
Proceedings of the BioNLP 2020 workshop, pages 28–37
Online, July 9, 2020 c©2020 Association for Computational Linguistics

28

Interactive Extractive Search over Biomedical Corpora

Hillel Taub-Tabib1 Micah Shlain1,2 Shoval Sadde1 Dan Lahav3

Matan Eyal1 Yaara Cohen1 Yoav Goldberg1,2

1 Allen Institute for AI, Tel Aviv, Israel
2 Bar Ilan University, Ramat-Gan, Israel
3 Tel Aviv University, Tel-Aviv, Israel

{hillelt,micahs}@allenai.org

Abstract

We present a system that allows life-science re-
searchers to search a linguistically annotated
corpus of scientific texts using patterns over
dependency graphs, as well as using patterns
over token sequences and a powerful variant
of boolean keyword queries. In contrast to
previous attempts to dependency-based search,
we introduce a light-weight query language
that does not require the user to know the de-
tails of the underlying linguistic representa-
tions, and instead to query the corpus by pro-
viding an example sentence coupled with sim-
ple markup. Search is performed at an inter-
active speed due to efficient linguistic graph-
indexing and retrieval engine. This allows for
rapid exploration, development and refinement
of user queries. We demonstrate the system us-
ing example workflows over two corpora: the
PubMed corpus including 14,446,243 PubMed
abstracts and the CORD-19 dataset1, a col-
lection of over 45,000 research papers fo-
cused on COVID-19 research. The system
is publicly available at https://allenai.

github.io/spike

1 Introduction

Recent years have seen a surge in the amount of
accessible Life Sciences data. Search engines like
Google Scholar, Microsoft Academic Search or
Semantic Scholar allow researchers to search for
published papers based on keywords or concepts,
but search results often include thousands of papers
and extracting the relevant information from the
papers is a problem not addressed by the search
engines. This paradigm works well when the in-
formation need can be answered by reviewing a
number of papers from the top of the search results.
However, when the information need requires ex-
traction of information nuggets from many papers

1https://pages.semanticscholar.org/coronavirus-research

(e.g. all chemical-protein interactions or all risk
factors for a disease) the task becomes challeng-
ing and researchers will typically resort to curated
knowledge bases or designated survey papers in
case ones are available.

We present a search system that works in a
paradigm which we call Extractive Search, and
which allows rapid information seeking queries
that are aimed at extracting facts, rather than doc-
uments. Our system combines three query modes:
boolean, sequential and syntactic, targeting differ-
ent stages of the analysis process, and different ex-
traction scenarios. Boolean queries (§4.1) are the
most standard, and look for the existence of search
terms, or groups of search terms, in a sentence, re-
gardless of their order. These are very powerful for
finding relevant sentences, and for co-occurrence
searches. Sequential queries (§4.2) focus on the
order and distance between terms. They are intu-
itive to specify and are very effective where the
text includes “anchor-words” near the entity of in-
terest. Lastly, syntactic queries (§4.4) focus on
the linguistic constructions that connect the query
words to each other. Syntactic queries are very
powerful, and can work also where the concept
to be extracted does not have clear linear anchors.
However, they are also traditionally hard to spec-
ify and require strong linguistic background to use.
Our systems lowers their barrier of entry with a
specification-by-example interface.

Our proposed system is based on the following
components.
Minimal but powerful query languages. There
is an inherent trade-off between simplicity and con-
trol. On the one extreme, web search engines like
Google Search offer great simplicity, but very lit-
tle control, over the exact information need. On
the other extreme, information extraction pattern-
specification languages like UIMA Ruta offer great
precision and control, but also expose a low-level

https://allenai.github.io/spike
https://allenai.github.io/spike
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view of the text and come with over hundred-page
manual.2

