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Abstract

Although large-scale pretrained language mod-
els, such as BERT and RoBERTa, have
achieved superhuman performance on in-
distribution test sets, their performance suf-
fers on out-of-distribution test sets (e.g., on
contrast sets). Building contrast sets often re-
quires human-expert annotation, which is ex-
pensive and hard to create on a large scale.
In this work, we propose a Linguistically-
Informed Transformation (LIT) method to au-
tomatically generate contrast sets, which en-
ables practitioners to explore linguistic phe-
nomena of interests as well as compose dif-
ferent phenomena. Experimenting with our
method on SNLI and MNLI shows that current
pretrained language models, although being
claimed to contain sufficient linguistic knowl-
edge, struggle on our automatically generated
contrast sets. Furthermore, we improve mod-
els’ performance on the contrast sets by apply-
ing LIT to augment the training data, without
affecting performance on the original data.'

1 Introduction

Large-scale pretrained language models have given
remarkable improvements to a wide range of NLP
tasks (Peters et al., 2018; Howard and Ruder, 2018;
Devlin et al., 2019; Liu et al., 2019; Radford et al.,
2019). However, the results are questionable, since
those models take advantage of lexical cues (and
other heuristics) in the datasets, which can make
them right for wrong reasons (Gururangan et al.,
2018; McCoy et al., 2019). Therefore, the con-
cept of evaluating models on contrast sets (Gard-
ner et al., 2020) and the creation of generalization
tests (Kaushik et al., 2020) is critical for building
a robust NLP system. Those test sets are usually
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Figure 1: Example of BERT making wrong prediction
on LIT-transformed data but correct prediction on the
original datum. The detailed transformed datum in-
cludes a premise modified to past tense and a hypoth-
esis with future tense. The true label correspondingly
changes to neutral. LIT also generates multiple trans-
formation results at once for a single original datum;
we include only one detailed example here for simplic-
ity of the illustration.

manually created, which requires significant human
effort, and so is hard to do on a large scale.

In this work, we propose Linguistically-
Informed Transformations (LIT) to create contrast
sets automatically. Our method can perturb the
original examples and generate various types of
contrastive examples, with a wide choice of lin-
guistic phenomena. Furthermore, our tool supports
compositional generalization tests. Namely, re-
searchers can choose transformations from a set
of basic linguistic phenomena and modify original
sentences with an arbitrary combination of those
basic transformations.

To demonstrate the utility of LIT, we focus on
the natural language inference (NLI) task, a central
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task to many NLP applications. We apply LIT to
generate contrast sets for SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018) using
seven linguistic phenomena. Human experts’ rat-
ing show that our generated data is high-quality for
basic transformations and for most of the composi-
tional transformations. See Appendix B for more
details.

With our generated contrast sets, we show that
pretrained language models, despite having ‘seen’
huge quantities of raw text data, fail on simple
linguistic perturbations. As shown with an exam-
ple in Figure 1, ‘decoupling’ tenses of the premise
and hypothesis breaks BERT’s prediction. Our
analysis not only shows the inadequate coverage
of SNLI and MNLI datasets but also reveals the
deficiency of current pretraining-and-finetuning
paradigms. Compared to previous work showing
that BERT is not robust and fails to generalize on
out-of-distribution test sets (McCoy et al., 2019;
Zhou et al., 2019; Jin et al., 2019b), our method
provides a more fine-grained picture showing on
which phenomenon the models fail. In summary,
our contributions are:

e We provide a method for automatically gen-
erating phenomenon-specific contrast sets,
which helps NLP practitioners better under-
stand pre-trained language models.

e We further apply LIT to augment SNLI and
MNLI training data, which improves models’
performance on out-of-distribution test sets
without sacrificing the models’ performance
on the in-distribution test set.

e We demonstrate that, in the current pretrain-
ing paradigm, traditional linguistic methods
are valuable for their ability to measure and
promote robustness and consistency in data-
driven models.

