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Abstract

Using the attention map based probing frame-
work from (Clark et al., 2019), we observe that,
on the RAMS dataset (Ebner et al., 2020)1,
BERT’s attention heads2 have modest but well
above-chance ability to spot event arguments
sans any training or domain finetuning, vary-
ing from a low of 17.77% for Place to a high of
51.61% for Artifact. Next, we find that linear
combinations of these heads, estimated with
≈11% of available total event argument detec-
tion supervision, can push performance well-
higher for some roles — highest two being Vic-
tim (68.29% Accuracy) and Artifact (58.82%
Accuracy). Furthermore, we investigate how
well our methods do for cross-sentence event
arguments. We propose a procedure to isolate
“best heads” for cross-sentence argument de-
tection separately of those for intra-sentence
arguments. The heads thus estimated have su-
perior cross-sentence performance compared
to their jointly estimated equivalents, albeit
only under the unrealistic assumption that we
already know the argument is present in an-
other sentence. Lastly, we seek to isolate to
what extent our numbers stem from lexical
frequency based associations between gold ar-
guments and roles. We propose NONCE, a
scheme to create adversarial test examples by
replacing gold arguments with randomly gen-
erated “nonce” words. We find that learnt lin-
ear combinations are robust to NONCE, though
individual best heads can be more sensitive.

1 Introduction

The NLP representation paradigm has undergone a
drastic change in this decade — moving from lin-

1Refer to Figure 1 of that paper for an example illustrating
four role names. Since these role names are human readable
and intuitively named, we refer to them without elaboration.

2We use map to refer to the per-example word-word ac-
tivations at a particular layer-head, while head refers either
to the identity of the particular layer-head. We ground these
terms more clearly in §2.1

guistic/task motivated 0-1 feature families to per-
word-type pretrained vectors (Pennington et al.,
2014) to contextual embeddings (Peters et al.,
2018).

Contextual embeddings (CEs) produce in-
context representations for each token - the rep-
resentation framework being a large, pretrained
encoder with per-token outputs. The typical pro-
cedure to use CEs for a downstream task is to add
one or more task layers atop each token, or for a
designated token per-sentence, depending on the
nature of the task.

The task layers (and optionally, the representa-
tion) are then “finetuned” using a task specific loss,
albeit with a slower training rate than would be
used for from-scratch training. ELMo (Peters et al.,
2018) was an early CE. The three-fold recipe of a
transformer based architecture, masked language
modelling objective and large pre-training corpora,
starting with BERT (Devlin et al., 2018) led to CEs
which were vastly effective for most tasks.

The strong performance of contextual represen-
tations with just shallow task layers and minimal
finetuning drove the urge to understand what and
how much these models already knew about aspects
of syntax and semantics. The study of methods and
analysis to do this has come to be called probing.
Besides “explaining” CE featurization, probing can
aid in finding lacunae to be addressed by future
representations.

Linzen et al. (2016), one of the early works on
probing, evaluated whether language models could
predict the correct verb form agreeing with the
noun. Marvin and Linzen (2018) generalized this
approach beyond single-word gaps with a larger
suite of “minimal pairs”. They also control for lex-
ical confounding and expand the probing to new
aspects such as reflexive anaphora and NPIs. Gu-
lordava et al. (2018) evaluate subject-verb agree-
ment but only through “nonce” sentences to con-
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trol for both lexical confounding and memoriza-
tion3. Lakretz et al. (2019) isolate units of LSTM
language models whose activations closely track
verb-noun number agreement, particularly for hard,
long-distance cases. Clark et al. (2019), whose
probing methods we adopt, examine if BERT atten-
tion heads capture dependency structure.

