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Abstract

Studies of discrete languages emerging when
neural agents communicate to solve a joint
task often look for evidence of compositional
structure. This stems for the expectation that
such a structure would allow languages to be
acquired faster by the agents and enable them
to generalize better. We argue that these ben-
eficial properties are only loosely connected
to compositionality. In two experiments, we
demonstrate that, depending on the task, non-
compositional languages might show equal, or
better, generalization performance and acqui-
sition speed than compositional ones. Further
research in the area should be clearer about
what benefits are expected from composition-
ality, and how the latter would lead to them.

1 Introduction

There is a recent spike of interest in studying the
languages that emerge when artificial neural agents
communicate to solve a common task (Foerster
et al., 2016; Lazaridou et al., 2016; Havrylov and
Titov, 2017). A good portion of such studies looks
for traces of compositional structure in those lan-
guages, or even tries to inject such structure into
them (Kottur et al., 2017; Choi et al., 2018; Lazari-
dou et al., 2018; Mordatch and Abbeel, 2018; An-
dreas, 2019; Cogswell et al., 2019; Li and Bowling,
2019; Resnick et al., 2019; Chaabouni et al., 2020).
Besides possibly providing insights on how compo-
sitionality emerged in natural language (Townsend
et al., 2018), this emphasis is justified by the idea
that a compositional language has various desir-
able properties. In particular, compositional lan-
guages are expected to help agents to better gen-
eralize to new (composite) inputs (Kottur et al.,
2017; Lazaridou et al., 2018), and to be faster to
acquire (Cogswell et al., 2019; Li and Bowling,
2019; Ren et al., 2019).
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We engage here with this ongoing research pur-
suit. We step back and reflect on the benefits that
compositionality can bring to the emergent lan-
guages: if there is none, then it is unlikely that
agents will develop compositional languages on
their own. Indeed, several studies have shown that
compositionality does not emerge naturally among
neural agents (e.g. Kottur et al., 2017; Lazaridou
et al., 2018; Andreas, 2019). On the other hand, un-
derstanding what benefits compositionality could
bring to a language would help us in establishing
the conditions for its emergence.

Compositionality is typically seen as a property
of a language, independent of the task being consid-
ered. However, the task will likely influence proper-
ties such as generalization and ease of acquisition,
that compositionality is expected to correlate with.
Our experiments show that it is easy to construct
tasks for which a compositional language is equally
hard, or harder, to acquire and does not generalize
better than a non-compositional one. Hence, lan-
guage emergence researchers need to be clear about
i) which benefits they expect from compositional-
ity and ii) in which way compositionality would
lead to those benefits in their setups. Otherwise,
the agents will likely develop perfectly adequate
communication systems that are not compositional.

2 Operationalizing compositionality

Before we proceed, let us clarify our definition
of compositionality. Linguists and philosophers
have extensively studied the topic for centuries
(see Pagin and Westerstahl, 2010a,b, for a thor-
ough review). However, the standard definition
that a language is compositional if the meaning of
each expression in it is a function of the meaning
of its parts and the rules to combine them is so
general as to be vacuous for our purposes (under
such definition, even the highly opaque languages
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we will introduce below are compositional, contra
our intuitions).

In most current language emergence research,
the input to language is composite in the sense that
it consists of ensembles of elements. In this con-
text, intuitively, a language is compositional if its
symbols denote input elements in a disentangled
way, so that they can be freely juxtaposed to refer
to arbitrary combinations of them. More precisely,
the following property might suffice for a limited
but practical characterization of compositionality.
Given a set of atomic input elements (for exam-
ple, a set of independent attribute values), each
atomic symbol should refer to one and only one in-
put element, independently of the other symbols it
co-occurs with.! A language where all symbols re-
spect this property is compositional in the intuitive
sense that, if we know the symbols that denote a set
of input elements, we can assemble them (possibly,
following some syntactic rules of the language) to
refer to the ensemble of those input elements, ir-
respective of whether we have ever observed the
relevant ensemble. Consider for example a world
where inputs consist of two attributes, each taking
a number of values. A language licensing only two-
character sequences, where the character in the first
position refers to the value of the first attribute, and
that in the second position independently refers to
the value of the second, would be compositional
in our sense. On the other hand, a language that
also licenses two-character sequences, but where
both characters in a sequence are needed to decode
the values of both the first and the second input at-
tribute, would not be compositional. We will refer
to the lack of symbol interdependence in denoting
distinct input elements as naive compositionality.

