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Abstract

Recent work on the lottery ticket hypothesis
has produced highly sparse Transformers for
NMT while maintaining BLEU. However, it
is unclear how such pruning techniques affect
a model’s learned representations. By prob-
ing Transformers with more and more low-
magnitude weights pruned away, we find that
complex semantic information is first to be de-
graded. Analysis of internal activations reveals
that higher layers diverge most over the course
of pruning, gradually becoming less complex
than their dense counterparts. Meanwhile,
early layers of sparse models begin to perform
more encoding. Attention mechanisms remain
remarkably consistent as sparsity increases.

1 Introduction

In recent years, Transformers (Vaswani et al., 2017)
have defined state-of-the-art performance on a va-
riety of NLP tasks, including machine translation
(MT) and language modeling. While large Trans-
former models can learn uniquely rich represen-
tations, they are also highly overparameterized
(Michel et al., 2019; Hao et al., 2019). Several
studies have therefore attempted to prune Trans-
formers during or after training while retaining
as much performance as possible (Ganesh et al.,
2020). Some methods have been fairly successful,
achieving compression ratios up to 10x depending
on the downstream task.

Looking beyond task performance, however, it
remains unclear how widely-used pruning methods
affect a model’s learned representations. For exam-
ple, a pruned Transformer may translate text at the
same BLEU, but does pruning affect the model in
ways unaccounted for by this metric?

Motivated by this question, we apply recent anal-
ysis techniques to study the representations of in-
creasingly sparse Transformers trained on MT. We
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perform magnitude pruning in an iterative, lottery-
ticket fashion to identify Transformers at compet-
itive sparsities with no drop in task performance
(Renda et al., 2020; Yu et al., 2020; Brix et al.,
2020). We examine the internal structures of our
models as sparsity increases, specifically address-
ing the following questions:

Does pruning affect what linguistic knowl-
edge is learned by the model?

How do individual model components (neu-
rons, layers, attentions) change with pruning?

How is information distributed across layers
in sparse vs. dense models?

What are the differences in pruning dynamics
for the three types of model attention (encoder
self, encoder-decoder, decoder self)?

Using iterative magnitude pruning (IMP), we
train an En-De Transformer that retains 99.4% of
BLEU at 66.4% sparsity. During IMP, we obtain
eight Transformer models at varying levels of spar-
sity, along with the original unpruned model. We
probe these models’ representations for learned lin-
guistic knowledge on eighteen auxiliary syntactic
and semantic tasks (Conneau et al., 2018; Liu et al.,
2019). We then perform an unsupervised compar-
ison of the representations and attention distribu-
tions between dense and sparse models, adopting
metrics posed in Wu et al. (2020). Our key conclu-
sions are as follows:

o Complex semantic information is lost first dur-
ing pruning, before BLEU decreases.

e Model activations steadily diverge from
their unpruned representations, particularly
at higher layers.
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e Information flow between layers becomes
more distributed in sparse Transformers:
lower layers perform more encoding.

The encoder-decoder attention is the richest
in representation, whereas the decoder self-
attention is the simplest. Still, all attention
mechanisms remain functionally consistent
across sparsities.

2 Related Work

Much work has attempted to reduce the parame-
ter count of dominant Transformer-based architec-
tures (Ganesh et al., 2020). Several papers prune
BERT (Devlin et al., 2018), either via structured
removal of layers and attention heads (Fan et al.,
2019; Sajjad et al., 2020) or unstructured pruning
of individual weights (Chen et al., 2020; Gordon
et al., 2020). Structured head pruning has also been
applied to NMT (Voita et al., 2019; Michel et al.,
2019), in which BLEU is used to quantify effective
compression. Recent work from Yu et al. (2020)
uses iterative magnitude pruning to identify lottery
tickets for NMT, retaining 99% of BLEU at 67%
sparsity for Transformer-Big. To our knowledge,
they achieve the highest net pruning ratio on trans-
lation with no drop in performance.

