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Abstract

There is a recent surge of interest in using at-
tention as explanation of model predictions,
with mixed evidence on whether attention can
be used as such. While attention conveniently
gives us one weight per input token and is eas-
ily extracted, it is often unclear toward what
goal it is used as explanation. We find that of-
ten that goal, whether explicitly stated or not,
is to find out what input tokens are the most rel-
evant to a prediction, and that the implied user
for the explanation is a model developer. For
this goal and user, we argue that input saliency
methods are better suited, and that there are
no compelling reasons to use attention, despite
the coincidence that it provides a weight for
each input. With this position paper, we hope
to shift some of the recent focus on attention
to saliency methods, and for authors to clearly
state the goal and user for their explanations.

1 Introduction

Attention mechanisms (Bahdanau et al., 2015) have
allowed for performance gains in many areas of
NLP, including, inter alia, machine translation
(Bahdanau et al., 2015; Luong et al., 2015; Vaswani
et al., 2017), natural language generation (e.g.,
Rush et al., 2015; Narayan et al., 2018), and natural
language inference (e.g., Parikh et al., 2016).
Attention has not only allowed for better perfor-
mance, it also provides a window into how a model
is operating. For example, for machine translation,
Bahdanau et al. (2015) visualize what source to-
kens the target tokens are attending to, often align-
ing words that are translations of each other.
Whether the window that attention gives into
how a model operates amounts to explanation has
recently become subject to debate (§2). While
many papers published on the topic of explain-
able Al have been criticised for not defining ex-
planations (Lipton, 2018; Miller, 2019), the first
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key studies which spawned interest in attention
as explanation (Jain and Wallace, 2019; Serrano
and Smith, 2019; Wiegreffe and Pinter, 2019) do
say that they are interested in whether attention
weights faithfully represent the responsibility each
input token has on a model prediction. That is, the
narrow definition of explanation implied there is
that it points at the most important input tokens
for a prediction (arg max), accurately summariz-
ing the reasoning process of the model (Jacovi and
Goldberg, 2020b).

The above works have inspired some to find
ways to make attention more faithful and/or plau-
sible, by changing the nature of the hidden repre-
sentations attention is computed over using special
training objectives (e.g., Mohankumar et al., 2020;
Tutek and Snajder, 2020). Others have proposed
replacing the attention mechanism with a latent
alignment model (Deng et al., 2018).

Interestingly, the implied definition of explana-
tion in the cited works, happens to coincide with
what input saliency methods (§3) are designed to
produce (Li et al., 2016a; Sundararajan et al., 2017
Ribeiro et al., 2016; Montavon et al., 2019, i.a.).
Moreover, the user of that explanation is often im-
plied to be a model developer, to which faithfulness
is important. The elephant in the room is therefore:
If the goal of using attention as explanation is to
assign importance weights to the input tokens in
a faithful manner, why should the attention mech-
anism be preferred over the multitude of existing
input saliency methods designed to do exactly that?
In this position paper, with that goal in mind, we
argue that we should pay attention no heed (§4).
We propose that we reduce our focus on attention
as explanation, and shift it to input saliency meth-
ods instead. However, we do emphasize that under-
standing the role of attention is still a valid research
goal (§5), and finally, we discuss a few approaches
that go beyond saliency (§6).
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2 The Attention Debate

In this section we summarize the debate on whether
attention is explanation. The debate mostly fea-
tures simple BiLSTM text classifiers (see Figure 1).
Unlike Transformers (Vaswani et al., 2017), they
only contain a single attention mechanism, which
is typically MLP-based (Bahdanau et al., 2015):
_ expe;

>k exp e
where ¢ is the attention score for BILSTM state h;.
When there is a single input text, there is no query,
and q is either a trained parameter (like v, W}, and
W), or W,q is simply left out of Eq. 1.