We believe that naive compositionality captures
the intuition behind explicit and implicit defini-
tions of compositionality in emergent language re-
search. For example, Kottur et al. (2017) deem
non-compositional those languages that either use
single symbols to refer to ensembles of input ele-
ments, or where the meaning of a symbol depends
on the context in which it occurs. Havrylov and
Titov (2017) looked for symbol-position combina-

'We leave the definition of what counts as an atomic sym-
bol open: it could be a single character, a character bound to a
certain position in a message string, a character sequence, etc.

Naive in the sense that it is only appropriate when com-
plex meanings are ensembles of atomic meanings. The defini-
tion breaks down when complex meanings result from func-
tions that merge their components in different ways than sim-
ple ensembling, as is often the case in natural language.
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tions that encode a single concept in an image, as a
sign of a compositional behavior. A naively com-
positional language will maximize the two recently
proposed compositionality measures of residual
entropy (Resnick et al., 2019) and positional disen-
tanglement (Chaabouni et al., 2020).

Naive compositionality is also closely related
to the notion of disentanglement in representation
learning (Bengio et al., 2013). Interestingly, Lo-
catello et al. (2018) reported that disentanglement
is not necessarily helpful for sample efficiency in
downstream tasks, as had been previously argued.
This resonates with our results below.

3 Communication Game

We base our experimental study on a one-episode
one-direction communication game, as commonly
done in the relevant literature (Lazaridou et al.,
2016, 2018; Havrylov and Titov, 2017; Chaabouni
et al., 2019). In this setup, we have two agents,
Sender and Receiver. An input ¢ is fed into Sender,
in turn Sender produces a message 1m, which is con-
sumed by Receiver. Receiver produces its output o.
Comparing the output 6 with the ground-truth out-
put o provides a loss. We used EGG (Kharitonov
et al., 2019) to implement the experiments.>

In contrast to the language emergence scenario,
we use a hard-coded Sender agent that produces
a fixed, pre-defined language. This allows us to
easily control the (naive) compositionality of the
language and measure how it affects Receiver’s
performance. This setup is akin to the motivating
example of Li and Bowling (2019).

We study two Receiver’s characteristics: (i) ac-
quisition speed, measured as the number of epoch
needed to achieve a fixed level of performance on
training set, and (ii) generalization performance on
held-out data.

4 Experimental setup

To demonstrate that compositionality of a language
alone, detached from the task at hand, does not
necessarily lead to higher generalization or faster
acquisition speed, we design two experiments.
The first experiment (attval) operates in an
attribute-value world, similar to those of Kottur
et al. (2017); Chaabouni et al. (2019). We fix
two languages, one compositional and one not,

3The code is available at https://github.com/
facebookresearch/EGG/tree/master/egg/
zoo/compositional_efficiency.
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Acquisition speed

task-identity  task-linear task-entangled
LSTM
lang-identity 5.340.1 30.041.4 20.140.6
lang-entangled 20.1405 26.640.8 5.540.2
GRU
lang-identity 5.640.2 94.0477 57.44139
lang-entangled 372497 91.5447 5.740.2

Test accuracy

task-identity  task-linear task-entangled

LSTM
lang-identity 0.97+0.00 0.040.0 0.06+0.01
lang—entangled 0.08+0.01 0.040.0 0.97+10.00
GRU
lang-identity 0.9710.00 0.0x0.0 0.0640.01
lang-entangled 0.10-0.02 0.040.0 0.97+0.00