While most such studies are primarily consid-
ered with maximizing sparsity, a subset of them ad-
dress other questions. Gordon et al. (2020) weight
prune BERT and finetune on GLUE tasks to iden-
tify how much sparsity each task can accommo-
date. Prasanna et al. (2020) prune heads while fine-
tuning BERT on GLUE tasks, and identify which
heads are masked most often. They use pruning
as an analysis technique to identify ‘good’ or ‘bad’
BERT subnetworks. Similarly, Michel et al. (2019)
and Voita et al. (2019) prune heads to identify
which types of attention are most relevant to perfor-
mance. However, these studies focus only on task
performance, leaving other behavioral differences
between dense and sparse models unexplored.

Relevant methods of analyzing representations
in NLP include probing classifiers, which evaluate
model representations on supervised tasks for mor-
phology (Belinkov et al., 2017), syntax (Shi et al.,
2016), and/or semantics (Voita et al., 2018). For
Transformers, some work has directly examined
the attention module (Raganato and Tiedemann,
2018; Voita et al., 2019). These analyses include
inference of functional annotations for particular
heads (Clark et al., 2019), or assessment of atten-
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tion’s ability to perform unsupervised syntax tree
prediction (Kim et al., 2020). Recent work has
also applied high-dimensional similarity analysis
methods to compare learned representations within
or across models (Saphra and Lopez, 2019; Wu
et al., 2020). For instance, Bau et al. (2019) iden-
tify recurring neurons across NMT models, inter-
pret their functions, and control their activations.
A broader survey of such literature is covered by
Belinkov and Glass (2018). We leverage some of
these representation analysis methods to study and
compare sparse and dense Transformers, which, to
our knowledge, previous work has not addressed.

3 Generating Lottery Ticket
Subnetworks

3.1 Training transformer-based NMT

Following Vaswani et al. (2017), we train
Transformer-Big on WMT16-En-De for 60 epochs
and achieve detokenized test BLEU of 27.77 on
Newstest14. Note that this score appears lower than
Vaswani et al. since we do not use compound-split
BLEU, which artificially inflates performance!

3.2 Iterative pruning & rewinding protocol

Recent work on the lottery ticket hypothesis has
demonstrated the efficacy of iterative magnitude
pruning (IMP) with weight rewinding (Frankle
et al., 2019), where unpruned network weights
and the learning rate are rewound to values early
in training after every pruning iteration. Yu et al.
(2020) apply this method to Transformers, and also
show that leaving embedding weights unpruned
better retains performance. Renda et al. (2020)
propose learning rate (LR) rewinding, where the
learning rate is rewound to a value earlier in train-
ing, but the weights remain unchanged. They found
that LR rewinding often performs better for deep
NMT models and requires fewer training iterations.

Combining insights, we iteratively prune as fol-
lows: after training to completion, we mask the
20% lowest magnitude non-embedding weights,
rewind the LR to halfway through training (30
epochs), and retrain to completion before another
prune. We also trained an iterative random pruning
baseline using the same approach. As a clarifying
note, we acknowledge that a “lottery ticket” tra-
ditionally refers to the network’s pruned structure
and its weights early in training; however, for more

"When we compute compound-split BLEU with ensem-
bling, our BLEU is 28.74, compromable with Vaswani et al.



convenient referral to our sparse models, we adopt
a broader definition of the term to also describe
network substructures identified via LR rewinding.