After discussing several areas of related work in
Section 2, we describe LIT in step-by-step detail
(Section 3). We then apply LIT to SNLI and MNLI
(4.1) before evaluating BERT and RoBERTa on
both simple (4.2) and compositional (4.4) transfor-
mations. We conclude (Section 5) by discussing
limitations of LIT and future directions.

2 Related Work

NLI Model Diagnosis Our work builds on
works diagnosing and improving NLI models with

automatically augmented instances (McCoy et al.,
2019; Min et al., 2020). While most of these works
apply simple methods such as templates to gen-
erate new instances, which limits the phenomena
covered, our method has a wider coverage and can
be easily extended.

Contrast Sets Contrast sets (Gardner et al.,
2020) serve to evaluate a models’ true capabili-
ties by evaluating on out-of-distribution data since
previous in-distribution test sets often have system-
atic gaps, which inflate models’ performance on a
task (Gururangan et al., 2018; Geva et al., 2019).
The idea of contrast sets is to modify a test instance
to a minimum degree while preserving the original
instance’s syntactic/semantic artifacts and chang-
ing the label. Typically, the authors of the dataset
create the contrast set manually. We show that a
precision grammar, namely ERG (Copestake and
Flickinger, 2000), can be used to automate this
process while preserving the authors’ benefit of
choosing the perturbations of interest.

Adversarial Datasets Another line of work ad-
dressing the problem of current models’ super-
human performance on in-distribution test sets fo-
cuses on adversarial methods. Bras et al. (2020)
uses an adversarial filtering algorithm to reduce
spurious bias in the dataset to avoid models relying
on such patterns. Dinan et al. (2019) shows that a
human-in-the-loop adversarial training framework
significantly improves models’ robustness. And
Jin et al. (2019a) shows that current pretrained lan-
guage models are not robust under simple lexical
manipulations. Adversarial methods generate test
instances automatically, which can be applied to
augment the training data (Jin et al., 2019a; Dinan
et al., 2019). However, these adversarial methods
introduce specific models in the loop, which might
also bias the test set.

3 Generating Contrast Sets

We propose a new Linguistically-Informed Trans-
formation (LIT) method for large-scale automatic
generation of contrast sets. LIT 1) parses the input
sentence for both syntax and semantics, 2) pro-
duces transformed syntax and semantics for each
linguistic phenomenon, 3) generates perturbed sen-
tences corresponding to the transformed syntax/se-
mantics, 4) and selects the best surface sentence
for each phenomenon. The full pipeline is shown
in Figure 2. Note that we expand the definition of

127



Input Sentence
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Figure 2: General pipeline of LIT system exemplified with one input sentence. The parse result includes both
syntax and semantics. The transformation rules produce one transformed representation per phenomenon. A set of
sentences, all grammatical according to ERG, is generated for each transformed representation. One sentence per
phenomenon is selected as the final output sentence. We include two “Rule’’s for illustration purpose; LIT includes
more transformation rules and can be extended for more phenomena.

contrast sets in Gardner et al. (2020). We not only
apply our generated contrast sets for evaluation but
also for augmentation. We also no longer restrict
that the perturbations necessarily lead to the change
of the labels.

LIT contains seven phenomenon-specific trans-
formation rules for modifying the parse results and
can be further extended; LIT also allows the com-
position of different transformation rules for com-
plicated perturbations involving multiple linguistic
phenomena.

3.1 Parse and Generation

LIT utilizes an existing grammar implementation
for parsing and generation, namely the English Re-
source Grammar (ERG, Copestake and Flickinger
2000). ERG is a linguistically motivated broad-
coverage grammar for English in the Head-Driven
Phrase Structure Grammar framework (HPSG, Pol-
lard and Sag 1994; Sag et al. 2003 ) covering 82.6%
of sentences in Wall Street Journal (WSJ) sections
in the Penn Treebank (Marcus et al., 1993). ERG is
processing-neutral, meaning that it is not limited to
either parsing or generation, and can handle both
with a grammar processor. In this work, we use the
ACE parser? as the processor for ERG grammar.