e;= thanh(Whhi—l—qu) o

2.1 Is attention (not) explanation?

Jain and Wallace (2019) show that attention is of-
ten uncorrelated with gradient-based feature im-
portance measures, and that one can often find a
completely different set of attention weights that
results in the same prediction. In addition to that,
Serrano and Smith (2019) find, by modifying atten-
tion weights, that they often do not identify those
representations that are most most important to the
prediction of the model. However, Wiegreffe and
Pinter (2019) claim that these works do not dis-
prove the usefulness of attention as explanation per
se, and provide four tests to determine if or when
it can be used as such. In one such test, they are
able to find alternative attention weights using an
adversarial training setup, which suggests attention
is not always a faithful explanation. Finally, Pruthi
et al. (2020) propose a method to produce decep-
tive attention weights. Their method reduces how
much weight is assigned to a set of ‘impermissible’
tokens, even when the models demonstratively rely
on those tokens for their predictions.

2.2 Was the right task analyzed?

In the attention-as-explanation research to date
text classification with LSTMs received the most
scrutiny. However, Vashishth et al. (2019) question
why one should focus on single-sequence tasks at
all because the attention mechanism is arguably
far less important there than in models involving
two sequences, like NLI or MT. Indeed, the perfor-
mance of an NMT model degrades substantially if
uniform weights are used, while random attention
weights affect the text classification performance
minimally. Therefore, findings from text classifi-
cation studies may not generalize to tasks where
attention is a crucial component.
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Figure 1: A typical model in the debate.

Interestingly, even for the task of MT, the first
case where attention was visualized to inspect a
model (§1), Ding et al. (2019) find that saliency
methods (§3) yield better word alignments.

2.3 Is a causal definition assumed?

Grimsley et al. (2020) go as far as saying that at-
tention is not explanation by definition, if a causal
definition of explanation is assumed. Drawing on
the work in philosophy, they point out that causal
explanations presuppose that a surgical interven-
tion is possible which is not the case with deep
neural networks: one cannot intervene on attention
while keeping all the other variables invariant.

2.4 Can attention be improved?

The problems with using as attention as expla-
nation, especially regarding faithfulness, have in-
spired some to try and ‘improve’ the attention
weights, so to make them more faithful and/or
plausible. Mohankumar et al. (2020) observe high
similarity between the hidden representations of
LSTM states and propose a diversity-driven train-
ing objective that makes the hidden representations
more diverse across time steps. They show using
representation erasure that the resulting attention
weights result in decision flips more easily as com-
pared to vanilla attention. With a similar motiva-
tion, Tutek and Snajder (2020) use a word-level
objective to achieve a stronger connection between
hidden states and the words they represent, which
affects attention. Not part of the recent debate,
Deng et al. (2018) propose variational attention
as an alternative to the soft attention of Bahdanau
et al. (2015), arguing that the latter is not alignment,
only an approximation thereof. They have the ad-
ditional benefit of allowing posterior alignments,
conditioned on the input and the output sentences.



3 Saliency Methods

In this section we discuss various input saliency
methods for NLP as alternatives to attention:
gradient-based (§3.1), propagation-based (§3.2),
and occlusion-based methods (§3.3), following Ar-
ras et al. (2019). We do not endorse any specific
method', but rather try to give an overview of meth-
ods and how they differ. We discuss methods that
are applicable to any neural NLP model, allowing
access to model internals, such as activations and
gradients, as attention itself requires such access.
We leave out more expensive methods that use a
surrogate model, e.g., LIME (Ribeiro et al., 2016).

3.1 Gradient-based methods

While used earlier in other fields, Li et al. (2016a)
use gradients as explanation in NLP and compute:

vxifc(xlzn) (2)

where x; is the input word embedding for time step
iy X1.n = (X1,...,Xp) are the input embeddings
(e.g., a sentence), and f.(x1.,) the model output
for target class c. After taking the L2 norm of Eq. 2,
the result is a measure of how sensitive the model
is to the input at time step <.