3.3 Lottery ticket performance

We iteratively pruned until our network’s perfor-
mance dropped significantly (Table Al). After
seven IMP steps, our model’s non-embedding
weights were 79% sparse (sparsity including
emb. weights: 66.4%), and test BLEU was over
99% of its unpruned value (27.61 & 27.77 respec-
tively). In the subsequent pruning iteration, per-
formance starts to drop more rapidly (0.4 BLEU
with only 3% of total additional weights being
pruned), suggesting the start of the “power-law”
performance decay observed during IMP (Rosen-
feld et al., 2020). Our results align closely with Yu
et al. (2020), who also report rapid BLEU drop at
> 67% net sparsity. Because we are primarily inter-
ested in sparse models that retain full performance,
we stopped pruning at this iteration. For down-
stream experiments, we keep the seven pruned
models which experience a negligible performance
drop, as well as an eighth model to hint trends as
pruning starts to degrade main task performance.
In subsequent analyses, we refer to the model af-
ter the kth iteration of IMP as LTHE, with LTHO
referring to the unpruned model.

3.4 Where are weights being pruned?

Examining which model components are most read-
ily pruned may hint at their relative importances.
Voita et al. (2019) find that late encoder-decoder
heads and early decoder-decoder heads are retained
the longest. We complement these findings with
our results from unstructured pruning.

We compute sparsities of each weight module as
overall Transformer sparsity increases (Figures Al,
A?2). For both the encoder and decoder, later layers
exhibit higher fully connected sparsities, with as
much as 25% higher sparsity in decoder layer 6 FC
weights compared to decoder layer 1 FC weights.
This trend suggests that higher layers’ FC modules
are most overparameterized.

For encoder and decoder self-attention (we com-
pute sparsity across QKV weights Wy, Wy, Wy,
and out proj. matrix W), layer 1 is pruned sig-
nificantly more than other layers, particularly for
low-sparsity models. Layer 6 is pruned next most.
Meanwhile, encoder-decoder attention is pruned
least across layers compared to all other modules:
when overall model sparsity (excl. embeddings)
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reaches 79%, enc-dec sparsity is only 55%. Late
enc-dec layers are pruned slightly less than early
ones. Finally, across all attention types, W, and
W,, are 25% sparser than W 4 and Wy, suggesting
that projection steps downstream of computing at-
tention weights are particularly overparameterized.

4 Probing for Linguistic Knowledge
4.1 Task setup

Probing classifiers are used to measure latent lin-
guistic knowledge in word embeddings (Belinkov
etal., 2019). We extract representations from our
Transformer encoder and test whether they can be
used to predict auxiliary labels about tokens or
pairs of tokens from external datasets.

Liu et al. (2019) release a suite of probing tasks
of varying linguistic complexity, and we largely
inherit this setup to study our pruned networks. For
streamlined analysis, we broadly split the eighteen
tasks into three groups as follows (some tasks may
span multiple categories): Part-of-Speech: Penn
TreeBank POS tagging (POS); Syntactic: CCG su-
pertagging (CCG), parent, grandparent, and great-
grandparent ancestor prediction (Parent, GPar-
ent, GGParent), chunking (Chunk), named entity
recognition (NER), grammatical error detection
(GED), conjunct identification (Conj), syntactic
arc prediction, and syntactic arc classification;
Semantic: semantic tagging (ST), preposition lexi-
cal function and semantic role disambiguation (PS-
Fxn, PS-Role), event factuality (EF), semantic
arc prediction, semantic arc classification, and
coreference arc prediction (Coref). See Liu et al.
(2019) for detailed task descriptions.

Implementation details. We use the same data,
splits, and evaluation as Liu et al. (2019). Our
initial probing experiments use a single linear layer
mapping our 1024-dim token embeddings to the
number of task outputs. We train separate probes
for each of the six encoder layers for the first nine
LTH iterations (LTHO unpruned, LTH1-8 pruned).
See Appendix 1 for further implementation notes.

