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Abstract

If the same neural network architecture is
trained multiple times on the same dataset,
will it make similar linguistic generalizations
across runs? To study this question, we fine-
tuned 100 instances of BERT on the Multi-
genre Natural Language Inference (MNLI)
dataset and evaluated them on the HANS
dataset, which evaluates syntactic generaliza-
tion in natural language inference. On the
MNLI development set, the behavior of all in-
stances was remarkably consistent, with accu-
racy ranging between 83.6% and 84.8%. In
stark contrast, the same models varied widely
in their generalization performance. For exam-
ple, on the simple case of subject-object swap
(e.g., determining that the doctor visited the
lawyer does not entail the lawyer visited the
doctor), accuracy ranged from 0.0% to 66.2%.
Such variation is likely due to the presence of
many local minima in the loss surface that are
equally attractive to a low-bias learner such
as a neural network; decreasing the variability
may therefore require models with stronger in-
ductive biases.

1 Introduction

Generalization is a crucial component of learning
a language. No training set can contain all possible
sentences, so learners must be able to generalize to
sentences that they have never encountered before.
We differentiate two types of generalization:

1. In-distribution generalization: Generaliza-
tion to examples which are novel but which
are drawn from the same distribution as the
training set.

2. Out-of-distribution generalization: Gener-
alization to examples drawn from a different
distribution than the training set.

Standard test sets in natural language processing
are generated in the same way as the corresponding
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training set, therefore testing only in-distribution
generalization. Current neural architectures per-
form very well at this type of generalization. For
example, on the natural language understanding
tasks included in the GLUE benchmark (Wang
et al., 2019), several Transformer-based models
(Liu et al., 2019b,a; Raffel et al., 2020) have sur-
passed the human baselines from Nangia and Bow-
man (2019).

However, this strong performance does not nec-
essarily indicate mastery of language. Because of
biases in training distributions, it is often possible
for a model to achieve strong in-distribution gen-
eralization by using shallow heuristics rather than
deeper linguistic knowledge. Therefore, evaluating
only on standard test sets cannot reveal whether a
model has learned abstract properties of language
or if it has only learned shallow heuristics.

An alternative evaluation approach addresses
this flaw by testing how the model handles par-
ticular linguistic phenomena, using datasets de-
signed to be impossible to solve using shallow
heuristics. In this line of investigation, which tests
out-of-distribution generalization, the results are
more mixed. Some works have found successful
handling of phenomena such as subject-verb agree-
ment (Gulordava et al., 2018) and filler-gap de-
pendencies (Wilcox et al., 2018). Other works,
however, have illuminated surprising failures even
on seemingly simple types of examples (Marvin
and Linzen, 2018; McCoy et al., 2019). Such re-
sults make it clear that there is still much room
for improvement in how neural models perform on
syntactic structures that are rare in training corpora.

In this work, we investigate whether the linguis-
tic generalization behavior of a given neural ar-
chitecture is consistent across multiple instances
of that architecture. This question is important
because, in order to tell which types of architec-
tures generalize best, we need to know whether suc-
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cesses and failures of generalization should be at-
tributed to aspects of the architecture or to random
luck in the choice of the model’s initial weights.

We investigate this question using the task of
natural language inference (NLI). We fine-tuned
100 instances of BERT (Devlin et al., 2019) on the
MNLI dataset (Williams et al., 2018)." These 100
instances differed only in (i) the initial weights of
the classifier trained on top of BERT, and (ii) the
order in which training examples were presented.
All other aspects of training, including the initial
weights of BERT, were held constant. We evalu-
ated these 100 instances on both the in-distribution
MNLI development set and the out-of-distribution
HANS evaluation set (McCoy et al., 2019), which
tests syntactic generalization in NLI models.

We found that these 100 instances were remark-
ably consistent in their in-distribution generaliza-
tion accuracy, with all accuracies on the MNLI de-
velopment set falling in the range 83.6% to 84.8%,
and with a high level of consistency on labels for
specific examples (e.g., we identified 526 exam-
ples that all 100 instances labeled incorrectly). In
contrast, these 100 instances varied dramatically
in their out-of-distribution generalization perfor-
mance; for example, on one of the thirty categories
of examples in the HANS dataset, accuracy ranged
from 4% to 76%. These results show that, when as-
sessing the linguistic generalization of neural mod-
els, it is important to consider multiple training runs
of each architecture, since models can differ vastly
in how they perform on examples drawn from a dif-
ferent distribution than the training set, even when
they perform similarly on an in-distribution test set.