If instead we take the dot product of Eq. 2 with
the input word embedding x;, we arrive at the
gradient X input method (Denil et al., 2015), which
returns a saliency (scalar) of input ¢:

vxifc(xlzn) - X5 3)

Integrated gradients (IG) (Sundararajan et al.,
2017) is a gradient-based method which deals with
the problem of saturation: gradients may get close
to zero for a well-fitted function. IG requires a
baseline by.,, e.g., all-zeros vectors or repeated
[MASK] vectors. For input ¢, we compute:

1 k
Ezvxlfc(bln‘i'E(Xln_bln)) (Xl_bl) (4)
k=1

That is, we average over m gradients, with the
inputs to f. being linearly interpolated between the
baseline and the original input X1.,, in m steps. We
then take the dot product of that averaged gradient
with the input embedding x; minus the baseline.
We propose distinguishing sensitivity from
saliency, following Ancona et al. (2019): the for-
mer says how much a change in the input changes

"For an evaluation of methods for explaining LSTM-based
models, see e.g., Poerner et al. (2018) and Arras et al. (2019).
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the output, while the latter is the marginal effect
of each input word on the prediction. Gradients
measure sensitivity, whereas gradientxinput and
IG measure saliency. A model can be sensitive to
the input at a time step, but it depends on the actual
input vector if it was important for the prediction.

3.2 Propagation-based methods

Propagation-based methods (Landecker et al.,
2013; Bach et al., 2015; Arras et al., 2017, i.a.),
of which we discuss Layer-wise Relevance Prop-
agation (LRP) in particular, start with a forward
pass to obtain the output f.(x1.,,), which is the top-
level relevance. They then use a special backward
pass that, at each layer, redistributes the incoming
relevance among the inputs of that layer. Each kind
of layer has its own propagation rules. For exam-
ple, there are different rules for feed-forward layers
(Bach et al., 2015) and LSTM layers (Arras et al.,
2017). Relevance is redistributed until we arrive at
the input layers. While LRP requires implementing
a custom backward pass, it does allow precise con-
trol to preserve relevance, and it has been shown to
work better than using gradient-based methods on
text classification (Arras et al., 2019).

3.3 Occlusion-based methods

Occlusion-based methods (Zeiler and Fergus, 2014;
Li et al., 2016b) compute input saliency by oc-
cluding (or erasing) input features and measuring
how that affects the model. Intuitively, erasing
unimportant features does not affect the model,
whereas the opposite is true for important features.
Li et al. (2016b) erase word embedding dimensions
and whole words to see how doing so affects the
model. They compute the importance of a word on
a dataset by averaging over how much, for each
example, erasing that word caused a difference in
the output compared to not erasing that word.

As a saliency method, however, we can apply
their method on a single example only. For input 2:

fC(Xlin) - fC(Xlzn\xiZO) (5)

computes saliency, where X.,,|,—o indicates that
input word embedding x; was zeroed out, while the
other inputs were unmodified. Kadar et al. (2017)
and Poerner et al. (2018) use a variant, omission,
by simply leaving the word out of the input.

This method requires n + 1 forward passes. It is
also used for evaluation, to see if important words
another method has identified bring a change in
model output (e.g., DeYoung et al., 2020).



4 Saliency vs. Attention

We discussed the use of attention as explanation
(§2) and input saliency methods as alternatives (§3).
We will now argue why saliency methods should
be preferred over attention for explanation.

In many of the cited papers, whether implicitly
or explicitly, the goal of the explanation is to reveal
which input words are the most important ones for
the final prediction. This is perhaps a consequence
of attention computing one weight per input, so it
is necessarily understood in terms of those inputs.

The intended user for the explanation is often
not stated, but typically that user is a model devel-
oper, and not a non-expert end user, for example.
For model developers, faithfulness, the need for
an explanation to accurately represent the reason-
ing of the model, is a key concern. On the other
hand, plausibility is of lesser concern, because a
model developer aims to understand and possibly
improve the model, and that model does not neces-
sarily align with human intuition (see Jacovi and
Goldberg, 2020b, for a detailed discussion of the
differences between faithfulness and plausibility).