In this work, we probe what and how much a pre-
trained BERT representation already knows about
event roles and their arguments. Understanding
how well event arguments are represented can be a
first foray into understanding other aspects about
events. Extraction of event arguments is often a
prerequisite for more complex event tasks. Some
examples are event coreference (Lu and Ng, 2018),
detecting event-event temporal (Vashishtha et al.,
2019) and causal relations (Dunietz et al., 2017),
sub-event structure (Araki et al., 2014) and gener-
ating approximate causal paths (Kang et al., 2017).
Tuples of event-type and arguments are one way
of inducing script like-structures (Chambers and
Jurafsky, 2008). In summary, our work makes the
following contributions:

1. We show that there always exists a BERT at-
tention head (BESTHEAD) with above-chance
ability to detect arguments, for a given event
role. We also show that this ability is even
stronger through learnt linear combinations
(LINEAR) of heads.

2. We notice a relative weakness at detecting
cross sentence arguments (§3.3). Motivated
by this, we devise a procedure to isolate only
the cross-sentence argument detection ability
of heads w.r.t a role (§3.3.1). Our procedure
considerably improves cross-sentence perfor-
mance for some roles (§3.4), especially for
INSTRUMENT and PLACE.

3. Lastly, we seek to isolate how much of the
zero-shot argument detection ability origi-
nates solely from the model’s world knowl-
edge and lexical frequency based associations.
To do this, we propose NONCE, a method to
perturb test examples to dampen such asso-
ciations (§2.5.3). We find that the LINEAR

approach is robust to NONCE perturbation,
while BESTHEAD is more sensitive.

3A motivation for our ablation in §2.5.3

2 Methodology

2.1 Background

2.1.1 Transformers
The Transformer architecture (Vaswani et al., 2017)
consists of |L| layers, each comprised of |H| > 1
“self-attention” heads. Here, we describe the ar-
chitecture just enough to ground terminology - we
defer to the original work for detailed exposition.

In a given layer l4, a single self-attention head
h consists of three steps - First, query, key and
value projections qhi = Qh

T ei, k
h
i = Kh

T ei, v
h
i =

Vh
T ei are computed from the previous layer’s

token embedding ei. Then, softmax normal-

ized dot products αh
ij =

(qhi )
T kj

h∑
m(qhi )

T km
h are com-

puted between the current token’s query projec-
tion and other token’s key projections. These
dot products a.k.a attention values are then used
as weights to combine all token value projec-
tions - ohi =

∑
j α

h
ijv

h
j gives the current head’s

token output ohi . Finally, the outputs from all
heads are concatenated and projected to get the
per-token embeddings for the current layer oi =

W TConcat({o0i , o1i . . . o
|H|−1
i })

Henceforth, we refer to the parameter tuple
{Qh,l,Kh,l, Vh,l} , uniquely identified by h ∈
{0, 1, . . . |H| − 1}, l ∈ {0, 1, . . . |L| − 1} as the
“attention head” or simply “head”, while values
αh,l
ij are collectively referred to as the “attention

map”.

2.1.2 BERT
BERT uses a Transformer architecture with 12
heads and 12 layers5. It comes with an associ-
ated BPE tokenizer (Sennrich et al., 2015) which
tokenizes raw inputs to subwords. Its vocabulary
contains three special tokens - [CLS], [SEP] and
[MASK]. While [CLS] and [SEP] serve as start
and end (or sequence-separator) tokens, [MASK]
is used in pretraining as described next.

BERT follows a two-stage pretraining process.
In the first stage, also known as masked language
modelling (MLM), randomly selected token posi-
tions are replaced with [MASK]. The task is to
predict the true identities of words at these posi-
tions, given the sequence. This stage uses single
sentences as training examples. In the second stage,
also known as next sentence prediction (NSP), the

4We omit layer index l in the rest of the passage to declutter
our notation.

5For bert-base. bert-large uses 24 heads and 24 layers.
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Figure 1: In this example, the head chosen by BESTHEAD for the PLACE role, correctly picks out the argument “Syria” for the
trigger “capitulation”. Attention probabilities are shown as blue lines from trigger token to other tokens, with boldness indicating
magnitude. It manages to evade distractor pronouns (there) and other geographical entity names (Russia and United States). The
text above flows in right to left direction. The full text reads: “Chances of intentional conflict are real as is the possibility of an
unintended clash escalating . At the same time, Syria is not essential to the national security of Russia or the United States. It is
not without importance but a defeat or capitulation there will not change the balance of power between them at all . . . ”

model is given a pair of sentences (separated by
[SEP]), with the task being to predict whether these
were truly consecutive or not.