2 Background

2.1 In-distribution generalization

Several works have noted that the same architecture
can have very different in-distribution generaliza-
tion across restarts of the same training process
(Reimers and Gurevych, 2017, 2018; Madhyastha
and Jain, 2019). Most relevantly for our work, fine-
tuning of BERT is unstable for some datasets, such
that some runs achieve state-of-the-art results while
others perform poorly (Devlin et al., 2019; Phang
et al., 2018). Unlike these past works, we focus
on out-of-distribution generalization, rather than
in-distribution generalization.

'The weights for all 100 fine-tuned models are pub-
licly available at https://github.com/tommccoyl/
hans.

218

2.2 Out-of-distribution generalization

Several other works have noted variation in out-
of-distribution syntactic generalization. Weber
et al. (2018) trained 50 instances of a sequence-
to-sequence model on a symbol replacement task.
These instances consistently had above 99% accu-
racy on the in-distribution test set but varied on
out-of-distribution generalization sets; in the most
variable case, accuracy ranged from close to 0% to
over 90%. Similarly, McCoy et al. (2018) trained
100 instances for each of six types of networks,
using a synthetic training set that was ambiguous
between two generalizations. Some models con-
sistently made the same generalization across runs,
but others varied considerably, with some instances
of a given architecture strongly preferring one of
the two generalizations that were plausible given
the training set, while other instances strongly pre-
ferred the other generalization. Finally, Liska et al.
(2018) trained 5000 instances of recurrent neural
networks on the lookup tables task. Most of these
instances failed on compositional generalization,
but a small number generalized well.

These works on variation in out-of-distribution
generalization all used simple, synthetic tasks with
training sets designed to exclude certain types of
examples. Our work tests if models are still as vari-
able when trained on a natural-language training
set that is not adversarially designed. In concurrent
work, Zhou et al. (2020) also measured variability
in out-of-distribution performance for 3 models (in-
cluding BERT) on 12 datasets (including HANS).
Their work has impressive breadth, whereas we
instead aim for depth: We analyze the particular
categories within HANS to give a fine-grained in-
vestigation of syntactic generalization, while Zhou
et al. only report overall accuracy averaged across
categories. In addition, we fine-tuned 100 instances
of BERT, while Zhou et al. only fine-tuned 10 in-
stances. The larger number of instances allows us
to investigate the extent of the variability in more
detail.

2.3 Linguistic analysis of BERT

Many recent papers have sought a deeper under-
standing of BERT, whether to assess its encod-
ing of sentence structure (Lin et al., 2019; He-
witt and Manning, 2019; Chrupata and Alishahi,
2019; Jawahar et al., 2019; Tenney et al., 2019b);
its representational structure more generally (Ab-
nar et al., 2019); its handling of specific linguistic
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phenomena such as subject-verb agreement (Gold-
berg, 2019), negative polarity items (Warstadt et al.,
2019), function words (Kim et al., 2019), or a
variety of psycholinguistic phenomena (Ettinger,
2020); its internal workings (Coenen et al., 2019;
Tenney et al., 2019a; Clark et al., 2019); or its in-
ductive biases (Warstadt and Bowman, 2020). The
novel contribution of this work is the focus on vari-
ability across a large number of fine-tuning runs;
previous works have generally used models with-
out fine-tuning or have used only a small number
of fine-tuning runs (usually only one fine-tuning
run, or at most ten fine-tuning runs).

3 Method
3.1 Task and datasets

We used the task of natural language inference
(NLI, also known as Recognizing Textual Entail-
ment; Condoravdi et al., 2003; Dagan et al., 2006,
2013), which involves giving a model two sen-
tences, called the premise and the hypothesis. The
model must then output entailment if the premise
entails (i.e., implies the truth of) the hypothesis,
contradiction if the premise contradicts the hypoth-
esis, or neutral otherwise. For training, we used the
training set of the MNLI dataset (Williams et al.,
2018), examples from which are given below:

(1) a. Premise: Finally she turned back to him.
b. Hypothesis: She turned to him.
c. Label: Entailment

(2) a. Premise: You outwitted me.
b. Hypothesis: You have never outwitted
me.
c. Label: Contradiction