Our system is designed to offer high degree of
expressivity, while remaining simple to grasp: the
syntax and functionality can be described in a few
paragraphs. The three query languages are de-
signed to share the same syntax to the extent possi-
ble, to facilitate knowledge transfer between them
and to ease the learning curve.
Linguistic Information, Captures, and Expan-
sions. Each of the three query types are linguis-
tically informed, and the user can condition not
only on the word forms, but also on their lemmas,
parts-of-speech tags, and identified entity types.
The user can also request to capture some of the
search terms, and to expand them to a linguistic
context. For example, in a boolean search query
looking for a sentence that contains the lemmas
“treat” and “treatment” (‘lemma=treat|treatment’), a
chemical name (‘entity=SIMPLE CHEMICAL’) and
the word “infection” (‘infection’), a user can mark
the chemical name and the word “infection” as cap-
tures. This will yield a list of chemical/infection
pairs, together with the sentence from which they
originated, all of which contain the words relating
to treatments. Capturing the word “infection” is
not very useful on its own: all matches result in the
exact same word. But, by expanding the captured
word to its surrounding linguistic environment, the
captures list will contain terms such as “PEDV in-
fection”, “acyclovir-resistant HSV infection” and
“secondary bacterial infection”. Running this query
over PubMed allows us to create a large and rela-
tively focused list in just a few seconds. The list
can then be downloaded as a CSV file for further
processing. The search becomes extractive: we are
not only looking for documents, but also, by use of
captures, extract information from them.
Sentence Focus, Contextual Restrictions. As
our system is intended for extraction of informa-
tion, it works at the sentence level. However, each
sentence is situated in a context, and we allow sec-
ondary queries to condition on that context, for
example by looking for sentences that appear in
paragraphs that contain certain words, or which ap-
pear in papers with certain words in their titles, in
papers with specific MeSH terms, in papers whose
abstracts include specific terms, etc. This combines
the focus and information density of a sentence,

2https://uima.apache.org/d/
ruta-current/tools.ruta.book.pdf

which is the main target of the extraction, with the
rich signals available in its surrounding context.
Interactive Speed. Central to the approach is an
indexed solution, based on (Valenzuela-Escárcega
et al., 2020), that allows to perform all types of
queries efficiently over very large corpora, while
getting results almost immediately. This allows
the users to interactively refine their queries and
improve them based on the feedback from the re-
sults. This contrasts with machine learning based
solutions that, even neglecting the development
time, require substantially longer turnaround times
between query and results from a large corpus.

2 Existing Information Discovery
Approaches

The primary paradigm for navigating large scien-
tific collections such as MEDLINE/PubMed3 is
document-level search.

The most immediate document-level searching
technique is boolean search (“keyword search”).
However, these methods suffer from an inability
to capture the concepts aimed for by the user, as
biomedical terms may have different names in dif-
ferent sub-fields and as the user may not always
know exactly what they are looking for. To over-
come this issue several databases offer semantic
searching by exploiting MeSH terms that indicate
related concepts. While in some cases MeSH terms
can be assigned automatically, e.g (Mork et al.,
2013), in others obtaining related concepts require
a manual assignment which is laborious to obtain.

Beyond the methods incorporated in the liter-
ature databases themselves, there are numerous
external tools for biomedical document searching.
Thalia (Soto et al., 2018) is a system for seman-
tic searching over PubMed. It can recognize dif-
ferent types of concepts occurring in Biomedical
abstracts, and additionally enables search based on
abstract metadata; LIVIVO (Müller et al., 2017)
takes the task of vertically integrating information
from divergent research areas in the life sciences;
SWIFT-Review 4 offers iterative screening by re-
ranking the results based on the user’s inputs.

All of these solutions are focused on the docu-
ment level, which can be limiting: they often sur-
face hundreds of papers or more, requiring careful
reading, assessing and filtering by the user, in order
to locate the relevant facts they are looking for.

3https://www.ncbi.nlm.nih.gov/pubmed/
4https://www.sciome.com/swift-review/

https://uima.apache.org/d/ruta-current/tools.ruta.book.pdf
https://uima.apache.org/d/ruta-current/tools.ruta.book.pdf
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.sciome.com/swift-review/
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To complement document searching, some sys-
tems facilitate automatic extraction of biomedical
concepts, or patterns, from documents. Such sys-
tems are often equipped with analysis capabili-
ties of the extracted information. For example,
NaCTem has created systems that extract biomed-
ical entities, relations and events.5; ExaCT and
RobotReviewer (Kiritchenko et al., 2010; Marshall
et al., 2015) take a RCT report and retrieve sen-
tences that match certain study characteristics.

