
Proceedings of the BioNLP 2020 workshop, pages 105–111
Online, July 9, 2020 c©2020 Association for Computational Linguistics

105

Evaluating the Utility of Model Configurations and Data Augmentation on
Clinical Semantic Textual Similarity

Yuxia Wang Fei Liu Karin Verspoor Timothy Baldwin
School of Computing and Information Systems

The University of Melbourne
Victoria, Australia

{yuxiaw, fliu3}@student.unimelb.edu.au
karin.verspoor@unimelb.edu.au tb@ldwin.net

Abstract

In this paper, we apply pre-trained language
models to the Semantic Textual Similarity
(STS) task, with a specific focus on the clini-
cal domain. In low-resource setting of clinical
STS, these large models tend to be impractical
and prone to overfitting. Building on BERT,
we study the impact of a number of model de-
sign choices, namely different fine-tuning and
pooling strategies. We observe that the impact
of domain-specific fine-tuning on clinical STS
is much less than that in the general domain,
likely due to the concept richness of the do-
main. Based on this, we propose two data aug-
mentation techniques. Experimental results on
N2C2-STS1 demonstrate substantial improve-
ments, validating the utility of the proposed
methods.

1 Introduction

Semantic Textual Similarity (STS) is a language
understanding task, involving assessing the degree
of semantic equivalence between two pieces of text
based on a graded numerical score (Corley and
Mihalcea, 2005). It has application in tasks such
as information retrieval (Hliaoutakis et al., 2006),
question answering (Hoogeveen et al., 2018), and
summarization (AL-Khassawneh et al., 2016). In
this paper, we focus on STS in the clinical domain,
in the context of a recent task within the framework
of N2C2 (the National NLP Clinical Challenges)1,
which makes use of the extended MedSTS data
set (Wang et al., 2018), referring to N2C2-STS,
with limited annotated sentences pairs (1.6K) that
are rich in domain terms.

Neural STS models typically consist of encoders
to generate text representations, and a regression
layer to measure the similarity score (He et al.,
2015; Mueller and Thyagarajan, 2016; He and Lin,

1https://portal.dbmi.hms.harvard.edu/
projects/n2c2-2019-t1/

2016; Reimers and Gurevych, 2019). These archi-
tectures require a large amount of training data, an
unrealistic requirement in low resource settings.

Recently, pre-trained language models (LMs)
such as GPT-2 (Radford et al., 2018) and
BERT (Devlin et al., 2019) have been shown to
benefit from pre-training over large corpora fol-
lowed by fine tuning over specific tasks. How-
ever, for small-scale datasets, only limited fine-
tuning can be done. For example, GPT-2 achieved
strong results across four large natural language
inference (NLI) datasets, but was less successful
over the small-scale RTE corpus (Bentivogli et al.,
2009), performing below a multi-task biLSTM
model. Similarly, while the large-scale pre-training
of BERT has led to impressive improvements on
a range of tasks, only very modest improvements
have been achieved on STS tasks such as STS-
B (Cer et al., 2017) and MRPC (Dolan and Brock-
ett, 2005) (with 5.7k and 3.6k training instances,
resp.). Compared to general-domain STS bench-
marks, labeled clinical STS data is more scarce,
which tends to cause overfitting during fine-tuning.
Moreover, further model scaling is a challenge due
to GPU/TPU memory limitations and longer train-
ing time (Lan et al., 2019). This motivates us to
search for model configurations which strike a bal-
ance between model flexibility and overfitting.

In this paper, we study the impact of a number of
model design choices. First, following Reimers and
Gurevych (2019), we study the impact of various
pooling methods on STS, and find that convolution
filters coupled with max and mean pooling out-
perform a number of alternative approaches. This
can largely be attributed to their improved model
expressiveness and ability to capture local interac-
tions (Yu et al., 2019). Next, we consider differ-
ent parameter fine-tuning strategies, with varying
degrees of flexibility, ranging from keeping all pa-
rameters frozen during training to allowing all pa-

https://portal.dbmi.hms.harvard.edu/projects/n2c2-2019-t1/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2019-t1/
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rameters to be updated. This allows us to identify
the optimal model flexibility without over-tuning,
thereby further improving model performance.

Finally, inspired by recent studies, including
sentence ordering prediction (Lan et al., 2019)
and data-augmented question answering (Yu et al.,
2019), we focus on data augmentation methods to
expand the modest amount of training data. We first
consider segment reordering (SR), in permuting
segments that are delimited by commas or semi-
colons. Our second method increases linguistic
diversity with back translation (BT). Extensive
experiments on N2C2-STS reveal the effective-
ness of data augmentation on clinical STS, par-
ticularly when combined with the best parameter
fine-tuning and pooling strategies identified in Sec-
tion 3, achieving an absolute gain in performance.