Unless otherwise mentioned, we use the bert-
base-uncased model. We use the implementation
of BERT from HuggingFace. 6 (Wolf et al., 2019)

2.2 Dataset
We use the recently released RAMS dataset (Ebner
et al., 2020) for all our experiments. The reasons
for using this particular dataset for our analysis are

• It has a wide mix of reasonably frequent roles
(represented well across splits) from different
kinds of frames . Discussion on non-frequent
roles can be found in §3.6.

• For many roles, it has examples with the gold
arguments being in a different sentence from
the event trigger. This makes it easy to probe
for intra-sentence and cross-sentence argu-
ment extraction in the same set of experiments.
Analysis of cross-sentence performance can
be found in §3.3 and §3.4

We note that the dataset is in English (Bender and
Friedman, 2018) and observations made may not
generalize to other languages.

2.2.1 Setup
For example x, we refer to the event, role, gold
argument and document as e, r, a and D. D is an

6github.com/huggingface/transformers/

ordered sequence of tokens {w0, w1 . . . w|D|−1}.
ie denotes the event trigger index7.

We use the layer index l and head indices 0 to
|H| − 1 to index the respective head’s attention
distribution from token i to all other tokens j ∈ D
at index ie.
P ∗l,h(j|ie) = αiej

l,h , 0 ≤ l < |L|, 0 ≤ h < |H| (1)

Note, however that there exist a complementary
set of attention values from each token j to the
token ie. To use a unified indexing scheme to refer
to these values, we use negative indices from −1
to −|H| as their head indices. Since these values
come from attention-head activations of different
positions, they need to be renormalized to use them
as probabilities.

P ∗l,−h(j|ie) =
αjie
l,h−1∑

k∈D α
kie
l,h−1

, 0 < h ≤ |H| (2)

2.2.2 Words and Subwords
Our above framework assumed that the attention
maps are between whole word tokens. However,
BERT represents a sentence as a sequence of BPE-
subwords at every level, including for the attention
maps.

We use the quite intuitive approach described in
Section 4.1 of (Clark et al., 2019) - incoming atten-
tions to constitutent subwords of a word are added
to get the attention to that word. Outgoing attention

7To simplify our analysis, we do not include multi-word
triggers. These form only ≈1.6% of the cases in the dataset.

github.com/huggingface/transformers/
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values from constituent subwords are averaged to
get the outgoing attention value from the word.

Note that the above operations precede the prob-
ability computations in Equations 1 and 2.

2.2.3 Dataset Splits
We follow the practice of earlier probing works
such as (Sorodoc et al., 2020) and (Linzen et al.,
2016) of using one of the smaller splits for train-
ing. Specifically, we use the original dev split of
RAMS (924 examples in total) as our training split.
Note that each example could contain multiple role-
argument pairs.

Splits Examples Tokens

Train (Original Dev) 924 0.12M
Dev (Original Test) 871 0.11M
Test (Original Train) 7329 0.98M

Table 1: Split example counts and token sizes from the
RAMS. Note that we use different splits since our work is a
probing exercise.

2.3 Evaluation Measure

For a given event e and role r, we define a pre-
dicted argument token index â to be accurate if it
corresponds to any of the tokens in the gold argu-
ment span [abegr,e , aendr,e ]. This is described formally
in Equation 3. I stands for the 0-1 indicator func-
tion.

Acce,r,a(â) = I(abegr,e ≤ â < aendr,e ) (3)

Typical measures of argument extraction differ
from the one we use, being span-based. Given
the limitations of our probing approaches, we lack
a clear mechanism of predicting multi-word spans,
and can only predict likely single tokens for the
argument, which led us to choose this measure8.