To improve the development of automatic doc-
ument selection and information extraction the
BioNLP community organized a series of shared
tasks (Kim et al., 2009, 2011; Nédellec et al., 2013;
Segura Bedmar et al., 2013; Deléger et al., 2016;
Chaix et al., 2016; Jin-Dong et al., 2019). The tasks
address a diverse set of biomed topics addressed by
a range of NLP-based techniques. While effective,
such systems require annotated training data and
substantial expertise to produce. As such, they are
restricted to several “head” information extraction
needs, those that enjoy a wide community interest
and support. The long tail of information needs of
“casual” researchers remain mostly un-addressed.

3 Interactive IE Approach

Existing approaches to information extraction from
bio-medical data suffer from significant practical
limitations. Techniques based on supervised train-
ing require extensive data collection and annota-
tion (Kim et al., 2009, 2011; Nédellec et al., 2013;
Segura Bedmar et al., 2013; Deléger et al., 2016;
Chaix et al., 2016), or a high degree of technical
savviness in producing high quality data sets from
distant supervision (Peng et al., 2017; Verga et al.,
2017; Wang et al., 2019). On the other hand, rule
based engines are generally too complex to be used
directly by domain experts and require a linguist
or an NLP specialist to operate. Furthermore, both
rule based and supervised systems typically oper-
ate in a pipeline approach where an NER engine
identifies the relevant entities and subsequent ex-
traction models identify the relations between them.
This approach is often problematic in real world
biomedical IE scenarios, where relevant entities
often cannot be extracted by stock NER models.

To address these limitations we present a sys-
tem allowing domain experts to interactively query
linguistically annotated datasets of scientific re-

5http://www.nactem.ac.uk/

search papers, using a novel multifaceted query
language which we designed, and which supports
boolean search, sequential patterns search, and by-
example syntactic search (Shlain et al., 2020), as
well as specification of search terms whose matches
should be captured or expanded. The queries can
be further restricted by contextual information.

We demonstrate the system on two datasets: a
comprehensive dataset of PubMed abstracts and a
dataset of full text papers focused on COVID-19
research.
Comparison to existing systems. In contrast to
document level search solutions, the results re-
turned by our system are sentences which include
highlighted spans that directly answer the user’s
information need. In contrast to supervised IE so-
lutions, our solution does not require a lengthy
process of data collection and labeling or a precise
definition of the problem settings.

Compared to rule based systems our system dif-
ferentiates itself in a number of ways: (i) our query
engine automatically translates lightly tagged natu-
ral language sentences to syntactic queries (query-
by-example) thus allowing domain experts to bene-
fit from the advantages of syntactic patterns without
a deep understanding of syntax; (ii) our queries run
against indexed data, allowing our translated syn-
tactic queries to run at interactive speed; and (iii)
our system does not rely on relation schemas and
does not make assumptions about the number of
arguments involved or their types.

In many respects, our system is similar to the
PropMiner system (Akbik et al., 2013) for ex-
ploratory relation extraction (Akbik et al., 2014).
Both PropMiner and our system support by-
example queries in interactive speed. However, the
query languages we describe in section 4 are signifi-
cantly more expressive than PropMiner’s language,
which supports only binary relations. Furthermore,
compared to PropMiner, our annotation pipeline
was optimized specifically for the biomedical do-
main and our system is freely available online.
Technical details. The datasets were annotated
for biomedical entities and syntax using a custom
SciSpacy pipeline (Neumann et al., 2019)6, and
the syntactic trees were enriched to BART format
using pyBART (Tiktinsky et al., 2020). The an-
notated data is indexed using the Odinson engine
(Valenzuela-Escárcega et al., 2020).

6All abstracts underwent sentence splitting, tokenization,
tagging, parsing and NER using all the 4 NER models avail-
able in SciSpacy

http://www.nactem.ac.uk/
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4 Extractive Query Languages

4.1 Boolean Queries
Boolean queries are the standard in information
retrieval (IR): the user provides a set of terms that
should, and should not, appear in a document, and
the system returns a set of documents that adhere
to these constraints. This is a familiar and intuitive
model, which can be very effective for initial data
exploration as well as for extraction tasks that fo-
cus on co-occurrence. We depart from standard
boolean queries and extend them by (a) allowing
to condition on different linguistic aspects of each
token; (b) allowing capturing of terms into named
variables; and (c) allowing linguistic expansion of
the captured terms.