3.2 Transformation

The core part and original contributions of our LIT
system are the transformation rules; each rule modi-
fies the parse results from ERG and the ACE parser
for one linguistic phenomenon. An ERG parse
result includes an HPSG syntax tree and a seman-

http://sweaglesw.org/linguistics/ace/
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tic representation in Minimal Recursion Semantics
(MRS, Copestake et al. 2005). An MRS represen-
tation consists of a bag of elementary predicates
(EPs), each with a handle for reference, a set of
handle constraints that specify relations between
handles, a fop indicating the topmost EP, and an
index variable for the event described by the entire
sentence. Every variable has a set of features such
as tense and numbers indicating the properties of
the entities or the events.

In what follows, we illustrate the application
of the transformation rule for it-cleft construction
applied to the sentence Alice saw Bob.; see Ap-
pendix A for a full list of rules.

(1) Original parse result:

[ TOP: hO

INDEX: e2

[ e SF: prop TENSE:

RELS: < [ proper_qg LBL:
named LBL: h7
_see_v_1 LBL:
proper_qg LBL: ]
named LBL: hl3 ARGO: x9 CARG: "Bob"
< h0 geqg hl h5 geg h7 hll geqg hl3 > ]

TOP: label of topmost EP

INDEX: the variable associated with the sentential event

RELS: bag of EPs

LBL: label variable for the EP

HCONS: constrains between labels for EPs; geq denotes a scoping relation

past ... ]

h4 ARGO: x3 ... ]
ARGO: x3 CARG: "Alice"
hl ARGO: e2 ARGL:
h1l0 ARGO: x9 ...

1
x3 ARG2: x9 ...

]

>

HCONS:

(2) Inserting it-cleft EP

‘[ _be_v_itcleft LBL: hl4 ARGO: el5 ARGl: x3 ARG2: hl ]

(3) Connecting top handle hO to it-cleft EP handle (LBL)

‘HCONS: < h0 geq hl4 h5 geq h7 hll geq h13 > ]

(4) Change sentential semantic index to it-cleft EP’s ARGO

INDEX: el5
[ e SF: prop TENSE: pres ...

(5) Final result



TOP: hO
INDEX: el5
[ e SF:
RELS: <

prop TENSE: pres MOOD: indicative PROG: - PERF: -
proper_gq LBL: hd ... ]

named LBL: h7 ARGO: x3 CARG: "Alice" ]
_see_v_1 LBL: hl ARGO: e2 ARGl: x3 ARG2: x9
proper_g LBL: hl0 ARGO: x9 ... ]
named LBL: hl3 ARGO: x9 CARG: "Bob"
_be_v_itcleft LBL: hl4

ARGO: el5 ARGl: x3 ARG2: hl ] >
HCONS: < h0 geq hl4 h5 geq h7 hll geq hl3 >

1

1

[
[
[
[
[ 1
[

]

For each parse result, LIT generates one transfor-
mation for each linguistic phenomenon, obtaining a
set of simple transformations. Each transformation
result in this set can also be fed into LIT as a new
base for transformation, allowing different rules to
be stacked and producing compositions of trans-
formations. LIT uses all transformation results to
generate surface sentences.

3.3 Surface Sentence Selection

Selection by ERG: One of the advantages of the
LIT system is that the grammar backbone ensures
the acceptability of the generated data. The ACE
parser only generates grammatical sentences, ac-
cording to the ERG. Consequently, ill-formed LIT-
transformed results are automatically rejected at the
generation phase without additional efforts from
the users and developers; for instance, even though
LIT may produce a representation that would corre-
spond to *Alice may will see Bob. 3, such a surface
string will not be generated since the ERG does not
accept it.