3) Premise: okay well i live in Carrollton
. Hypothesis: I have a house in Carrollton.

c. Label: Neutral

IS

To test in-distribution generalization, we used the
MNLI mat ched development set, which was gen-
erated in the same way as the MNLI training set.
We used the development set rather than the test
set because the test set labels are not available to
the public. This development set was not used in
any way during training, making it effectively a
test set. To test out-of-distribution generalization,
we used the HANS dataset (McCoy et al., 2019),
which contains NLI examples designed to require
understanding of syntactic structure. More specifi-
cally, HANS targets three structural heuristics that

models trained on MNLI are likely to learn (for
definitions and examples, see Figure 1).

To assess whether a model has learned these
heuristics, HANS contains examples where each
heuristic makes the right predictions (i.e., where
the correct label is entailment) and examples where
each heuristic makes the wrong predictions (i.e.,
where the correct label is non-entailment). A model
that has adopted one of the heuristics will output
entailment for all examples targeting that heuristic,
even when the correct answer is non-entailment.

3.2 Models and training

All of our models consisted of BERT with a linear
classifier on top of it outputting labels of entail-
ment, contradiction, or neutral. We fine-tuned 100
instances of this model on MNLI using the fine-
tuning code from the BERT GitHub repository.”
The BERT component of each instance was initial-
ized with the pre-trained bert -base-uncased
weights. For evaluation on HANS, we translated
outputs of contradiction and neutral into a sin-
gle non-entailment label, following McCoy et al.
(2019). The fine-tuning process proceeded for 3
epochs and modified the weights of both the BERT
component and the classifier. Following Devlin
et al. (2019), across fine-tuning runs we varied
only (i) the random initial weights of the classifier
and (ii) the order in which training examples were
presented. All other aspects, including the initial
pre-trained weights of the BERT component, were
held constant.

4 Results

4.1 In-distribution generalization

The 100 instances were remarkably consistent on
in-distribution generalization, with all models scor-
ing between 83.6% and 84.8% on the MNLI de-
velopment set (Figure 2, left). Numerical statis-
tics for the performance of our 100 instances of
BERT on MNLI and HANS can be found in Fig-
ure 7, and statistics for HANS broken down by
linguistic construction can be found in Figures 3
and 4. Finally, to see model-by-model results, see
https://github.com/tommccoyl/hans.

The instances were also highly consistent in their
choice of labels for particular examples (Figure 2,
right); in the rest of this subsection, we provide
some quantitative and qualitative analysis of con-
sistency of performance on individual examples.

2github.com/googlefresearch/bert
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Heuristic Definition

Example

Lexical overlap

Assume that a premise entails all hypothe-
ses constructed from words in the premise

The doctor was paid by the actor.
—— The doctor paid the actor.

WRONG
Subsequence Assume that a premise entails all of its con- The doctor near the actor danced.
tiguous subsequences. —— The actor danced.
WRONG
Constituent Assume that a premise entails all complete If the artist slept, the actor ran.

subtrees in its parse tree.

—— The artist slept.
WRONG

Figure 1: The heuristics targeted by the HANS dataset, along with examples of incorrect entailment predictions
that these heuristics would lead to. (Figure from McCoy et al. 2019.)
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Figure 2: In-distribution generalization. Left: Within-
instance accuracy on the MNLI development set; all
BERT instances had scores near 84%. Right: Across-
instance accuracy on individual examples in the MNLI
development set; e.g., 66% of the examples were an-
swered correctly by all 100 instances. For numerical
results, see Figure 7.

On average, among any pair of fine-tuned BERT
instances, the two members of the pair agreed on
the labels of 93.1% of the examples (when consid-
ering all three labels of entailment, contradiction,
and neutral, rather than the collapsed labels of en-
tailment and non-entailment). To give a sense of
consistency across all 100 instances (rather than
only among pairs of instances), Figure 2 (right) il-
lustrates how consistent our 100 instances were on
their answers to individual examples in the MNLI
development set. Of the 9815 examples in the set,
there were 6526 that all 100 instances labeled cor-
rectly, and 526 that all instances labeled incorrectly.
Thus, the consistent score of about 84% on the
MNLI development set can be partially explained
by the fact that there are certain examples that all
models answered correctly or that all models an-
swered incorrectly, as models were consistently
correct or incorrect on 72% of the examples.
Examples (4) through (6) show some of the 6526
cases that all 100 instances answered correctly:
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(4) a. Premise: The new rights are nice enough
b. Hypothesis: Everyone really likes the
newest benefits
c. Label: Neutral