With this goal and user clearly stated, it is im-
possible to make an argument in favor of using
attention as explanation. Input saliency methods
are addressing the goal head-on: they reveal why
one particular model prediction was made in terms
of how relevant each input word was to that predic-
tion. Moreover, input saliency methods typically
take the entire computation path into account, all
the way from the input word embeddings to the
target output prediction value. Attention weights
do not: they reflect, at one point in the computa-
tion, how much the model attends to each input
representation, but those representations might al-
ready have mixed in information from other inputs.
Ironically, attention-as-explanation is sometimes
evaluated by comparing it against gradient-based
measures, which again begs the question why we
wouldn’t use those measures in the first place.

One might argue that attention, despite its flaws,
is easily extracted and computationally efficient.
However, it only takes one line in a framework like
TensorFlow to compute the gradient of the output
w.r.t. the input word embeddings, so implementa-
tion difficulty is not a strong argument. In terms of
efficiency, it is true that for attention only a forward
pass is required, but many other methods discussed
at most require a forward and then a backward pass,
which is still extremely efficient.

S Attention is not not interesting

In this position paper we criticized the use of atten-
tion to assess input saliency for the benefit of the
model developer. We emphasize that understanding
the role of the attention mechanism is a perfectly
justified research goal. For example, Voita et al.
(2019) and Michel et al. (2019) analyze the role
of attention heads in the Transformer architecture
and identify a few distinct functions they have, and
Strubell et al. (2018) train attention heads to per-
form dependency parsing, adding a linguistic bias.

We also stress that if the definition of explana-
tion is adjusted, for example if a different intended
user and a different explanatory goal are articu-
lated, attention may become a useful explanation
for a certain application. For example, Strout et al.
(2019) demonstrate that supervised attention helps
humans accomplish a task faster than random or
unsupervised attention, for a user and goal that are
very different from those implied in §2.

6 Is Saliency the Ultimate Answer?

Beyond saliency. While we have argued that
saliency methods are a good fit for our goal, there
are other goals for which different methods can
be a better fit. For example, counterfactual analy-
sis might lead to insights, aided by visualization
tools (Vig, 2019; Hoover et al., 2020; Abnar and
Zuidema, 2020). The DiffMask method of DeCao
et al. (2020) adds another dimension: it not only re-
veals in what layer a model knows what inputs are
important, but also where important information is
stored as it flows through the layers of the model.
Other examples are models that rationalize their
predictions (Lei et al., 2016; Bastings et al., 2019),
which can guarantee faithful explanations, although
they might be sensitive to so-called trojans (Jacovi
and Goldberg, 2020a).

Limitations of saliency. A known problem with
occlusion-based saliency methods as well as
erasure-based evaluation of any input saliency tech-
nique (Bach et al., 2015; DeYoung et al., 2020) is
that changes in the predicted probabilities may be
due to the fact that the corrupted input falls off the
manifold of the training data (Hooker et al., 2019).
That is, a drop in probability can be explained by
the input being OOD and not by an important fea-
ture missing. It has also been demonstrated that at
least some of the saliency methods are not reliable
and produce unintuitive results (Kindermans et al.,
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2017) or violate certain axioms (Sundararajan et al.,
2017).

A more fundamental limitation is the expres-
siveness of input saliency methods. Obviously, a
bag of per-token saliency weights can be called
an explanation only in a very narrow sense. One
can overcome some limitations of the flat represen-
tation of importance by indicating dependencies
between important features (for example, Janizek
et al. (2020) present an extension of IG which ex-
plains pairwise feature interactions) but it is hardly
possible to fully understand why a deep non-linear
model produced a certain prediction by only look-
ing at the input tokens.

7 Conclusion

We summarized the debate on whether attention
is explanation, and observed that the goal for ex-
planation is often to determine what inputs are the
most relevant to the prediction. The user for that
explanation often goes unstated, but is typically as-
sumed to be a model developer. With this goal and
user clearly stated, we argued that input saliency
methods—of which we discussed a few—are better
suited than attention. We hope, at least for the goal
and user that we identified, that the focus shifts
from attention to input saliency methods, and per-
haps to entirely different methods, goals, and users.
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