4.2 Initial results

In Figure 1, we show each LTH model’s best
probing performance across all layers for each
task. Several tasks of varying complexity — POS,
CCQG, ancestor prediction, syntactic chunking, con-
junct ID, syntactic arc classification, semantic tag-
ging, and semantic arc classification — are sparsity-
invariant, i.e. probing performance does not exhibit
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Figure 1: Each cell shows a model’s best linear probing performance across all encoder layers for a particular task.
Sparsity increases from top to bottom. Values shown are task-specific z-scores.

any sparsity-specific trend. Our metrics for these
tasks are on par with probing classifiers trained on
e.g. BERT contextual word embeddings and are
consistently higher than results from a GLoVe base-
line (Liu et al., 2019), suggesting that our probes
effectively learn these tasks at all sparsities. We
conclude that sparsity-invariant tasks encode nec-
essary information for NMT, so their performance
will be maintained as long as BLEU remains high
enough. Relatedly, we note that some of these tasks
(e.g. POS, CCG, ST) have near-100% accuracy
and smaller relative improvements over baselines
(Liu et al., 2019), so they may only require ‘sim-
pler’ types of linguistic knowledge contained in
any competent language encoder.

Next, there are sparsity-degrading tasks, for
which the probe does best at an early pruning itera-
tion and starts to drop off at higher sparsities. These
tasks include PS-Fxn, PS-Role, and Coref, in which
best performance is achieved at LTHO or LTHI1,
and performance starts to drop at LTHS (56.5%
sparsity). PS-Fxn classifies a preposition’s lexical
function in its prepositional phrase, while PS-Role
identifies the semantic role that the preposition con-
fers to its object (Schneider et al., 2018). Both tasks
require integration of semantic knowledge on top
of standard syntax parsing; baseline GLoVe perfor-
mance is very weak compared to deep contextual
representations (Liu et al., 2019). While preposi-
tion disambiguation is important to sentence under-
standing, STREUSLE annotations are likely more
fine-grained than necessary for correct translations;
even early NMT models could accurately trans-
late most prepositions (Isabelle et al., 2017). As
a result, sparse models could plausibly lose some

information relevant to this probing task without
impacting BLEU.

Meanwhile, coreference resolution involves
identifying pairs of words referring to the same ob-
ject. NMT models struggle with coreference when
semantic information contradicts stereotypical pat-
terns in the training set, e.g. for gendered pronouns
(Stanovsky et al., 2019). However, these cases are
generally rare and investigated with specific chal-
lenge sets, and they may not manifest noticeably in
test BLEU.

Interestingly, we found that syntactic and seman-
tic arc prediction were sparsity-improving; sparser
networks consistently performed better. Syntactic
arc prediction aims to identify links between co-
dependent words in a parse tree, while semantic
arc prediction links objects related by the question
Who did What to Whom? (Oepen et al., 2015).
Both tasks are difficult for GLoVe embeddings, but
MT-derived representations have done well (Liu
et al., 2019; Belinkov et al., 2019). Performance
on these arc prediction tasks is lower than on their
arc classification counterparts, which were both
sparsity-invariant.

Summarizing, we conclude that (1) sparsity-
invariant tasks represent core linguistic informa-
tion that remains encoded as long as BLEU is high
enough; (2) there is a push-and-pull with higher-
order features as sparsity increases, with some
knowledge becoming more readily-available to a
probe as other knowledge is degraded.

4.3 Are results probe-sensitive?

Minimal probes offer efficient comparison of lan-
guage encoders (Hewitt and Liang, 2019), but more
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complex probes can also provide useful results
when taken in context (Pimentel et al., 2020). We
wondered if sparsity-specific performance differ-
ences would hold up to a more complex probe, so
we repeated a subset of tasks using a two-layer mul-
tilayer perceptron. This probe family had over an
order of magnitude more parameters than the linear
probes. We show performance z-scores in Figure
2, with raw performances available in Table A3.

LTHO 2.0 2.0
LTH1 2.0 2.0
LTH2 2.0 2.0
LTH3 2.0 2.0
LTH4 20 2.0
LTHS 2.0 2.0
LTH6 2.0 2.0
LTH? 2.0 2.0
LTHS 2.0 2.0

PS-Fxn

PS-Role  Coref  SynPred SemPred

Figure 2: Each model’s best performance using the
MLP probe, for five tasks whose linear probe perfor-
mance varied with sparsity. We report z-scores.