2.4 Approaches

2.4.1 BESTHEAD

Let X = {em, rm, am}m=M
m=1 be the training set.

Xr is the subset of training examples with rm =
r. For each role r, BESTHEAD selects the head
{l, h}best(r) with best aggregate accuracy on Xr.
Other than one pass over the training set for com-
paring aggregate accuracies of heads for each role,
there is no learning required for this method. At
test-time, based on the test role, the respective best
head is used to predict the argument token.

8We will interchangeably refer to Acc as just “accuracy”
in plain-text in the rest of the paper

AccXr
l,h =

m=Mr∑
m=1

Accem,r,am(argmax
j

P̂l,h(j|iem))

{l, h}best(r) = argmax
l,h

AccXr
l,h

2.4.2 LINEAR

The LINEAR model learns a weighted linear combi-
nation of all |L|× |H|×2 head distributions (twice
for the “from” and ”to” heads).

φ(j|i) =

l=|L|−1∑
l=0

h=|H|−1∑
h=−|H|

wl,hP̂l,h(j|i) +B

P̂ (j|i) =
φ(j|i)∑k=|D|−1

k=0 φ(k|i)

Note that gradients are not backpropagated into
BERT - only the linear layer parameterswl,h, B are
updated during backpropagation. This formulation
is the same as the one in (Clark et al., 2019).

For our loss function, we use the KL Divergence
KL(P̂ ||P ) between the predicted distribution over
document tokens P̂ and the gold distribution over
document tokens P . For the gold distribution over
arg tokens, the probability mass is equally dis-
tributed tokens in the argument span, with zero
mass on the other tokens.

KL(P̂ ||P ) =

k=|D|−1∑
k=0

P̂ (k|i) log
P̂ (k|i)
P (k|i)

2.5 Baselines

2.5.1 RAND

The expected accuracy of following the strategy of
randomly picking any token i from the document
D as the argument (other than the trigger word ie
itself). For a given role r with a gold argument ar,e
of length |ar,e|, this equals |ar,e||D|−1 .

2.5.2 SENTONLY

The expected accuracy of following the strategy
of randomly picking any token from the same sen-
tence Se as the argument, save the event trigger it-
self. This is motivated by the intuition that event ar-
guments mostly lie in-sentence. This equals |ar,e||Se|−1

2.5.3 NONCE procedure
We wish to isolate how much of the heads perfor-
mance is due to memorized “world knowledge”
and typical lexical associations e.g Russia would
typically always be a PLACE or TARGET. Recent
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works have shown that BERT does retain such as-
sociations, including for first names (Shwartz et al.,
2020), and enough so that it can act as a reasonable
knowledge base (Petroni et al., 2019).

One way of implementing this is to create per-
turbed test examples where gold arguments are
replaced with synthetically created “nonce” words
not necessarily related to the context. This is simi-
lar to the approach of (Gulordava et al., 2018).

• Each gold argument token is replaced by a ran-
domly generated token with the same number
of characters as the original string.

• Stop words such as determiners, pronouns,
and conjunctions are left unaltered, though
they might be a part of the argument span.

• We also ensure that the shape of the original
argument, i.e the profile of case, digit vs letter
is maintained9. e.g Russia-15 can be randomly
replaced by Vanjia-24, which has the same
shape Xxxx-dd.

• Note that we do not take pronounceability of
the nonce word into account. Though this
could arguably be a relevant invariant to main-
tain, we were not sure of an apt way to enforce
it automatically.

• We also note that BERT may end up using
a likely larger number of subword tokens to
replace the nonce words than it would use
for the gold argument token. Since these are
essentially randomly composed tokens, they
can contain subwords which are rarely seen in
vocabulary tokens.

We refer to this procedure as NONCE, and over-
loading the term, the test set so created as the
NONCE test set.

3 Experiments

3.1 Spotting the Best Head
In Table 2, we record the accuracies and layer posi-
tions of best heads for the 15 most frequent roles.