In practice, ERG slightly overgenerates and al-
lows certain ungrammatical strings. Such cases are
likely too rare to affect the overall quality of the
dataset and can often be filtered out during post-
selection. ERG also cannot rule out grammatically
well-formed but semantically unnatural sentences,
which limits the data quality for certain construc-
tions, especially for passives. As a sanity check, we
had expert annotators evaluate the generated data
and found high agreement on the grammaticality of
generated data; the full details are in Appendix B.

Post-Selection by Pretrained Language Models:
ERG often permits multiple strings for a single
representation since the meaning-to-form mapping
is not unique in natural languages. To select the
candidate sentence for a specific transformation,
LIT employs GPT-2 (Radford et al., 2018) to rank
multiple surface sentences generated from the same
representation and selects the best one according
to their perplexity scores.

3% means ungrammatical
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3.4 Phenomena Covered

LIT is capable of perturbing sentences for seven lin-
guistic transformations: polar questions, it-clefts,
tense and aspect, modality, negation, passives and
subject-object swapping. Examples for each trans-
formation are shown in Appendix A. LIT also al-
lows different transformations to be stacked where
possible. LIT can be further extended for more
linguistic transformations, and any extension to the
LIT system would also receive all of the aforemen-
tioned benefits from ACE and ERG.

3.5 Comparison with Other Approaches

Flexibility: LIT covers certain simple construc-
tions that can be handled with a template-based
approach, for instance, the subject-object swapping
in McCoy et al. (2019). LIT is, however, not lim-
ited to template-generated examples and is capable
of perturbing naturally-occurring instances.

Plausibility: One special property setting LIT
apart from other automatic dataset-construction
methods is that LIT uses existing linguistic the-
ories resources as its backbone. The use of ERG
enables LIT to control data plausibility without
human annotation from scratch.

Modularity: LIT consists of multiple modules:
parsing and generation, transformation, and post-
selection. Extending with more transformation
rules, updating ERG (which is still under active
development), and including other language mod-
els for post-selection can all be handled in the sys-
tem without major modification to other modules,
allowing LIT to be reused for different works.

Model Agnostic: LIT employs traditional lin-
guistic methods for transforming sentences, and
the role of language models is limited to selecting
the best one from the strings generated by ERG.
Contrasting to models trained on specific datasets,
the ERG grammar behind LIT does not introduce
bias from any specific architecture or dataset. This
increases the utility of contrast sets generated with
LIT as they are likely to be used for testing data-
driven models.

3.6 Sentence Coverage

LIT successfully transformed 21.0% of the sen-
tence pairs in MNLI and 19.7% in SNLI, with at
least one transformed result for each sentence in
the pair. The number of transformed sentence pairs
by phenomenon is shown in Table 2.



Transformation Label Sentence 1 Sentence 2

o;0 Contradiction  Alice is driving a car. Alice is playing piano.

i;i Unchanged It is Alice who is driving a car. It is Alice who is playing piano.
pa;pa Unchanged A car is being driven by Alice. Piano is being played by Alice.
£;p Neutral Alice will be driving a car. Alice was playing piano.

m; o Neutral Alice may be driving a car. Alice is playing piano.

£f;p +i Neutral It is Alice who will be driving a car. It is Alice who was playing piano.
£;p +pa Neutral A car will be driven by Alice. Piano will be played by Alice.

Table 1: Examples for label rules used for determining labels of generated data for different transformations.
We use a;b + c to denote compositional transformation where the premise is transformed with both a and b,

whereas the hypothesis is transformed with b and c.