The simplest boolean query is a list of terms,
where each term is a word, i.e: ‘infection asymp-
tomatic fatal’ The semantics is that all the terms
must appear in the query. A term can be made op-
tional by prefixing it with a ‘?’ symbol (‘infection
asymptomatic ?fatal’ ). Each term can also specify a
list of alternatives: ‘fatal|deadly|lethal’.
Beyond words. In addition to matching
words, terms can also specify linguistic
properties: lemmas, parts-of-speech, and
domain-specific entity-types: ‘lemma=infect
entity=DISEASE’. Conditions can also be combined:
‘lemma=cause|reason&tag=NN’. We find that the
ability to search for domain-specific types is very
effective in boolean queries, as it allows to search
for concepts rather than words. In addition to
exact match, we also support matching on regular
expressions (‘lemma=/caus.*/’). The field names
word, lemma, entity, tag can be shortened to w,l,e,t.
Captures. Central to our extractive approach is
the ability to designate specific search term to be
captured. Capturing is indicated by prefixing the
term with ‘:’ (for an automatically-named capture)
or with ‘name:’ (for a named capture). The query
‘fatal asymptomatic d:e=DISEASE’ will look for sen-
tences that contain the terms ‘fatal‘ and ‘asymp-
tomatic‘ as well as a name of a disease, and will
capture the disease name under a variable “d”.
Each query result will be a sentence with a sin-
gle disease captured. If several diseases appear in
the same sentence, each one will be its own result.
The user can then focus on the captured entities,
and export the entire query result to a CSV file, in
which each row contains the sentence, its source,
and the captured variables. In the current exam-
ples, the result will be a list of disease names that

co-occur with “fatal” and “asymptomatic”. We can
also issue a query such as
‘chem:e=SIMPLE CHEMICAL d:e=DISEASE’

to get a list of chemical-disease co-occurrences.
Using additional terms, we can narrow down to
co-occurrences with specific words, and by using
contextual restrictions (§4.3) we can focus on co-
occurrences in specific papers or domains.
Expansions. Finally, for captured terms we also
support linguistic expansions. After the term is
matched, we can expand it to a larger linguistic
environment based on the underlying syntactic sen-
tence representation. An expansion is expressed by
prefixing a term with angle brackets 〈〉:

‘〈〉inf:infection asymptomatic fatal’ will capture the
word “infection” under the variable “inf” and ex-
pand it to its surrounding noun-phrase, captur-
ing phrases like “malarialike infection”, “asymp-
tomatic infection”, “chronic infection” and “a mild
subclinical infection 9”.

4.2 Sequential (Token) Queries

While boolean queries allow terms to appear in any
order, we sometimes care about the exact linear
placements of words with respect to each other.
The term-specification, capture and expansion syn-
tax is the same as in boolean queries, but here terms
must match as in the query.
‘interspecies transmission’ looks for the exact phrase
“interspecies transmission” and
‘tag=NNS transmission’ looks for the word transmis-
sion immediately preceded by a plural noun. By
capturing the noun (‘which:tag=NNS transmission’)
we obtain a list of terms that includes the words
“bacteria”, “diseases”, “nuclei” and “crossspecies”.
Wildcards. sequential queries can also use wild-
card symbols: * (matching any single word), ‘...’
(0 or more words), ‘...2-5...’ (2-5 words). The query
‘interspecies kind:...1-3... transmission’ looks for the
words “interspecies” and “transmission” with 1 to 3
intervening words, capturing the intervening words
under “kind”. First results include “host-host”,
“zoonotic”, “virus”, “TSE agent”, “and interclass”.
Repetitions. We also allow to specify repetitions
of terms. To do so, the term is enclosed in [ ] and
followed by a quantifier. We support the standard
list of regular expression quantifiers: *, +, ?, {n,m}.
For example, ‘tag=DT [tag=JJ]* [tag=NN]+’.