Table 1: Attval experiment. Top: epochs to achieve per-
fect accuracy on training set. Bottom: test accuracy af-
ter convergence. & marks 1 standard error of the mean.

and build three tasks: (i) “easy” for compositional
language and “hard” for non-compositional; (ii)
equally “hard” for both; (iii) “hard” for composi-
tional language and “easy” for non-compositional
language. Informally, we control the amount of
computation needed by Receiver to perform a task
starting from a language, where it can be equally
hard to rely on compositional or non-compositional
languages, or the answers could even be readily
available in a non-compositional language.

In the second experiment (coordinates), we de-
sign a single task that is equally “easy” for an en-
tire family of languages (parameterized by a con-
tinuous value), including compositional and non-
compositional ones. The task is to transmit points
on the 2D plane (thus, the input ensembles here
are pairs of point coordinates). Here, we leverage
the observation that a typical neural model has a
linear output layer, for which it is equally easy to
learn any rotation of the ground-truth outputs. Such
rotation-group-invariance could play role in games
where continuous image embeddings are used as
input (Lazaridou et al., 2016; Havrylov and Titov,
2017).

4.1 Attval experiment

Input Sender’s input ¢ is a two-dimensional vec-
tor; each dimension encodes one of two attributes,
each having n,, values: 7 € {1..n,} x {1..ny}.

Languages We consider two languages, with
messages of length two and vocabulary size n,.
The first language, lang-identity, represents the in-
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puts as-is, by putting the value of the first (second)
attribute in the first (second) position: (mq,mg) <
(i1,12). In the second language, lang-entangled,
the first and the second positions are obtained as
follows:

je{l,2}
(1
Lang-identity and lang-entangled have exactly
the same n? utterances. While lang-identity is
naively compositional (one symbol encodes one
attribute only), lang-entangled is not: each symbol
of an utterance encodes equal amount of informa-
tion about both attributes and both symbols are
equally needed for decoding each attribute.*

m; < (i1 + (=1)7 -di3) mod n,,

Tasks We consider three tasks. In all of them, Re-
ceiver outputs two discrete values, o € {1..n,} x
{1..ny}. In task-identity, Receiver has to recover
the original input of Sender, ¢. In the second task,
task-linear, Receiver needs to output two values
that are obtained as integer linear-modulo opera-
tions of the original input values: 0 <~ A-7+ b
mod n,. In the third task, rask-entangled, we re-
quire Receiver to output 0; < (i1 + (—1)7 - i3)
mod n,. In this task, the output values derive
from the same attribute transform applied in the
lang-entangled language (Eq. 1). This language-
task pair mirrors the lang-identity/task-identity pair:
each symbol encodes one output value.

Architecture and hyperparameters Receiver
is implemented as an LSTM (Hochreiter and
Schmidhuber, 1997) or a GRU cell (Cho et al.,
2014). Its output layer specifies two categorical
distributions over n, values, encoding two output
values. As a loss, we use the sum of per-output
negative log-likelihoods. We used the following
hyperparameters: n, = 31; hidden layer size 100;
embedding size 50; batch size 32; 500 epochs train-
ing with Adam (learning rate 10~2). Each config-
uration was run 20 times with different random
seeds. A random 1/5 of the data is used as test set.

4.2 Coordinates experiment

Input We sample points uniformly from the unit
circle, centered at the origin: 2 € R2, T4 < 1.
We sample 103 points for training, 103 for testing.

*Note that lang-entangled is still (non-naively) composi-
tional, in the sense that its messages can be predictably derived
by applying Eq. 1 to the input pairs.
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Figure 1: Coordinates experiment: log MSE vs. train-
ing epoch.

