
sequence will have a last word, and checking
the identity of the last word provides much
functionally-relevant information: if that word
is not a cardinality, then the decoder knows
that there is no cardinality present in the com-
mand (because if there were, it would be the
last word); and if it is a cardinality, then that
is important to know, because the presence
of twice or thrice can dramatically affect the
shape of the output sequence. In this light,
it is unsurprising that the SCAN encoder has
implicitly learned several different roles that



essentially mean the last element of a particu-
lar subcommand.

. The algorithm does not constitute a simple,
transparent role scheme. But its job is to de-
scribe the representations that the original net-
work produces, and we have no a priori expec-
tation about how complex that process may
be. The role-assignment algorithm implicitly
learned by ROLE is interpretable locally (each
line is readily expressible in simple English),
but not intuitively transparent globally. We
see this as a positive result, in two respects.

First, it shows why ROLE is crucial: no
human-generated role scheme would provide
a good approximation to this algorithm. Such
an algorithm can only be identified because
ROLE is able to use gradient descent to find
role schemes far more complex than any we
would hypothesize intuitively. This enables us
to analyze networks far more complex than we
could analyze previously, being necessarily
limited to hand-designed role schemes based
on human intuitions about how to perform the
task.

Second, when future work illuminates the
computation in the original SCAN GRU
seq2seq decoder, the baroqueness of the role-
assignment algorithm that ROLE has shown
to be implicit in the seq2seq encoder can po-
tentially explain certain limitations in the orig-
inal model, which is known to suffer from
severe failures of systematic generalization
outside the training distribution (Lake and Ba-
roni, 2018). It is reasonable to hypothesize
that systematic generalization requires that the
encoder learn an implicit role scheme that is
relatively simple and highly compositional.
Future proposals for improving the system-
atic generalization of models on SCAN can
be examined using ROLE to test the hypothe-
sis that greater systematicity requires greater
compositional simplicity in the role scheme
implicitly learned by the encoder.

. While the role-assignment algorithm of A.8.1
may not be simple, from a certain perspective,
it is quite surprising that it is not far more com-
plex. Although ROLE is provided 50 roles to
learn to deploy as it likes, it only chooses to
use 16 of them (only 16 are ever selected as
the arg max(ay); see Sec. 6.1). Furthermore,
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the SCAN grammar generates 20,910 input se-
quences, containing a total of 151,688 words
(an average of 7.25 words per input). This
means that, if one were to generate a series
of conditional statements to determine which
role is assigned to each word in every context,
this could in theory require up to 151,688 con-
ditionals (e.g., “if the filler is ‘jump’ in the
context ‘walk thrice after ___ opposite left’,
then assign role 17”). However, our algorithm
involves just 47 conditionals. This reduction
helps explain how the model performs so well
on the test set: If it used many more of the
151,688 possible conditional rules, it would
completely overfit the training examples in a
way that would be unlikely to generalize. The
47-conditional algorithm we found is more
likely to generalize by abstracting over many
details of the context.

4. Were it not for ROLE’s ability to character-
ize the representations generated by the orig-
inal encoder in terms of implicit roles, pro-
viding an equally complete and accurate in-
terpretation of those representations would
necessarily require identifying the conditions
determining the activation level of each of the
100 neurons hosting those representations. It
seems to us grossly overly optimistic to esti-
mate that each neuron’s activation level in the
representation of a given input could be char-
acterized by a property of the input statable in,
say, two lines of roughly 20 words/symbols;
yet even then, the algorithm would require 200
lines, whereas the algorithm in A.8.1 requires
47 lines of that scale. Thus, by even such a
crude estimate of the degree of complexity
expected for an algorithm describing the rep-
resentations in terms of neuron activities, the
algorithm we find, stated over roles, is 4 times
simpler.

A.7 TPEs trained on sentence embedding
models

For each sentence embedding model, we trained
three randomly initialized TPEs for each role
scheme and selected the best performing one as
measured by the lowest MSE. For each TPE, we
used the original filler embedding from the sen-
tence embedding model. This filler dimensional-
ity is 25 for SST, 300 for SPINN and InferSent,
and 620 for Skipthought. We applied a linear



transformation to the pre-trained filler embedding
where the input size is the dimensionality of the
pre-trained embedding and the output size is also
the dimensionality of the pre-trained embedding.
This linearly transformed embedding is used as the
filler vector in the filler-role binding in the TPE. For
each TPE, we use a role dimension of 50. Training
was done with a batch size of 32 using the Adam
optimizer with a learning rate of .001.

To generate tree roles from the English sentences,
we used the constituency parser released in version
3.9.1 of Stanford CoreNLP (Klein and Manning,
2003).

A.8 ROLE trained on sentence embedding
models

For each sentence embedding model, we trained
three randomly initialized ROLE models and se-
lected the best performing one as measured by the
lowest MSE. We used the original filler embed-
ding from the sentence embedding model (25 for
SST, 300 for SPINN and InferSent, and 620 for
Skipthought). We applied a linear transformation
to the pre-trained filler embedding where the input
size is the dimensionality of the pre-trained em-
bedding and the output size is also the dimension-
ality of the pre-trained embedding. This linearly
transformed embedding is used as the filler vec-
tor in the filler-role binding in the TPE. We also
applied a similar linear transformation to the pre-
trained filler embedding before input to the role
learner LSTM. For each ROLE model, we provide
up to 50 roles with a role dimension of 50. Train-
ing was done with a batch size of 32 using the
ADAM optimizer with a learning rate of .001. We
performed a hyperparameter search over the regu-
larization coefficient A using the values in the set
{1,0.1,0.01,0.001,0.0001}. For SST, SPINN, In-
ferSent and SST, respectively, the best performing
network used A = 0.001, 0.01,0.001, 0.1.
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