4.3 Contextual Restrictions

Each query can be associated with contextual re-
strictions, which are secondary queries that oper-
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Figure 1: Query Graph of the syntactic query ‘〈〉p1:[e]BMP-6 $induces the $phosphorylation $of 〈〉p2:Smad1.’

ate on the same data and restrict the set of sen-
tences that are considered for the main queries.
These queries currently have the syntax of the
Lucene query language.7 Our system allows the
secondary queries to condition on the paragraph
the sentence appears in, and on the title, abstract,
authors, publication data, publication venue and
MeSH terms of the paper the sentence appears
in. Additional sources of information are easy to
add. For example, adding the contextual restriction
‘#d +title:cancer +mesh:”Age Distribution”’ restricts a
query results to sentences from papers which have
the word “cancer” in their title and whose MeSH
terms include “Age Distribution”. Similarly ‘#d +ti-
tle:/corona.*/ +year: [2015 TO 2020]’ restricts queries
to include sentences from papers published be-
tween 2015 and 2020 and have a word starting
with corona in their title.

These secondary queries greatly increase the
power of boolean, sequential and syntactic queries:
one could look for interspecies transmissions that
relate to certain diseases, or for sentence-level
disease-chemical co-occurrences in papers that dis-
cuss specific sub-populations.

4.4 Example-based Syntactic Queries
Recent advances in machine learning brought with
them accurate syntactic parsing, but parse-trees
remain hard to use. We remedy this by employing
a novel query language we introduced in (Shlain
et al., 2020) which is based on the principle of
query-by-example.

The query is specified by starting with a simple
natural language sentence that conveys the desired
syntactic structure, for example, ‘BMP-6 induces
the phosphorylation of Smad1’. Then, words can
be marked as anchor words (that need to match ex-
actly) or capture nodes (that are variables). Words
can also be neither anchor or capture, in which case
they only support the scaffolding of the sentence.
The system then translates the sentence with the
captures and anchors syntax into a syntactic query
graph, which is presented to the user. The user can
then restrict capture nodes from “match anything”

7https://lucene.apache.org/core/6_
0_0/queryparser/org/apache/lucene/
queryparser/classic/package-summary.html

to matching specific terms (using the term specifi-
cation syntax as in boolean or token queries) and
can likewise relax the exact-match constraints on
anchor words. Like in other query types, capture
nodes can be marked for expansion. The syntactic
graph is then matched against the pre-parsed and
indexed corpus.

This simple markup provides a rich syntax-based
query system, while alleviating the user from the
need to know linguistic syntax.

For example, consider the query below, the de-
tails of which will be discussed shortly:

‘〈〉p1:[e=GENE OR GENE PRODUCT]BMP-6 $induces
the $phosphorylation $of 〈〉p2:Smad1’

The words ‘induce’, ‘phosphorylation’ and ‘of’
are anchors (designated by ‘$’), while ‘p1’ and ‘p2’
are captures for ‘BMP-6’ and ‘Smad1’. Both cap-
ture nodes are marked for expansion using angle
braces (‘〈〉’). Node p1 is restricted to match tokens
with the same entity type of BMP-6 (indicated by
‘e=GENE OR...’). The query can be shortened by
omitting the entity type and retaining only the en-
tity restriction (‘e’):

‘〈〉p1:[e]BMP-6 $induces the $phosphorylation $of
〈〉p2:Smad1’

Here, the entity type is inferred by the system
from the entity type of BMP-6.8 The graph for
the query is displayed in Figure 1. It has 5 tokens
in a specific syntactic configuration determined
by directed labeled edges. The 1st token must
have the entity tag of ‘GENE OR...’, the 2nd, 3rd,
and 4th tokens must be the exact words “induces
phosphorylation of”, and the 5th is unconstrained.

Sentences whose syntactic graph has a subgraph
that aligns to the query and adheres to the
constraints will match the query. Example of
matching sentences are:
- ERKp1 activation induces phosphorylation of
Elk-1p2 .
- Thrombopoietinp1 activates human platelets
and induces tyrosine phosphorylation of
p80/85 cortactinp2

8Similarly, we could specify ‘$[lemma]induces’, re-
sulting in the restriction ‘lemma=induce’ instead of
‘word=induces’ for the anchor.

https://lucene.apache.org/core/6_0_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html
https://lucene.apache.org/core/6_0_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html
https://lucene.apache.org/core/6_0_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html
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The sentence tokens corresponding to the p1
and p2 graph nodes will be bound to variables
with these names: {p1=ERK, p2=Elk-1} for the
first sentence and {p1=Thrombopoietin, p2=p80/85
cortactin} for the second.