# MNLI ex. # SNLI ex.

train m. mm. | train dev
0;0 392k 10k 10k | 550k 10k
i;i 13k 1k 1k 65k 1k
pa;pa 3k 236 353 | 16k 586
£f;p 3k 221 208 | 6k 111
p; £ 3k 262 260 | 7k 142
m; o 13k 1k 1k 48k 905
p;£ +1i 4k 288 303 | 7k 122
p; £ +pa 719 61 82 1k 45
£;p 41 4k 259 270 | 6k 91
£f;p +pa 727 59 72 1k 37

Table 2: Number of examples (ex.) of different trans-
formation rules in MNLI and SNLI parse results. For
MNLI, we report example count in training (train) set
and development (dev) set. For SNLI, we report exam-
ple count in training (train) set, matched development
(m.) set, and mismatched development (mm.) set.

4 Experiments

Using LIT, we evaluate whether large pretrained
models ‘understand’ certain linguistic phenom-
ena through testing them on transformed SNLI
and MNLI instances. Specifically, we investigate
whether BERT and RoBERTa can successfully
predict transformed instances on modality (may),
tenses (past; future), passivization, it cleft, and their
compositions correctly and consistently. In the fol-
lowing section, we first discuss how we set up our
tasks, and then we present our results on simple
transformations and composed transformations, re-
spectively.

4.1 Setup

For the purpose of this paper, we formulate our
experiment settings as follows. Specifically, each

instance in SNLI/MNLI consists of a hypothesis
(e.g., Some men are playing a sport.), a premise
(e.g. A soccer game with multiple males playing.)
and their corresponding relationship label (entail-
ment). A dual transformed instance is obtained by
applying LIT to either the hypothesis or premise,
which may or may not change the label of their
relationship (i.e., entailment, neutral, and contra-
diction).

4.1.1 Transforming NLI Datasets with LIT

While LIT does not produce laebls after transfor-
mation, we apply two label-changing, two label-
preserving, and the relevant compositional trans-
formations listed in Table 1, with one example per
transformation. Note that o; o means we do not
modify the instance.

e Modality is used to talk about possibilities
and necessities beyond what is actually true
and is central to natural language semantics
(Kratzer, 1991). We investigate models’ abil-
ity to understand the uncertainty expressed
in the text by adding ‘may’ to the instance.
Thus, a ‘contradiction’ or ‘entailment’ rela-
tionship label is changed to ‘neutral’ logically.
Specifically, we consider adding ‘may’ to the
premise (m; o). Note that one can also add
‘may’ to the hypothesis, which we leave for
future work.

o Tenses are used to evaluate sentences at times
other than the time of utterance. To probe
whether models are able to perform temporal
reasoning, we transformed the instances by
assigning past tense to hypothesis and future
tense to premise (p; £) or vice versa (£; p),
which changes the ‘contradiction’ and ‘entail-
ment’ label to ‘neutral’.
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£;p p; £ i;i pa;pa m;o p;f +i p;f +pa £;p +i £;p +pa
Acc@Ori 93.21 91.60 91.86 95.28 90.90 90.97 93.44 94.21 94.92
ORI Acc@Ctr 543 4198 85.17 90.99 15.13 34.38 32.79 6.18 6.78
Consistency  4.98 3435 91.04 93.99 10.19 28.82 29.51 5.79 5.08

£;p p; £ i;i pa;pa m;o p;f +i p;f +pa £;p +i £;p +pa
Acc@Ori 93.67 93.13 91.86 94.85 92.19 90.97 93.44 94.98 94.92
AUG Acc@Ctr 99.10 99.62 89.80 91.85 99.11 87.50 98.36 76.06 94.92
Consistency 92.76 92.75 95.06 94.42 91.49 78.47 91.80 71.04 89.83

Table 3: Consistency and accuracies of roberta—-large over different linguistic phenomena in MNLI. We
first train two model separately on the original (ORI) training set and augmented (AUG) training set. Then, we
evaluate the trained models on m. and mm. for each phenomena. In this table, we report accuracy on the original
sentence pair (Acc@Ori), accuracy on the transformed sentence pair (Acc@Ctr), and the model’s consistency.