(5) a. Premise: This site includes a list of all

award winners and a searchable database

of Government Executive articles.

b. Hypothesis: The Government Executive
articles housed on the website are not able
to be searched.

c. Label: Contradiction

(6) a. Premise: You and your friends are not

welcome here, said Severn.

b. Hypothesis: Severn said the people were
not welcome there.

c. Label: Entailment

Examples (7) through (12) show some of the 526
cases that all 100 instances answered incorrectly.
Some of these examples arguably have incorrect la-
bels in the dataset, such as (7) (because the hypoth-
esis mentions a report which the premise does not
mention), so it is unsurprising that models found
such examples difficult. Other consistently difficult
examples involve areas that one might intuitively
expect to be tricky for models trained on natural
language, such as world knowledge (e.g., (8) re-
quires knowledge of how long forearms are, and
(9) requires knowledge of what nodding is), the
ability to count (e.g., (10)), or fine-grained shades
of meaning that might require multiple steps of
reasoning (e.g., (11) and (12)). Some of the con-
sistently difficult examples have a high degree of
lexical overlap yet are not labeled entailment (such
as (13)); the difficulty of such examples adds fur-
ther evidence to the conclusion that these models
have adopted the lexical overlap heuristic. Finally,
there are some examples, such as (14), for which it



is unclear why models find them so difficult.

(7) a. Premise: Indeed, 58 percent of
Columbia/HCA’s beds lie empty,
compared with 35 percent of nonprofit
beds.

b. Hypothesis: 58% of Columbia/HCA’s
beds are empty, said the report.
c. Label: Entailment

(8) a. Premise: One he broke back to about the
length of his forearm.
b. Hypothesis: He snapped it until it was
just a couple of inches long.
c. Label: Contradiction

(9) a. Premise: The Kal nodded.
b. Hypothesis: The Kal then shook its head
side to side.
c. Label: Contradiction

(10) a. Premise: Load time is divided into ele-
mental and coverage related load time.
b. Hypothesis: Load time is comprised of
three parts.
c. Label: Contradiction

(11) a. Premise: I thought working on Liddy’s
campaign would be better than working on
Bob’s.
b. Hypothesis: I thought I would like work-
ing on Liddy’s campaign the best.
c. Label: Neutral

(12) a. Premise: Sure enough, there was the
chest, a fine old piece, all studded with
brass nails, and full to overflowing with
every imaginable type of garment.

b. Hypothesis: The chest wasn’t big enough
to completely contain all of the garments.
c. Label: Entailment

(13) a. Premise: True to his word to his faithful
mare, Ca’daan left Whitebelly in Fena Dim
and borrowed Gray Cloud from his uncle.

b. Hypothesis: Ca’daan kept his word to
Gray Cloud and borrowed Whitebelly
from his uncle.

c. Label: Contradiction

(14) a. Premise: Clearly, yes.
b. Hypothesis: Obviously, the answer is yes.
c. Label: Entailment

Finally, examples (15) through (17) show some of
the 8 cases that exactly half of our 100 instances got
correct. Plausibly, such examples are the ones that
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lie close to a decision boundary that is relatively
consistent across instances.

(15) a. Premise: He bent down to study the tiny
little jeweled gears.
b. Hypothesis: He bent down to examine the
decorated gears.
c. Label: Entailment

(16) a. Premise: Conversely, an increase in gov-
ernment saving adds to the supply of re-
sources available for investment and may
put downward pressure on interest rates.

b. Hypothesis: Interest rates should increase
to increase saving.
c. Label: Contradiction

(17) a. Premise: More than 100 judges, lawyers
and dignitaries were present for the gather-
ing.

b. Hypothesis:
showed up
c. Label: Neutral

152 judges and lawyers

4.2 Out-of-distribution generalization

On HANS, performance was much more variable
than on the MNLI development set. HANS con-
sists of 6 main categories of examples, each of
which can be further divided into 5 subcategories.
Performance was reasonably consistent on five of
these categories, but on the sixth category—Iexical
overlap examples that are inconsistent with the lex-
ical overlap heuristic—performance varied dramat-
ically, ranging from 5% accuracy to 55% accuracy
(Figure 6). Since this is the most variable category,
we focus on it for the rest of the analysis.