1. BESTHEAD always has higher accuracy than
the RAND and SENT baselines.

2. 5 of the 15 roles can be identified with 40%+
accuracy - the highest being COMMUNICA-
TOR , at 51.61%.

9We are aware that case mostly doesn’t matter since we
use bert-*-uncased in most experiments

Role {l,h}best %Accuracy

DEFENDANT 8,10 35.90
DESTINATION 0,8 21.43
ORIGIN 7,-1 31.82
TRANSPORTER 8,10 31.58
INSTRUMENT 9,7 31.37
BENEFICIARY 8,10 26.56
ATTACKER 7,-8 33.93
TARGET 9,1 44.61
GIVER 8,10 25.55
VICTIM 9,1 46.34
ARTIFACT 4,-6 50.42
COMMUNICATOR 8,10 51.61
PARTICIPANT 8,10 28.57
RECIPIENT 7,10 40.78
PLACE 9,1 17.77

Table 2: Best layer-head pair , {l,h}best and % Accuracy for
the 15 most frequent roles in RAMS, using bert-base-uncased.
+ve h indices denote “from” heads, while -ve indices denote
“to” heads, as explained in §2.2.1

3. The best head for arguments which are not to-
gether present in frames is often the same. For
instance, Layer 8, Head 10 is the best head for
TRANSPORTER, ATTACKER, COMMUNICA-
TOR and BENEFICIARY.

4. Most best heads are located in the higher lay-
ers, specifically the 7th, 8th or 9th layers. An
exception are the best head for DESTINATION

and ARTIFACT roles, located in the 0th layer
and 4th layers respectively.

5. Place roles are the hardest to identify, with an
accuracy of 17.77%.

6. Layer 8, Head 10 seems to be doing a lot of
the heavylifting. For 7 out of 15 roles, this
is the best head. This shows that it is quite
“overworked” in terms of the number of roles
it tracks. Furthermore, though some of these
role pairs are from different frames (e.g see
Point 3 above), some aren’t, e.g GIVER and
BENEFICIARY. In such cases, atleast one of
the two arguments predicted for these two
roles is sure to be inaccurate - e.g the head
would point to either the GIVER or BENEFI-
CIARY, but not both. 10

7. Most of the best heads for roles are “from”
heads rather than “to” heads, apart from those
for ORIGIN, ATTACKER and ARTIFACT.

3.2 LINEAR Performance

Table 3 shows test accuracies for both LINEAR and
BESTHEAD approaches, and also the baselines.

For 12 of the 15 roles, LINEAR has higher accu-
racy than BESTHEAD. There are three exceptions -
ORIGIN and INSTRUMENT, which suffer a decline

10It is quite non-intuitive for GIVER and BENEFICIARY
spans to overlap — we don’t see any examples with the same.
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Role RAND SENTONLY BESTHEAD LINEAR

DEFENDANT 1.75 6.98 35.90 56.41
DESTINATION 1.91 7.67 21.43 39.28
ORIGIN 1.36 7.27 31.82 28.79
TRANSPORTER 1.63 6.57 31.58 43.42
INSTRUMENT 1.88 6.29 31.37 25.49
BENEFICIARY 1.34 6.28 26.56 34.37
ATTACKER 2.07 8.52 33.93 46.43
TARGET 1.78 7.30 44.61 44.61
GIVER 1.58 6.29 25.55 32.22
VICTIM 1.50 6.42 46.34 68.29
ARTIFACT 1.86 7.62 50.42 58.82
COMMUNICATOR 1.58 6.55 51.61 63.71
PARTICIPANT 1.49 6.19 28.57 30.72
RECIPIENT 1.83 8.57 40.78 44.69
PLACE 1.67 6.84 17.77 31.93

Table 3: Test accuracies using all the baselines and probe
approaches described in §§2.4 for the 15 most frequent roles
in RAMS. Both BESTHEAD and LINEAR probes outdo the
baselines. LINEAR usually does better, but not for all roles
(e.g ORIGIN). Refer to §3.2 for a longer discussion.

and TARGET, which remains the same. A possi-
ble reason could be the higher fraction of cross-
sentence gold arguments for these roles. The five
roles with lowest number of intra-sentence argu-
ments are DESTINATION (58.92%), INSTRUMENT

(62.74%), ORIGIN (68.18%), PLACE (70.48%) and
TARGET (81.53%).