Languages We consider two languages with ut-
terances of length two. In the first language, lang-
coordinate, Sender sequentially transmits both co-
ordinates of a point: m; < ;. More precisely,
the symbols refer to discretized coordinates from
an, X n, square grid, covering [—1, 1] x [—1,1].
This language is naively compositional w.r.t. the
coordinate-wise representation of the inputs.

We construct the second language, lang-rotated,
in the following way. We start with lang-
coordinate, but apply a rotation of the plane by
7/4 before feeding a point into Sender.”> Effec-
tively, this makes Sender “use” a rotated coordi-
nate grid for encoding the coordinates. As a result
of the rotation, lang-rotated ceases to be naively
compositional in the original (non-rotated) world.
Each symbol of lang-rotated carries equal amounts
of information about both coordinates of 4.

Task Receiver has to recover the original (non-
rotated) coordinates ¢ of a point.

Architecture and loss Receiver is an LSTM
with hidden size 100 and embedding size 50; n,, is
100; batch size is 32; we use Adam with learning
rate 1073. As a loss, we use MSE. We run each
configuration with 10 random seeds.

5 Results

Attval experiment In Table 1 we provide the
results of the attrval experiment, depending on lan-
guage, task, and Receiver architecture. We report
the number of epochs to achieve perfect accuracy
on training set (top) and the accuracy on the hold-
out set after training (bottom).

>Rotating by any angle (0, /2) makes the language non-
compositional; 7w /4 maximally entangles it.
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Consider the convergence speed first. For both
Receiver architectures lang-identity converges con-
siderably faster than lang-entangled. This agrees
with the findings of Li and Bowling (2019). How-
ever, in task-linear both languages demonstrate
roughly the same convergence speed (the difference
is not stat. sig.). In task-entangled, lang-entangled
becomes more efficient to acquire than the naively
compositional lang-identity. Interestingly, the ac-
quisition times of task-identity/lang-identity and
task-entangled/lang-entangled are symmetrical.

Next, consider the test accuracy of the same runs
as above, measuring generalization to new attval
combinations. We observe the same patterns: task-
linear is equally hard to generalize from both lan-
guages; lang-identity reaches high test accuracy in
task-identity, while lang-entangled leads to equally
high accuracy on task-entangled. In contrast, lang-
identity performs very poorly on task-entangled,
just as lang-entangled does on task-identity.

Coordinates experiment Figure 1 reports learn-
ing curves for train and test sets (cueing acquisi-
tion speed and generalization, respectively). There
is little difference between the compositional and
non-compositional languages, in either training or
held-out loss trajectories. Note also that, evidently,
the linear mapping required here to undo the non-
naively compositional transformation is easier for
the networks than the non-linear operation we ap-
plied in the Attval experiment, pointing to the im-
portance of taking the intrinsic biases of neural
networks into account when designing language
emergence experiments.

6 Discussion and Conclusion

Our toy experiments with hand-coded languages
make the possibly obvious but currently overlooked
point that, in isolation from the target task, there
is nothing special about a language being (naively)
compositional. A non-compositional language can
be equally or faster to acquire than a compositional
one, and it can provide the same or better gener-
alization capabilities. Thus, if our goal is to let
compositional languages emerge, we should be
very clear about which characteristics of our setup
should lead to its emergence.

Our concern is illustrated by the recent findings
of Chaabouni et al. (2020), who observed that the
degree of compositionality of emergent languages
is not correlated with the generalization capabili-
ties of the agents that rely on them to solve a task.



Indeed, lacking any specific pressure towards de-
veloping a (naively) compositional language, their
agents were perfectly capable of developing gen-
eralizable but non-compositional communication
systems. Our experiments provide a plausible ex-
planation of their findings.

A stronger conclusion is that perhaps we should
altogether forget about compositionality as an end
goal. The current emphasis on it might just be a
misguided effect of our human-centric bias. We
should instead directly concentrate on the proper-
ties we want agent languages to have, such as fast
learning, transmission and generalization.
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