2 Related Work

2.1 Model Configurations

In pre-training, a spectrum of design choices have
been proposed to optimize models, such as the pre-
training objective, training corpus, and hyperpa-
rameter selection. Specific examples of objective
functions include masked language modeling in
BERT, permutation language modeling in XLNet
(Yang et al., 2019), and sentence order prediction
(SOP) in ALBERT (Lan et al., 2019). Addition-
ally, RoBERTa (Liu et al., 2019) explored benefits
from a larger mini-batch size, a dynamic masking
strategy, and increasing the size of the training cor-
pus (16G to 160G). However, all these efforts are
targeted at improving downstream tasks indirectly
by optimizing the capability and generalizability of
LMs, while adapting a single fully-connected layer
to capture task features.

Sentence-BERT (Reimers and Gurevych, 2019)
makes use of task-specific structures to optimize
STS, concentrating on computational and time effi-
ciency, and is evaluated on relatively larger datasets
in the general domain. For evaluating the impact
of number of layers transferred to the supervised
target task from the pre-trained language model,
GPT-2 has been analyzed on two datasets. How-
ever, they are both large: MultiNLI (Williams et al.,
2018) with >390k instances, and RACE (Lai et al.,
2017) with >97k instances. These tasks also both
involve reasoning-related classification, as opposed
to the nuanced regression task of STS.

2.2 Data Augmentation

Synonym replacement is one of the most com-
monly used data augmentation methods to simulate
linguistic diversity, but it introduces ambiguity if
accurate context-dependent disambiguation is not
performed. Moreover, random selection and re-
placement of a single word used in general texts is
not plausible for term-rich clinical text, resulting
in too much semantic divergence (e.g patient to af-
fected role and discharge to home to spark to home).
By contrast, replacing a complete mention of the
concept can increase error propagation due to the
prerequisite concept extraction and normalization.

Random insertion, deletion, and swapping of
words have been demonstrated to be effective on
five text classification tasks (Wei and Zou, 2019).
But those experiments targeted topic prediction, in
contrast to semantic reasoning such as STS and
MultiNLI. Intuitively, they do not change the over-
all topic of a text, but can skew the meaning of a
sentence, undermining the STS task. Swapping an
entire semantic segment may mitigate the risk of
introducing label noise to the STS task.

Compared to semantic and syntactic distortion
potentially caused by aforementioned methods,
back translation (BT) (Sennrich et al., 2016) —
translating to a target language then back to the
original language — presents fluent augmented
data and reliable improvements for tasks demand-
ing for adequate semantic understanding, such as
low-resource machine translation (Xia et al., 2019)
and question answering (Yu et al., 2019). This
motivates our application of BT on low-resource
clinical STS, to bridge linguistic variation between
two sentences. This work represents the first explo-
ration of applying BT for STS.

3 STS Model Configurations

In this section, we study the impact of a number
of model design choices on BERT for STS, using
a 12-layer base model initialized with pretrained
weights.

3.1 Hierarchical Convolution (HConv)

The resource-poor and concept-rich nature of clini-
cal STS makes it difficult to train a large model end-
to-end on sentence pairs. To address this, most re-
cent studies have made use of pre-trained language
models, such as BERT. The most straightforward
way to use BERT is the feature-based approach,
where the output of the last transformer block is
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taken as input to the task-specific classifier. Many
have proposed the use of a dummy CLS token to
generate the feature vector, where CLS is a special
symbol added in front of every sequence during
pre-training, with its final hidden state always used
as the aggregate sequence representation for clas-
sification tasks, referring to CLS pooling. Other
types of pooling, such as mean and max pooling,
are investigated by Reimers and Gurevych (2019).

However, this results in inferior performance
as shown in the first row of Table 1.2 As a con-
sequence, the best strategy for extracting feature
vectors to represent a sentence remains an open
question.

In this work, we first experiment with the feature-
based approach, coupled with convolutional filters.
This is inspired by the use of convolutional filters
in QANet (Yu et al., 2019) to capture local interac-
tions. The difference lies in where convolutional
filters are applied. With QANet, multiple conv
filters are incorporated into each transformer en-
coder block to process the input from the previous
layer. In contrast, HConv-BERT is largely based
on BERT, with the addition of a single task-specific
classifier placed on top of BERT consisting of conv
filters organised in a hierarchical fashion. This
results in a much simplified model, making HConv-
BERT less prone to overfitting.

Specifically, we run a collection of convolutional
filters with a kernel of size k ∈ [2, 4], each with
J = 768 output channels (indexed by j ∈ [1, J ]),
over the temporal axis (indexed by i ∈ [1, T ]):

ci,kj = wkj ∗ xi:i+k−1 + bkj (1)

ci,k = [ci,k1 ; . . . ; ci,kJ ] (2)

where xi:i+k−1 is the output BERT features for the
token span i to i + k − 1, ∗ is the convolution
operation, wkj and bkj are the convolution filter
and bias term for the j-th kernel of size k, and
[a;b] denotes the concatenation of a and b.