While DESTINATION and PLACE do see in-
creases in LINEAR compared to BESTHEAD, it
could be the case that none of the individual heads
are particularly good at capturing cross-sentence
arguments for the other three roles, while the best
head is already good enough to capture the intra-
sentence case. This would make LINEAR not any
more rich as a hypothesis space compared to BEST-
HEAD - causing the similar or slightly worse ac-
curacy. In §3.3 we dig deeper into the aspect of
cross-sentence performance.

3.3 Cross-Sentence Performance

From Table 4, we observe that both BESTHEAD

and LINEAR performance degrades in the cross-
sentence case i.e when “trigger sentence” and “gold
argument sentence” differ. Three potential reasons:

1. There are too few instances of cross-sentence
event arguments in the small supervised set
we use. Furthermore, even if there are a suf-
ficient quantum of cross-sentence event argu-
ments, these form a much smaller proportion
of the total instances in comparison to the
intra-sentence instances.

2. Because the limited number of attention heads
are already dominated by intra-sentence as-
pects such as dependency relations, punctua-
tion and subject-verb agreement (Clark et al.,

Role BESTHEAD+CSO LINEAR+CSO

ORIGIN 4.76 (31.82→0.00) 4.76 (56.41→16.34)
INSTRUMENT 47.37 (31.37→21.22) 52.63 (25.49→31.51)
PARTICIPANT 24.99 (28.57→6.37) 29.16 (30.72→6.37)
PLACE 15.31 (17.77→10.18) 30.61 (31.93→9.30)

Table 4: Accuracies on cross-sentence test examples
using BESTHEAD+CSO and LINEAR+CSO. The values
AccTotal→AccCross in parentheses are the total test ac-
curacy and cross-sentence test accuracy respectively, us-
ing the simple version of the same approach i.e BEST-
HEAD and LINEAR. The % of cross-sentence examples for
each role are: {ORIGIN:31.82 INSTRUMENT:37.26 PARTICI-
PANT:17.14 PLACE:29.52}

2019), it is difficult for a single attention head
to have a higher value for outside sentence
tokens compared to in-sentence ones.

3. Different heads might be best for intra and
cross-sentence performance, and finding one
best head for both could be sub-optimal.

3.3.1 Cross Sentence Occlusion (CSO)
Motivated by the above reasons, we devise a pro-
cedure which we refer to as cross-sentence occlu-
sion (CSO). Since Reason 1 is a property of the
data distribution, we attempt to alleviate Reasons
2 and 3. To address Reason 3, we try to learn a
different head (combination) for the cross-sentence
case. To address Reason 2, while finding the best
cross-sentence head, we zero-mask out the atten-
tion values corresponding to in-sentence11 tokens
and re-normalize the probability distribution.

In practice, one would not be able to use two
separate argument detectors for the intra and cross-
sentence cases for the same role, since ground-
truth information of whether the argument is cross-
sentence would be unavailable. We assume this
contrived setting only to allow easy analysis12, and
to gloss over the lack of an intuitive zero-shot mech-
anism of switching between the two cases, when
predicting arguments using just attention heads.

3.4 +CSO Results
From Table 4, we can observe the improvement
in cross-sentence test accuracy when using the
+CSO approach over its simple counterpart, both
for BESTHEAD and LINEAR. The only exception
to this is the ORIGIN role, where LINEAR betters
LINEAR-CSO.