Across the board, raw accuracies were higher
using the MLP. We no longer see a performance
improvement in sparse models for syntactic and
semantic arc prediction. Thus, dense model encod-
ings contain the necessary information for these
tasks, but a probe must have enough weights to
extract it. Given that the Transformer decoder has
far more parameters than either probe, it is not
surprising that less direct representations of some
linguistic features would not impact translation per-
formance. Differences in how directly sparse &
dense models encode information is an interesting
question perhaps well-suited to recent work on min-
imum description lengths (Voita and Titov, 2020),
but we leave it to future study. Meanwhile, the
MLP could not rescue sparse model performance
on PS-Fxn, PS-Role, and Coref; results were nearly
identical as with the linear probe. We conclude that
pruning corrupts some semantic knowledge rele-
vant to these three probing tasks.

4.4 Layer-specific trends

Our analysis so far has focused only on probing
performance at the final layer (which always had
highest accuracy); we next wanted to study any
potential layer-specific sparsity trends. In Figure 3,
we show average linear probe performance for each

layer of each model with tasks grouped as syntac-
tic or semantic. For syntactic tasks, performance
using layer 1-5 representations increases with spar-
sity, suggesting that lower layers of sparse models
better learn syntactic information. However, per-
formance is maximized and equal across sparsities
by layer 6. Results on POS tagging show the same
trend (Figure A3). For semantic tasks, all models
perform similarly at early layers, while dense mod-
els slightly outperform by the final layers. These re-
sults support an interpretation in which early sparse
layers more directly encode low-level information,
whereas dense models tend to rely more on their
final layers to (1) equalize differences on syntax
tasks and (2) outperform on semantic tasks.

Syntax
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Figure 3: Each cell shows the average probing z-score
(across all syntactic or semantic tasks) for a particular
layer of a particular model. Model sparsity increases
from left to right.

5 Measuring Behavioral Similarities of
Sparse & Dense Models

5.1 Experimental setup

Probing classifiers are one method of studying lin-
guistic knowledge, but even two models with simi-
lar probing results may have divergent representa-
tions (Saphra and Lopez, 2019). We are left with
the question: do sparse models learn to arrive at
the same internal representations as dense models
using fewer weights (up to linear transformation),
or do their activations and attention maps shift alto-
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gether? To answer this question, we perform direct,
unsupervised study of our model’s internal vectors
on unseen text.

First, we deploy our unpruned model and the
eight pruned models on our 3000 validation sen-
tences, which span 120K tokens total. We store the
1024-dim token representations and the 16 heads
of each of the three attention types (enc-enc, enc-
dec, dec-dec) at each layer. To compute similarities
from these data, we adopt a subset of the metrics
described in Wu et al. (2020). Each metric offers a
distinct lens of viewing the behavioral similarity of
a layer pair (L, L").

NeuronSim (Bau et al., 2019) is a local similar-
ity measure that quantifies how well the individual
neurons k of a layer L (i.e., a single dimension
of a layer’s representation) align with individual
neurons &’ in another layer L':

NeuronSim(L, L") = mean {max corr(k, k")} :
keL k'eL’!

where corr(k, k') is the mean Pearson correlation
between the activations of neurons & and k" across
all tokens. LayerSim is a global similarity mea-
sure that quantifies how well entire layer represen-
tations align. For two layers, LayerSim compares
their vectors of 1024-dim representations across all
tokens. We use the linear centered kernel alignment
(linearCKA) (Kornblith et al., 2019) as our simi-
larity metric. Analogous to LayerSim, Attention-
Sim compares the attention distributions across all
heads between two different layers. For every sen-
tence s in our dataset, we extract the 16 head atten-
tion vector ay;j(s) for each word pair (w;, w;) € s.
We then apply linearCKA, treating each pair of
words as a 16-dimensional example.