5 Example Workflow: Risk-factors

We describe a workflow which is based on using
our extractive search system over a corpus of all
PubMed abstracts. While the described researcher
is hypothetical, the results we discuss are real.

Consider a medical researcher who is trying to
compile an up to date list of the risk factors for
stroke. A PubMed search for “risk factors for
stroke” yields 3317 results, and reading through
all results is impractical. A Google query for the
same phrase brings out an info box from NHLBI9

listing 16 common risk factors including high blood
pressure, diabetes, heart disease, etc. Having a cu-
rated list which clearly outlines the risk factors is
helpful, but curated lists or survey papers will often
not include rare or recent research findings.

The researcher thus turns to extractive search
and tries an exploratory boolean query:

‘risk factor stroke’

.
The figure shows the top results for the query and

the majority of sentences retrieved indeed specify
specific risk factors for stroke. This is an improve-
ment over the PubMed results as the researcher can
quickly identify the risk factors discussed without
going through the different papers.

Furthermore, the top results contain risk factors
like migrane or C804A polymorphism not listed
in the NHLBI knowledge base. However, the full
result list is lengthy and extracting all the risk fac-
tors from it manually would be tedious. Instead,
the researcher notes that many of the top results
are variations on the “X is a risk factor for stroke”
structure. She thus continues by issuing the follow-
ing syntactic query, where a capture labeled r is
used to directly capture the risk factors:

9https://www.nhlbi.nih.gov/
health-topics/stroke

(a) ranked risk factors for stroke (b) ranked disease risk factors

Figure 2: Grouped and ranked results

‘r:Diabetes is a $risk $factor for $stroke’.

The figure shows the top results for the query
and the risk factors are indeed labeled with r as
expected. Unfortunately, some of the captured risk
factors names are not fully expanded. For exam-
ple, we capture syndrome instead of metabolic syn-
drome and temperature instead of low temperature.
Being interested in capturing the full names, the
researcher adds angle brackets ‘〈〉’ to expand the
captured elements:

‘〈〉r:Diabetes is a $risk $factor for $stroke’.

The full names are now captured as expected.
Now that that researcher has verified that the

query yields relevant results, she clicks the down-
load button to download the full result set.

The resulting tab separated file has 1212 rows.
Each row includes a result sentence, the captured
elements in it (in this case, just the risk factor), and
their offsets. Using a spreadsheet to group the rows
by risk factor and order the results by frequency, the
researcher obtains a list of 640 unique risk factors,
114 of them appearing more than once in the data.
Figure 2a lists the top results.

Reviewing the list, the researcher decides that
she’s not interested in general risk factors, but
rather in diseases only. She modifies the query
by adding an entity restriction to the ‘r’ capture:

https://www.nhlbi.nih.gov/health-topics/stroke
https://www.nhlbi.nih.gov/health-topics/stroke
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As seen in the query graph, even though the
researcher didn’t specify the exact entity type, the
query parser correctly resolved it to DISEASE. The
results now include diseases like sleep apnoea and
hypertension but do not include smoking, age and
alcohol (see Figure 2b).

Analyzing the results, the researcher now wants
to compare the risk factors in the general popula-
tion to ones listed in research papers dealing with
children and infants. Luckily, such papers are in-
dexed with corresponding MeSH terms and the
researcher can utilize this fact by appending ‘#d
mesh:Child mesh:Infant -mesh:Adult’ to her query. In
cases where a desired MeSH term does not exist,
an alternative approach is filtering the results based
on words in the abstract or title. For example, ap-
pending ‘#d abstract:child abstract:children’ to a query
will ensure that the result sentences come from ab-
stracts which contain the word child or the word
children.

Happy with the results of the initial query, the
researcher can further augment her list by query-
ing for other structures which identify risk factors
(e.g. “‘r:Diabetes $causes $stroke’”, “‘$risk $factors
for $stroke $include r:Diabetes’”, etc.).