Each accuracy/consistency has the format (m./mm.).

e Label-preserving Transformations do not
require inferring the label after transforma-
tion, which serves to test models’ ability to
stay consistent with its prediction after some
linguistic perturbations. Here, we experiment
on passivization (pa) and it-cleft (1).

o Compositional Transformations help us fur-
ther evaluate models’ ‘understanding’ of cer-
tain linguistic phenomenon. If the models
robustly ‘understand’ phenomenon « and S,
composing both should not pose problems to
the models. Specifically, we consider adding
passivization and it cleft to p; £ and £;p
transformations. They are denoted as p; £
+i,p; £ +p, £;p +i,and £;p +p respec-
tively.

The statistics for our generated dataset are shown
in Table 2. We train two models on two training set.
The original (ORI) training set includes untrans-
formed SNLI training data, whilst the augmented
(AUG) training set includes LIT-transformed data
with all non-conpositional transformations listed in
Table 2. We test both models’ accuracy and consis-
tency for all transformations in the same table.

We use a set of rules to infer the labels of gen-
erated pairs (see Table 1) based on the types of
transformation and the original labels. For in-
stance, originally entailment pairs will turn neutral
when ‘may’ is inserted since the ‘may’ modality
discharges the truth value of original propositions.
‘Decoupling’ the tenses of originally present-tense
pairs for past/future tense pairs also turns the la-
bel to neutral, for events at different times are less
likely to affect each other.

We hypothesize that NLI tasks follow logic rules
completely and our following experiments also con-

form to that hypothesis, which legitimize our label-
inferring rules. However exceptions to such rules
may occur: Alice died nevertheless contradicts Al-
ice will be eating, since dying is an event prevent-
ing future action of its agent. Annotation by three
experts of 100 randomly chosen transformed pairs
shows that 79% human agreement with the inferred
label, with 92% for label-preserving transforma-
tions and 76% for label-changing transformations.
Future work will explore refinements of our label-
assignment procedure.

4.1.2 Probing Models

For pretrained language models, we use mod-
els from HuggingFace (Wolf et al., 2019).
In this paper, we use bert-base-uncased,
bert-large-uncased (Devlin et al., 2019),
roberta-base, and roberta-large (Liu et al.,
2019). For all models, we use Adam to optimize
the parameters with an initial learning rate of
5 x 1075, For all the fine-tuning, we use the same
seed and train with batch size 32 for 3 epochs, the
same setting used in (Devlin et al., 2019). In this
paper, since we never use the development set for
early stopping or hyper-parameter tuning (and
since MNLI doesn’t have a publicly available test
set) , we evaluate our models on the development
set. Note that MNLI has matched (m.) and
mismatched (mm.) test examples, which are
derived from the same and different sources as
those in the training set, respectively.

4.1.3 Evaluation Metrics

To fully evaluate models’ performance, we use
both accuracy and consistency. While accuracy
measures how well a model can accurately predict
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MNLI aug-MNLI  SNLI aug-SNLI
bert-base-uncased 84.31/84.79 69.47/69.05 90.97 46.96
ORI Dbert-large-uncased 86.54/86.46 71.28/70.34 91.78 47.72
roberta-base 88.00/87.60 71.95/70.58 91.86 47.72
roberta-large 90.01/90.34 73.78/73.04 92.83 46.34
bert-base-uncased 84.62/84.45 86.60/85.73 90.86 94.34
AUG Dbert-large-uncased 86.24/86.37 88.14/87.98 91.49 96.00
roberta-base 87.51/87.52 89.66/89.45 92.13 95.05
roberta-large 90.14/89.84 91.47/91.04 92.53 95.93

Table 4: Accuracy on MNLI and SNLI datasets. MNLI results have the format (m./mm.). SNLI results are on

SNLI dev.

test instances, consistency measures how robust
a model under certain perturbations. We report
accuracy on the original test set (Acc@Ori), accu-
racy on the generated contrast set (Acc@Ctr), and
the consistency score (defined below). Note that
test sets for different phenomena might be differ-
ent since we only choose the test instances to be
included for each phenomenon if LIT produces con-
trast instances corresponding to the phenomenon.