The category of lexical overlap examples that
are inconsistent with the lexical overlap heuristic
encompasses examples for which the correct label
is non-entailment and for which all the words in
the hypothesis also appear in the premise but not
as a contiguous subsequence. This category has
five subcategories; examples and results for each
subcategory are in Figure 5. Chance performance
on HANS was 50%; on all subcategories except for
passives, accuracies ranged from far below chance
to modestly above chance. Models varied consid-
erably even on categories that humans find simple
(McCoy et al., 2019). For example, accuracy on
the subject-object swap examples, which can be
handled with only rudimentary knowledge of syn-
tax (in particular, the distinction between subjects
and objects), ranged from 0% to 66%. Overall,



Heuristic Subcase Minimum Maximum Mean Std. dev.

Lexical Untangling relative clauses 0.94 1.00 0.98 0.01
overlap The athlete who the judges saw called the manager. — The judges saw the athlete.
Sentences with PPs 0.98 1.00 1.00 0.00

The tourists by the actor called the authors. — The tourists called the authors.

Sentences with relative clauses 0.97 1.00 0.99 0.01
The actors that danced encouraged the author. — The actors encouraged the author.

Conjunctions 0.72 0.92 0.83 0.05
The secretaries saw the scientists and the actors. — The secretaries saw the actors.

Passives 0.99 1.00 1.00 0.00
The authors were supported by the tourists. — The tourists supported the authors.

Subsequence Conjunctions 0.93 1.00 0.98 0.02
The actor and the professor shouted. — The professor shouted.

Adjectives 1.00 1.00 1.00 0.00
Happy professors mentioned the lawyer. — Professors mentioned the lawyer.

Understood argument 0.95 1.00 1.00 0.01
The author read the book. — The author read.

Relative clause on object 0.98 1.00 0.99 0.01
The artists avoided the actors that performed. — The artists avoided the actors.

PP on object 1.00 1.00 1.00 0.00
The authors called the judges near the doctor. — The authors called the judges.

Constituent ~ Embedded under preposition 0.81 1.00 0.96 0.02
Because the banker ran, the doctors saw the professors. — The banker ran.

Outside embedded clause 1.00 1.00 1.00 0.00
Although the secretaries slept, the judges danced. — The judges danced.

Embedded under verb 0.93 1.00 0.99 0.01
The president remembered that the actors performed. — The actors performed.

Conjunction 1.00 1.00 1.00 0.00
The lawyer danced, and the judge supported the doctors. — The lawyer danced.

Adverbs 1.00 1.00 1.00 0.00
Certainly the lawyers advised the manager. — The lawyers advised the manager.

Figure 3: Results for the HANS subcases for which the heuristics make correct predictions (i.e., where the correct
label is entailment). All statistics are based on 100 runs.
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Heuristic Subcase Minimum Maximum Mean Std. dev.

Lexical Subject-object swap 0.00 0.66 0.19 0.17
overlap The senators mentioned the artist. - The artist mentioned the senators.
Sentences with PPs 0.04 0.76 0.41 0.18

The judge behind the manager saw the doctors. -+ The doctors saw the manager.

Sentences with relative clauses 0.09 0.67 0.33 0.14
The actors called the banker who the tourists saw. - The banker called the tourists.

Conjunctions 0.12 0.72 0.45 0.15
The doctors saw the presidents and the tourists. - The presidents saw the tourists.

Passives 0.00 0.04 0.01 0.01
The senators were helped by the managers. —+ The senators helped the managers.

Subsequence NP/S 0.00 0.05 0.02 0.01
The managers heard the secretary resigned. - The managers heard the secretary.

PP on subject 0.00 0.35 0.12 0.07
The managers near the scientist shouted. -+ The scientist shouted.

Relative clause on subject 0.00 0.23 0.07 0.04
The secretary that admired the senator saw the actor. - The senator saw the actor.

MV/RR 0.00 0.02 0.00 0.00
The senators paid in the office danced. -+ The senators paid in the office.

NP/Z 0.02 0.13 0.06 0.02
Before the actors presented the doctors arrived. - The actors presented the doctors.