For the INSTRUMENT role, both BEST-
HEAD+CSO and LINEAR+CSO get close to 50%

11RAMS comes with a given sentence segmentation.
12And also so that we can validate our diagnosis for poor

cross-sentence performance in §3.3
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accuracy. In part, their relatively stronger per-
formance can be explained by BESTHEAD and
LINEAR already being relatively better at detect-
ing cross-sentence INSTRUMENT (just above 20%,
but higher than the sub-15 accuracies on the other
roles). Nevertheless, CSO still leads to a doubling
of accuracies for both approaches.

We highlight here again that these numbers are
only on that subset of the test set where we know
that the gold arguments are located in other sen-
tences - though this setting is useful for analysis, a
model actually solving this task won’t have access
to this information.

Even in our case, there is no obvious way
to have a consolidated probe which uses a LIN-
EAR+CSO and LINEAR component together, since
this would require learning an additional compo-
nent which predicts whether the gold arguments lie
intra-sentence or across-sentence.

3.5 Effect of NONCE

In Figures 2a and 2b, we compare the performances
of our methods on perturbations of the test set cre-
ated using the NONCE procedure outlined in §2.5.3
with their normal test performance. Since NONCE

is stochaistic, corresponding results are averaged
over NONCE sets created with 5 different seeds.

defendant
destination

origin
transporter
instrument
beneficiary

attacker
target
giver
victim
artifact

communicator
participant
recipient

place

-20 -10 0 10

Δ (nonce-normal), BestHead

(a) BESTHEAD

defendant
destination

origin
transporter
instrument
beneficiary

attacker
target
giver
victim
artifact

communicator
participant
recipient

place

-20 -10 0 10

Δ (nonce-normal), Linear

(b) LINEAR

Figure 2: Difference in a) BESTHEAD and b) LINEAR
accuracies over normal and NONCE test sets

BESTHEAD test performance is more sensitive
to NONCE than LINEAR. Especially for INSTRU-
MENT, ARTIFACT and ORIGIN, the decrease in
accuracy is quite drastic. Surprisingly, we also
see increases for 4 of the 15 roles - DEFENDANT,
GIVER, VICTIM and PARTICIPANT. All other roles
see small decreases. For LINEAR, however, most
roles are largely unmoved by NONCE, showing that
LINEAR relies less on lexical associations.

3.6 Non-Frequent Roles
So far, we’ve focussed on analyzing the 15 most
frequent roles. In this subsection, we also evaluate
our approaches for some non-frequent roles outside
this set, such as PREVENTER and PROSECUTOR.
The results are presented in Table 5. Note that,
owing to high sparsity for these roles, these results
should be taken with “a pinch of salt” (which is why
we chose to separate them out from the frequent
roles).

For the frequent roles, we had seen that LINEAR

was mostly better than, or equally good as BEST-
HEAD. For the non-frequent roles, we see that
the comparative performance of LINEAR vs BEST-
HEAD varies a lot more - LINEAR is better for 6 of
the 11 roles, and worse for the other 5. The fall in
LINEAR performance is largest for PROSECUTOR

(58.33→ 16.67).
We conjecture that this drop is due to poor gen-

eralization as a result of learning from lesser super-
vision as a result of the roles being non-frequent.
Since BESTHEAD has only two parameters (iden-
tity of the best head) compared to the 289 parame-
ters of LINEAR, the latter is more sensitive to this
problem.

Secondly, we notice that the gap between BEST-
HEAD and the RAND and SENTONLY baselines is
much narrower. For VEHICLE and MONEY, SEN-
TONLY even outdoes BESTHEAD. For VEHICLE,
the BESTHEAD accuracy even drops to 0. How-
ever, in all these cases, we find that LINEAR still
manages to outdo both baselines. We conjecture
that these cases could be due to the best head pre-
dicted not being very generalizable due to small
training set size (for that role). Though LINEAR

would also suffer from poor generalization in this
case, it might stand its ground better since it relies
on multiple heads rather than just one.