Consistency In addition to using accuracy to mea-
sure models’ performance, recent research pays at-
tention to consistency, which provides another per-
spective to probe models’ competence in the real
world (Trichelair et al., 2018; Zhou et al., 2019;
Gardner et al., 2020). If a model is robust for
the given task, then its performance on original
and transformed data should be consistent. For in-
stance, a human is expected to be consistent over
the understanding of both a simple sentence and its
it-cleft counterpart. We thus measure consistency
by comparing the model’s prediction on original
and transformed data. We define consistency for a
dual test instance as the match between labels as-
signed on original and transformed data instances.
Specifically, we define the model to be consistent if
a model makes the same label prediction (whether
correct or not) for a dual test instance as for the
original, and inconsistent otherwise.* We evaluate
the model consistency for each type of linguistic
transformation to investigate the models’ robust-
ness to different linguistic phenomena, and to ex-
amine the differences between the difficulties of
different linguistic structures for the models.

“Note that this contrasts with what Gardner et al. (2020)
call contrast consistency, where both predictions additionally
have to be both correct.
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4.2 Simple Transformations

By perturbing the test instances with our predefined
transformations, we aim to probe pre-trained lan-
guage models’ relevant linguistic knowledge and
robustness towards those transformations.

As shown in Table 3, RoBERTa, trained on ORI
of MNLI, performs worse on contrast sets, espe-
cially for label-changing transformations. Label-
preserving transformations do not hurt models’ per-
formance as much as label-changing transforma-
tions. We observed similar trends for other models
(see Appendix C. This observation is aligned with
(McCoy et al., 2019)), which suggests that models
are relying on lexical overlaps to infer the relation-
ship between premise and hypothesis.

Another observation is that RoBERTa does not
achieve high consistency in any of the simple trans-
formations. The poor and inconsistent performance
of RoBERTa on our contrast sets shows that even
though the model can perform very well on the in-
distribution test set, there is still a systematic gap
for future models to overcome.

4.3 Applying LIT for Data Augmentation

Having shown that pre-trained language models do
not generalize well to our generated contrast sets,
we ask whether we can ‘teach’ models to recognize
those phenomena and make correct predictions ac-
cordingly.

We do this by fine-tuning models on the aug-
mented training data together with the original data.
As shown in Table 4, we observe that, when train-
ing on the augmented data, models preserve their
performance on the original test set while improv-
ing significantly on the out-of-distribution test sets.

Taking a closer look over the specific phe-
nomenon in Table 3, models’ performance in-
creases significantly on label-changing contrast



sets. This indicates that models improve in terms
of ‘understanding’ the role of modality (may) and
tenses in natural language inference. Arguably,
models may simply memorize the ‘trick’ that
modality (may) and tenses (past to future) are asso-
ciated with label ‘neutral.” However, we success-
fully show that we could enable models to learn
those ‘tricks’ through data augmentation. Future
work will probe whether models fine-tuned on our
augmented data are relying on such heuristics.
The models’ performance also increases slightly
for label-preserving transformations. However,
their consistency does not increase for every trans-
formation, which suggests that data augmentation
alone may not suffice for building robust models.

4.4 Compositional Transformations

We further investigate the models’ performance
when multiple transformation rules are composed
together and applied to a single sentence. We probe
models fine-tuned on the original dataset and the
dataset augmented with only simple transforma-
tions with our compositional test sets. If a model
learns the linguistic phenomenon systematically, it
should perform well on these compositional trans-
formations even without training. This resembles
the zero-shot tests on tasks like SCAN (Lake and
Baroni, 2018), but applied to naturally occurring
linguistic data.’

The bottom-right quadrant of Table 3 shows that
RoBERTa performs very well on compositional
transformations when it is fine-tuned only on sim-
ple transformations, in some cases (p; £ + pa)
even performing better than on the simple transfor-
mation data. Again, we observed similar results
across all models (see Appendix C). This suggests
that it has learned something systematic about the
transformations in the augmented dataset.