5.2 Similarity of activations

Looking first at NeuronSim, we find that neuron
function in the encoder and decoder is largely con-
served as sparsity increases. Across all neurons
k in layer L of LTHO (unpruned), k’s most corre-
lated neuron in layer L of LTHS8 (70% sparse) is the
same neuron k, 99.8% of the time. However, the
magnitude of neuron similarity with the unpruned
network consistently drops with sparsity (Figure
4). In both the encoder and decoder, this drop was
sharpest for higher layers: e.g. between LTHO and
LTHS, decoder layer 1 had 0.82 NeuronSim while
decoder layer 6 had 0.71 NeuronSim.

Next, we wondered if all neurons gradually be-
come less similar to their unpruned selves, or rather

0.95

0.90

0.85

0.80

0.75

0.70

Decoder NeuronSim with unpruned layer L

Pruning iteration

Figure 4: Each decoder layer’s NeuronSim with the cor-
responding LTHO layer; sparsity increases left to right.

if some neurons remain the same whereas others
“drop out” or change functions entirely. Visual-
izing the distributions of neuron correlations re-
vealed the former: all sparse-dense neuron pairs be-
came less similar during pruning (Figure A4). We
therefore conclude that as sparsity increases, (1)
neurons gradually diverge from their dense coun-
terparts, and (2) neurons in higher layers diverge
more rapidly than neurons in lower layers.

In Figure 5, we compute encoder LayerSim
scores between LTHO (dense) and LTHS (sparse).
Like NeuronSim, we find that similarity decreases
with sparsity, especially at higher layers. Inter-
estingly, in the decoder, LayerSim between dense
and sparse was consistently higher at layer 6 than
layer 5 (Figure AS), perhaps because layer 6 repre-
sentations ‘converge’ before final token prediction.
Comparing off-diagonal layer similarities between
encoder and decoder, we find that different decoder
layers are less similar than different encoder lay-
ers (Figures 5, A6). That is, each decoder layer
changes token representations more significantly
than each encoder layer, suggesting that decoder
layers perform more processing than encoder lay-
ers (perhaps due to the additional parameterization
afforded by the encoder-decoder attention module).

Next, we find that early sparse model repre-
sentations are closer to their final representations
than early dense representations are. In the en-
coder, for example, sim(dense-2, dense-6) is 0.67,
while sim(sparse-2, sparse-6) is 0.74 (Figure 5). In
the decoder, sim(dense-4, dense-6) is 0.80 while
sim(sparse-4, sparse-6) is 0.92. In general, early
and late layers are more similar in sparse models,
and this trend strengthens as sparsity increases.

We hypothesized two explanations: (1) Sparse
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Encoder LayerSim, LinearCKA

Mid-frequency tokens (rank 100 to 500) had
highest similarity (0.95), while both common (rank
0 to 5) and rare (rank 2500 or higher) tokens had
similarity 0.87. For POS, coordinating conjunc-
tions and superlative adjectives had highest sim-
ilarity (0.98 and 0.97), while proper nouns and
particles were lowest (0.85, 0.86). Models also
learned very different representations of punctu-
ation, e.g. with the possessive ending and period
tokens at 0.79 and 0.84 similarity respectively. For
semantic tags, the least similar classes (0.84) were
perfect/progressive verb tense modifiers, e.g. ‘has
arrived’, ‘is running’, etc. The broad ‘concept’
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Figure 5: Encoder layer similarities for pairs of layers
in LTHO (dense) and LTHS8 (70% sparse).

models have less complex final representations, so
early layers are inherently not as ‘far away.” (2)
Early sparse layers learn more effective representa-
tions, so they are closer to the final ones. Looking
at decoder LayerSim values, we found that early
sparse representations were often more similar to
final dense representations than early dense repre-
sentations were, providing some evidence for (2).
For example, sim(sparse-2, dense-6) is 0.55 while
sim(dense-2, dense-6) is 0.49 (Figure A6).