Constituent ~ Embedded under preposition 0.14 0.70 0.41 0.12
Unless the senators ran, the professors recommended the doctor. - The senators ran.

Outside embedded clause 0.00 0.03 0.00 0.01
Unless the authors saw the students, the doctors resigned. -+ The doctors resigned.

Embedded under verb 0.02 0.42 0.17 0.08
The tourists said that the lawyer saw the banker. -+ The lawyer saw the banker.

Disjunction 0.00 0.03 0.00 0.01
The judges resigned, or the athletes saw the author. - The athletes saw the author.

Adverbs 0.00 0.17 0.06 0.04
Probably the artists saw the authors. -+ The artists saw the authors.

Figure 4: Results for the HANS subcases for which the heuristics make incorrect predictions (i.e., where the correct
label is non-entailment). All statistics are based on 100 runs.
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Figure 5: Accuracy distributions on the subcategories
of the non-entailed lexical overlap examples of the
HANS dataset (i.e., the examples that are inconsis-
tent with the lexical overlap heuristic). For numeri-
cal results, and results for the other 25 subcategories
of HANS, see Figures 3 and 4.

although these models performed consistently on
the in-distribution test set, they have nevertheless
learned highly variable representations of syntax.

5 Discussion

We have found that models that differ only in their
initial weights and the order of training examples
can vary substantially in out-of-distribution linguis-
tic generalization. We found this variation even
with the vast majority of initial weights held con-
stant (i.e., all the weights in the BERT component
of the model). We conjecture that models might
be even more variable if the pre-training of BERT
were also redone across instances. These results
underscore the importance of evaluating models
on multiple restarts, as conclusions drawn from a
single instance of a model might not hold across
instances. Further, these results highlight the im-
portance of evaluating out-of-distribution general-
ization; since all of our instances displayed simi-
lar in-distribution generalization, only their out-of-
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Figure 6: Out-of-distribution generalization: Perfor-
mance on HANS, broken down into six categories of
examples, based on the syntactic heuristic that each ex-
ample targets and whether the example is consistent
with the relevant heuristic (i.e., has a correct label of
entailment) or inconsistent with the heuristic (i.e., has
a correct label of non-entailment). The lexical overlap
cases that are inconsistent with the heuristic (lower left
plot) are highly variable across instances. For numeri-
cal results, see Figure 7.

distribution generalization illuminates the substan-
tial differences in what they have learned.

In stark contrast to the models we have looked
at—which generalized in highly variable ways de-
spite being trained on the same set of examples—
humans tend to converge to similar linguistic gener-
alizations despite major differences in the linguis-
tic input that they encounter as children (Chomsky,
1965, 1980). This suggests that reducing the gener-
alization variability of NLP models may help bring
them closer to human performance in one major
area where they still dramatically lag behind hu-
mans, namely in out-of-distribution generalization.

How could the out-of-distribution generalization
of models be made more consistent? The variability
that we have observed likely reflects the presence
of many local minima in the loss surface, all of
which are equally attractive to our models. This
makes the model’s choice of a minimum essentially
arbitrary and easily affected by the initial weights
and the order of training examples. To reduce this
variability, then, one approach would be to use
models with stronger inductive biases, which can
help distinguish between the many local minima.
An alternate approach would be to use training
sets that better represent a large set of linguistic
phenomena, to decrease the probability of there
being local minima that ignore certain phenomena.



HANS: Consistent with heuristic HANS: Inconsistent with heuristic

MNLI Lexical Subseq. Const. Lexical Subseq. Const.
Minimum 0.84 0.93 0.98 0.96 0.05 0.01 0.03
Maximum 0.85 0.98 1.00 1.00 0.55 0.14 0.24
Mean 0.84 0.96 0.99 0.99 0.28 0.05 0.13
Standard deviation  0.00 0.01 0.00 0.01 0.12 0.02 0.04

Figure 7: Results for models trained on MNLI. The MNLI column reports accuracy on the MNLI mat ched devel-
opment set, where there are three possible labels (entailment, contradiction, and neutral). The remaining columns
are subsets of the HANS dataset, with neutral and contradiction merged into a single label, non-entailment, such
that there are only two possible labels: enfailment and non-entailment. The examples that are consistent with
the heuristics are those that have a correct label of entailment, while the examples that are inconsistent with the
heuristics are those with a correct label of non-entailment. All statistics are based on 100 runs.
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