3.7 Cased vs Uncased
In our analysis so far, we have been using the
same contextual embedding mechanism through-
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Role RAND SENTONLY BESTHEAD LINEAR

PREVENTER 1.51 7.30 15.00 43.14
PASSENGER 1.46 6.79 57.45 45.45
CRIME 3.06 12.62 25.81 57.99
INJURER 1.52 6.51 29.03 16.13
EMPLOYEE 1.47 6.87 53.85 50.00
KILLER 1.75 10.63 14.29 47.62
MONEY 1.51 7.77 4.17 25.00
DETAINEE 1.60 8.39 62.50 50.00
PROSECUTOR 1.55 6.34 58.33 16.67
JUDGECOURT 1.33 6.78 22.22 41.67
VEHICLE 1.47 6.15 0 18.18

Table 5: Test accuracies using all the baselines and probe
approaches described in §§2.4 for some non frequent roles.
Both BESTHEAD and LINEAR probes still outdo the baselines
in most cases, but not as convincingly as for frequent roles.
Unlike the frequent roles case, LINEAR actually does worse
than BESTHEAD for many roles.

out, namely bert-base-uncased. In Figure 3a, we
plot the difference of BESTHEAD test accuracies
when using bert-base-cased vs bert-base-uncased.

We can see that bert-base-uncased is better for
most roles - except for Attacker, Victim and Artifact.
We also notice that the best layer-head configura-
tion {lbest, hbest} is mostly not preserved between
the bert-base-cased and bert-base-uncased scenar-
ios. The difference between bert-base-uncased and
bert-base-cased is even more drastic in the cross
sentence only experiment , for instance, while there
exists a single head which can find cross-sentence
Instrument args with 37% accuracy, the best such
head of bert-base-cased has only 17% accuracy.

3.8 Qualitative Examples

In Figure 3.8, we illustrate some examples of BEST-
HEAD identifying arguments. We defer further dis-
cussion to Appendix §A owing to lack of space.

4 Related Work

A complete description of the large body of work
on probing is beyond the scope of this paper. Be-
sides those discussed earlier, other aspects stud-
ied include filler-gap dependencies (Wilcox et al.,
2018), function word comprehension (Kim et al.,
2019), sentence-level properties (Adi et al., 2016)
and negative polarity items (Warstadt et al., 2019).

Probing is not limited to examining pairwise
word relations or sentence properties. Hewitt
and Manning (2019) find that BERT token rep-
resentations are linearly projectable into a space
where they embed constituency structure. Recently,
Sorodoc et al. (2020) probed transformer based
language models for coreference. However, they
restrict themselves to entity coreference. Further-
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(a) BESTHEAD
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(b) LINEAR

Figure 3: ∆ in Test accuracy of a) BESTHEAD b) LIN-
EAR using bert-base-uncased vs bert-base-cased

more, they exclude MLMs like BERT from their
analysis.

Hewitt and Liang (2019) raised a note of cau-
tion about classifier based probes, pointing out that
probes themselves could be rich enough to learn
certain phenomena even with random representa-
tions. We avoid direct classifier-based probing,
thus avoiding the mentioned pitfalls.

5 Conclusion

We showed how BERT’s attention heads have mod-
est but well above chance ability to detect ar-
guments for event roles. This ability is achiev-
able either with only i) 2 parameters per role
(BESTHEAD) ii) 289 parameters per role (LINEAR).
Furthermore, the supervision required to reach this
is just≈ 11% of full training set size. Secondly, we
propose a method to learning separate heads (com-
binations) for cross-sentence argument detection.
Our experiments show that the heads so learnt have
higher cross-sentence accuracy. Thirdly, we show
that LINEAR performance is robust to a perturbed
NONCE test setting with weakened lexical associ-
ations. In future, we plan to extend our probing to
other event aspects like coreference and subevents.
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(a)

(b)

(c)

Figure 4: In (a), BESTHEAD correctly picks out the TARGET
of “airstrike” as “Yemen”. In (b), BESTHEAD correctly picks
out the RECIPIENT of “advised” as “companies”. In (c), the
token picked is coreferent but not identical to the gold argu-
ment. Attentions are shown as blue lines from trigger token,
with lineweight ∝ value. Gold arguments are shaded green .
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