5.3 Analyzing the final layers

Late encoder and decoder representations exhib-
ited largest difference between sparse and dense
models. To further characterize the difference, we
computed the SVD of each model’s final encoder
and decoder layer representation matrices. We find
that sparse models have more variance explained
by the top k singular vectors (Figure A7). For
example, for the encoder, 80% variance requires
k = 290 for LTHO but just £ = 176 for LTHS; for
the decoder, £ = 283 and k¥ = 139. We conclude
that final layer representations in sparse models
fundamentally have less mathematical complexity
(which is not necessarily an obvious result for mag-
nitude pruning, versus e.g. in the case of pruning
entire neurons).

We next found word categories for which dense
and sparse encoder representations differed most.
We used linearCKA to compute similarities of to-
kens grouped by frequency bin, POS (Penn Tree-
Bank), or semantic tag (Bjerva et al., 2016).
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class spanning uncommon nouns also had relatively
dissimilar (0.87) representations. Together, these
results suggest that sparse model encodings differ
most for (1) tokens with several syntactic/semantic
meanings to disambiguate and (2) rare words.

5.4 Attention-level similarities

5.4.1 Encoder self-attention

Unlike the encoder activations, encoder self-
attention distributions remain remarkably similar
between sparse and dense models. For layers 2-6,
AttentionSim scores on the sparse-dense diagonal
are very close to 1 (Figure 6, bottom left). Layer
1 is an anomaly, with sparse and dense attentions
differing widely (0.62). The first layer’s attention
distributions in the sparse model become much
more similar to its later layers (average 0.41) than
in the dense model (average 0.18), suggesting that
this first self-attention layer learns more salient re-
lationships in the sparse model.

5.4.2 Encoder-decoder attention

Compared to self-attention, encoder-decoder atten-
tion displays more variation across layers and spar-
sities (Figure A8). While many off-diagonal simi-
larities exceed 0.85 in self-attention, off-diagonal
encoder-decoder similarities are often less than 0.7.
In particular, the first three enc-dec layers differ
strongly from the last three layers, demonstrating
heterogeneity in learned attention distributions at
different levels of decoding.

As sparsity increases, attention maps at a given
layer remain mostly consistent with the dense
model, although there is slightly more deviation
than in self-attention. Interestingly, the model’s
off-diagonal similarities gradually increase with
sparsity (average 0.69 in LTH8 vs. 0.63 in LTHO),
particularly with sparse-5 becoming more similar
to sparse-1,2,3. Sparsity may have a dampening
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Figure 6: Encoder self-attention similarities for pairs of
layers in LTHO (dense) and LTHS (70% sparse).

effect on the distinctions of individual encoder-
decoder layers; these more homogenous attention
distributions may explain the drop in the decoder’s
total representational complexity (Figure A7).

5.4.3 Decoder self-attention

Decoder self-attention distributions in pruned mod-
els are almost identical (0.99 similarity) to their
corresponding unpruned distributions, even more
so than enc-self and enc-dec attention (Figure A8).
We attribute this phenomenon to the relative sim-
plicity of the decoder self-attention module, and
in consequence the relative ease at which weights
can be pruned without changing expressivity. For
instance, we found that 40% of all decoder self-
attention distributions in the sparse model (41% in
the dense model) placed over 0.95 of the probabil-
ity mass on a single query token, compared to only
30% and 16% of the distributions in enc-self and
enc-dec attention respectively.

Further, all similarity scores between different
layers (off-diagonal) in dec self-attention are sig-
nificantly higher than in encoder self and enc-dec
attention. That is, decoder self-attention is homoge-
nous across layers. Despite the simple nature of this
self-attention, the decoder can still learn complex
representations due to its pairing with the powerful
encoder-decoder attention module.