Importantly, once the researcher has identified
one or more effective queries to extract the risk fac-
tors for stroke, the queries can easily be modified
in useful ways. For example, with a small modifi-
cation to our original query we can extract:
risk factors for cancer:

‘r:Diabetes is a $risk $factor for $cacner’

diseases which can be caused by smoking:
‘$Smoking is a $risk $factor for d:[e]stroke’.

ad-hoc KB of (risk factor, disease) tuples (for
self use or as an easily queryable public resource):

‘r:Diabetes is a $risk $ factor for d:[e]stroke’.

6 Example Workflow: CORD-19

The COVID-19 Open Research Dataset (Wang
et al., 2020) is a collection of 45,000 research pa-
pers, including over 33,000 with full text, about
COVID-19 and the coronavirus family. The cor-
pus was released by the Allen Institute for AI and
associated partners in an attempt to encourage re-
searchers to apply recent advances in NLP to the
data to generate insights.

Identifying COVID-19 Aliases Since the
CORD-19 corpus includes papers about the entire
Coronavirus family of viruses, it’s useful to
identify papers and sentences dealing specifically
with COVID-19. Before converging on the
acronym COVID-19 researchers have referred to
the virus by many names: nCov-19, SARS-COV-ii,
novel coronavirus, etc. Luckily, it’s fairly easy to
identify many of these aliases using a sequential
pattern:

‘novel coronavirus ( alias:...1-2... )’

The pattern looks for the words “novel coronavirus”
followed by an open parenthesis, one-or-two words
which are to be captured under the ‘alias’ variable,
and a closing parenthesis. The query retrieves 52
unique candidate aliases for COVID-19, though
some of them refer to older coronaviruses such as
“MERS”, or non-relevant terms such as “Fig2”. Af-
ter ranking by frequency and validating the results,
we can reuse the pattern on newly retrieved aliases
to extend the list. Through this iterative process we
quickly compile a list of 47 aliases. We marked all
occurrences of these terms in the underlying corpus
as a new entity type, COVID-19, and re-indexed
the dataset with this entity information.
Exploring Drugs and Treatments. To explore
drugs and treatments for COVID-19 we search
the corpus for chemicals co-occuring with the
COVID-19 entity using a boolean query:
‘chemical:e=SIMPLE CHEMICAL|CHEMICAL
e=COVID-19’

Table 1(a) shows the top matching chemicals by
frequency. While some of the substances listed like
Chloroquine and Remdesivir are drugs being tested
for treating COVID-19, others are only hypothe-
sized as useful or appear in other contexts.

To guide the search toward therapeutic sub-
stances in different stages of maturity we can add
indicative terms to the query. For example, the
following query can be used to detect substances
at the stage of clinical trials:
‘chemical:e=SIMPLE CHEMICAL|CHEMICAL
e=COVID-19 l=trial|experiment’, while adding
‘l=suggest|hypothesize|candidate’ can assist in
detecting substances in ideation stage.

Table 1(b,c) shows the frequency distributions
of the chemicals resulting from the two queries.
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(a) Unrestricted
nucleic acid (171), chloroquine (118), nucleotide (115), NCP

(87), CR3022 (47), Ksiazek (46), IgG (45), lopinavir/ritonavir

(42), ECMO (40), LPV/r (35), corticosteroids (35), oxygen

(32), ribavirin (31), lopinavir (31), Hydroxychloroquine (30),

amino acid (30), ritonavir (27), corticosteroid (24), Sofosbuvir

(22), amino acids (22), HCQ (19), glucocorticoids (19)

(b) Trial
chloroquine (29), Remdesivir (8), LPV/r (7), lopinavir (6),

HCQ (6), ritonavir (4), Arbidol (4), Sofosbuvir (3), nu-

cleotide (3), nucleic acid (3), lopinavir/ritonavir (3), CQ

(3), oseltamivir (2), NCT04257656 (2), NCT04252664 (2),

Meplazumab (2), Hydroxychloroquine (2), glucocorticoids(2),

CEP(2)