For both p; £ and £;p, RoBERTa performs
worse when additionally composing with it-clefts
than with passivization. This suggests that there
are differences in the level of systematicity learned
for the different transformations, a phenomenon
which future work will investigate in more detail.

5 Discussion and Analysis

With LIT, we reveal that current high-performance
NLI models still suffer from understanding simple
linguistic phenomena. They can be trained to un-

3See Andreas (2020) for a complementary, heuristic-driven
approach to compositional data augmentation.
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derstand these phenomena in a way that appears
systematic. In the remainder, we discuss the limi-
tations of LIT, applying LIT to investigate the sys-
tematic deficiency of current large-scale datasets,
and potential applications of LIT to tasks other than
NLI.

5.1 Limitations of LIT

One major limitation of LIT is the dependency
on ERG, which took more than twenty years of
human labor and is specifically for English. It is
possible to swap ERG/ACE parser with data-driven
parsers and generators trained on semantic graph-
banks, including the DeepBank (Flickinger et al.,
2012) which uses the same representation frame-
works, potentially extending the method to other
languages where a broad-coverage hand-crafted
grammar is unavailable. Using data-driven models,
however, does re-introduce possible model bias and
uncertainty of robustness. Nevertheless, once such
a resource is available, LIT provides a method of
transforming sentences for data augmentation and
integrating linguistic knowledge into a data-driven
NLP pipeline.

Future work will also involve expanding the phe-
nomena covered by LIT by generating new trans-
formation rules (cf. 3.4). One potential extension
is the insertion of control and raising verbs:

(6) Alice voted for Bob.
a. Alice seemed to have voted for Bob.
b.  Alice wished to vote for Bob.
c.  Alice persuaded Carol to vote for Bob.

LIT also has a limited coverage, successfully
transforming about 20% of the instances in SNLI
(see Section 3.4). The limited coverage may intro-
duce bias in the generated dataset; for instance, the
ERG grammar is more likely to fail when parsing
complicated sentences. Nevertheless, we provide
a proof of conept that the method can be used to
augment data and probe for understanding of the
linguistic phenomena of interest here; a higher re-
call grammar will only improve the situation, and
can be easily integrated.

5.2 Analysing Sentence Types in Datasets

In addition to constructing contrast sets, we also
used LIT to directly analyze the sentence types in
the transformable portion of SNLI and MNLI to
investigate the effects of data bias on pretrained
models probed in our work. For MNLI, we found



that 46.4% sentences are in present tense, 32.2% in
past tense and only 2.95% in future tense; 7.27%
sentences are passive, 0.580% have may modality
and 0.227% are it-cleft sentences. We found no pas-
sive/future or future/passive tense pairs. The lack
of sentences with may modality and mismatched
tense pairs may account for the low performance
for those transformations before fine-tuning on
them. It-cleft transformation does not change the
meaning and labels, which may explain the high
performance despite its rarity in the original data.
Note that LIT can only detect linguistic phenomena
in sentences parsable with ERG (see Section 3.6),
but such functionality can still provide important
insights on datasets and can be further explored in
future works.

6 Conclusion

We propose Linguistically-Informed Transforma-
tions (LIT), a general method to generate contrast
sets using an existing linguistic resource. We apply
LIT to transform NLI datasets and evaluate cur-
rent state-of-the-art NLI models. We reveal the
systematic gap between current NLI models and an
ideal NLI model for NLP practice, which comes
from the inadequate coverage of the linguistic phe-
nomenon of SNLI and MNLI. We further show
that models can be further improved by using LIT
to augment the training data. Furthermore, mod-
els fine-tuned on simple transformations perform
very well on compositional transformations, sug-
gesting that fine-tuning provides some systematic
understanding of these phenomena.
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