6 Discussion

A consistent theme in our analysis is the behavioral
shift of early layers (1-3), which occurs gradu-
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ally as sparsity increases. Our probing results find
that lower layers of sparse models more directly
encode POS and syntax information compared to
dense models, even though performance of the fi-
nal encoder representations is similar (4.4). More-
over, our similarity analyses conclude that early
layer encoder hidden representations (5.2) and at-
tention distributions (5.4.1) trend closer towards
their respective final representations in sparse mod-
els. Information-theoretically, sparse layers have
less maximum capacity for encoding, so each in-
dividual layer must shoulder more load for the fi-
nal representations to remain predictively salient.
Conversely, an overparameterized dense model can
compensate for weak lower layer representations
with its upper layers. Indeed, upper FC layers are
pruned more than lower FC layers (3.4), reflect-
ing the shift in modeling power away from higher
layers.

We also observe a gradual loss of information
stored in model representations as weights are
pruned, especially in later layers. Individual neu-
rons diverge from their dense counterparts (5.2),
causing a drop in overall representational complex-
ity in the encoder and decoder. Correspondingly,
sparse models perform worse at higher-order se-
mantic tasks that are less relevant to BLEU (4.3).
The reduced overall complexity of sparse represen-
tations may partially explain why final layers are
observed to be closer to early layers (5.2, 5.4.2).

Finally, we find that sparse models’ attention
distributions remain largely similar to their val-
ues in the dense model. This ability to reduce
weights in attention modules while maintaining
nearly identical representations affirms other lines
of work (Guo et al., 2019; Wang et al., 2020). Of
the three attention types, encoder-decoder is pruned
least (3.4), varies most across sparsities, and ex-
hibits most within-model, inter-layer heterogeneity
(5.4.3). These results corroborate existing evidence
of its unique importance (Voita et al., 2019; Michel
et al., 2019). Meanwhile, decoder self-attention is
extremely homogenous across layers and sparsities,
perhaps because encoder-decoder attention is more
relevant to creating rich representations.

Limitations. Our work focuses on pruned Trans-
formers for which BLEU remains similar to the
original model. However, BLEU is an imper-
fect measure of translation quality (Callison-Burch
et al., 2006), and it is possible that our pruned mod-
els actually perform worse on the task at lower



sparsities than suggested by BLEU. Still, we think
our work is relevant given that sparse models are
typically only held to the standard of matching un-
pruned task performance.

Next, we emphasize that our work focuses solely
on magnitude pruning, which may not be represen-
tative of how other pruning methods impact Trans-
formers. We chose this style of pruning primarily
because it allows for higher overall sparsity without
drop in performance (Renda et al., 2020). Further,
while it might be expected (and has been shown,
in some cases) that pruning entire neurons or at-
tention heads would substantially change e.g. the
distributions of the model’s outputs, we found less
existing work specifically measuring the effects of
magnitude pruning. This dearth of analysis seemed
particularly egregious given recent growth in work
on unstructured sparsity (Blalock et al., 2020).

Finally, a note on probing classifiers: as has
been widely discussed by the community (e.g. Pi-
mentel et al. (2020)), probes measure correlation
between model outputs and auxilliary information.
Differences in probe performance do not necessar-
ily imply anything about what information actually
uses during its forward pass. Especially since we
find some evidence suggesting that sparse models
may be encoding information across layers, it is
possible that their differing structure may explain
worse probe performance, as opposed to fundamen-
tally weaker linguistic feature extraction. We hope
future work supplements our results by analyzing
a model’s encoded knowledge in other ways.

7 Conclusions

We evaluate how unstructured pruning affects the
behavior of Transformers while task performance
is maintained. We use probing classifiers to demon-
strate that pruning degrades semantic knowledge
before affecting BLEU, and that early layers of
sparse models better encode low-level linguistic
information. Unsupervised similarity analysis re-
veals that pruning induces representational changes
in the encoder and decoder, particularly in higher
layers, and that early sparse representations are
more similar to their final representations. Mean-
while, attention distributions remain remarkably
similar, even at high sparsities.
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