(c) Ideation
chloroquine (6), ritonavir (5), S-RBD (4), nucleotide (4),

Lopinavir (4), CR3022 (4), Ribavirin (3), nucleic acid (3),

logP (3), Li (3), ledipasvir (3), IgG (3), HCQ (3), TGEV (2),

teicoplanin (2), nelfinavir (2), NCP (2), HWs (2) glucocorti-

coids (2), ENPEP (2), ECMO (2), darunavir (2), creatinine

(2), creatine (2), CQ (2), corticosteroid (2), CEP (2), ARB (2)

Table 1: Top chemicals co-occuring with the COVID-
19 entity and their counts. (a) Unrestricted. (b) with
Trial related terms. (c) with Ideation related terms.

While the queries are very basic and include only
a few terms for each category, the difference is
clearly noticeable: while the Malaria drug Chloro-
quine tops both lists, the antiviral drug Remdesivir
which is currently tested for COVID-19 is second
on the list of trial related drugs but does not appear
at all as a top result for ideation related drugs.

Importantly, entity co-mention queries like the
ones above rely on the availability and accuracy
of underlying NER models. As we’ve seen in
Section 5, in cases where the relevant types are
not extracted by NER, syntactic queries can be
used instead. For example the following query
captures sentences including chemicals being used
on patients (the abstract or paragraph are required
to include COVID-19 related terms).
‘he was $treated $with a 〈〉chem:treatment
#d paragraph:ncov* paragraph:covid* abstract:ncov*
abstract:covid*’

Treatments (via syntactic query)
ribavirin (11), oseltamivir (9), ECMO (6), convales-

cent plasma (4), TCM (3), LPV/r (3), three fusions of

MSCs (2), supportive care (2), protective conditions (2),

lopinavir/ritonavir (2), intravenous remdesivir (2), hydrox-

ychloroquine (2), HCQ (2), glucocorticoids (2), FPV (2), ef-

fective isolation (2), chloroquine (2), caution (2), bDMARDs

(2), azithromycin (2), ARBs (2), antivirals (2), ACE inhibitors

(2), 500 mg chloroquine (2), masks (1)

Table 2: Top elements occurring in the syntactic
“treated with X” configuration. Note that this query
does not rely on NER information.

The top results by frequency are shown in Table
2. The top ranking results show many of the chem-
icals obtained by equivalent boolean queries10, but
interestingly, they also contain non-chemical treat-
ments like supportive care, isolation and masks.
This demonstrates a benefit of using entity agnos-
tic syntactic patterns even in cases where a strong
NER model exists.

7 More Examples

While the workflows discussed above pertain
mainly to the medical domain, the system is op-
timized for the broader life science domain. Here
are a sample of additional queries, showing differ-
ent potential use-cases.
Which genes regulate a cell process:
‘〈〉p1:[e]CD95 v:[l]regulates 〈〉p:[e]apoptosis’

Which specie is the natural host of a disease:
‘〈〉host:[e]bat is a $natural $host of
〈〉disease:[e]coronavirus’

Documented LOF mutations in genes:
‘$loss $of $function 〈〉m:[w]mutation in 〈〉gene:[e]PAX8’

8 Conclusion

We presented a search system that targets extract-
ing facts from a biomed corpus and demonstrated
its utility in a research and a clinical context over
CORD-19 and PubMed. The system works in an
Extractive Search paradigm which allows rapid in-
formation seeking practices in 3 modes: boolean,
sequential and syntactic. The interactive and flexi-
ble nature of the system makes it suitable for users
in different levels of sophistication.

10to get a more comprehensive coverage we can issue
queries for other syntactic structures like ‘〈〉chem:chemical
was used $in $treatment’ and combine the results of the
different queries.
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Iain J Marshall, Joël Kuiper, and Byron C Wallace.
2015. RobotReviewer: evaluation of a system for
automatically assessing bias in clinical trials. Jour-
nal of the American Medical Informatics Associa-
tion, 23(1):193–201.

J.G. Mork, Antonio Jimeno-Yepes, and Alan Aronson.
2013. The nlm medical text indexer system for in-
dexing biomedical literature. CEUR Workshop Pro-
ceedings, 1094.

Bernd Müller, Christoph Poley, Jana Pössel, Alexan-
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