To capture interactions between distant elements,
we feed the output ci,k into another convolution
layer of kernel size 2 with M = 128 output chan-
nels (indexed by m ∈ [1,M ]):

cki,m = wm ∗ ci:i+1,k + bm (3)

cki =
[
cki,1; . . . ; c

k
i,M

]
(4)

2Due to space constrains, we limit our comparison to the
CLS pooling strategy, based on the observation of little im-
provements when using other types of pooling (mean, max)
and concatenation, or sequence processing recurrent units.

Model SICK-R STS-B N2C2-STS

Feature-based:
CLS-BERT 53.6/52.1 49.3/67.9 14.6/28.4
HConv-BERT 80.1/73.6 83.0/83.2 79.4/74.4

Fine-tuning:
CLS-BERT 88.6/82.9 90.0/89.6 86.7/81.9
HConv-BERT 88.7/83.5 90.1/89.6 87.7/80.7

Table 1: Pearson and Spearman correlation (r/ρ) be-
tween the predicted score and the gold labels for three
STS datasets using the feature-based approach (upper
half) and fine-tuning (bottom half) with CLS-BERT
and HConv-BERT. Performance is reported by conven-
tion as r/ρ× 100.

where ci:i+1,k is the output of the first convolu-
tional layer over the span i to i + 1 as defined in
Equation (2), and wm and bm are the filter and
bias term for the second convolutional layer with, a
kernel size of 2 and output dimension of M = 128.

Lastly, we extract feature vectors by max and
mean pooling over the temporal axis and then con-
catenation:

vk
max = max

(
cki

)
vk

mean = avg
(
cki

)
(5)

v =
[
v2

max;v
3
max;v

4
max;v

2
avg;v

3
avg;v

4
avg
]
. (6)

The upper half of Table 1 shows that the pro-
posed hierarchical convolutional (HConv) architec-
ture provides substantial performance gains.

3.2 Model Flexibility

We also evaluate the utility of this mechanism in the
fine-tuning setting with varying modelling flexibil-
ity. Concretely, we progressively increase the num-
ber of trainable parameters by transformer blocks.
That is, for the base BERT model with 12 layers,
we allow errors to be back-propagated through the
last l layers while keeping the rest (12− l) fixed.

The results on STS-B and N2C2-STS are shown
in Figure 1. We observe performance crossover of
HConv and CLS-pooling on both datasets as the
number of trainable transformer layers increases.
While HConv reaches peak performance before the
crossover, CLS-pooling often requires more blocks
to be trainable to achieve comparable accuracy,
rendering the model much slower. Notably, the pro-
posed mechanism peaks with much fewer trainable
blocks on N2C2-STS than STS-B. We speculate
that this is due to the size difference between the
two datasets. To verify this hypothesis, we further
look into the relationship between the number of
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Figure 1: Evaluation of CLS-BERT and HConv-BERT over datasets from the general (STS-B) and clinical (N2C2)
domains. r refers to Pearson correlation. N2C2-STS is split into 1233 and 409 instances for training and dev.
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Figure 2: Impact of number of trainable transformer
blocks based on HConv-BERT over different data size,
randomly sampled from STS-B, ranging from 500 to
full set (5, 749).

trainable transformer blocks and training data size.
In Figure 2, we observe performance degradation
as the size of training data shrinks, with the mod-
els trained on the full set achieving far superior
Pearson correlation to those trained on the smaller
subsets. Zooming into the curve representing each
subset, we find that peak performance is attained
at different points depending on data size: with
the smallest dataset (500 instances), the number of
parameter updates is also limited. Only updating
the top few layers of transformer blocks is simply
not enough to make the model fully adapt to the
task. It is therefore beneficial to allow the model
access to more trainable layers (e.g., 11) to improve
performance.

Based on this, we set the number of trainable
blocks to 6 for SICK-R (consisting of 4, 500 train-
ing instances), as presented in the bottom half of

Table 1, with HConv outperforming CLS-pooling.

4 Data Augmentation

The accuracy of an STS model unsurprisingly de-
pends on the amount of labeled data. This is re-
flected in Figure 2, where models trained with more
data outperform those with fewer training instances.
In this section, we propose two data augmenta-
tion methods, namely segment reordering (SR) and
back translation (BT), to address the data sparsity
issue in clinical STS.

Segment reordering. Clinical texts often consist
of text segments describing multiple events and pa-
tient symptoms. Each segment is often an indepen-
dent semantic unit, separated by commas or semi-
colons. Inspired by the random word swapping
of Wei and Zou (2019), we exploit this property
and propose a heuristic, named segment reordering
(SR), to generate permutations of the original se-
quence based on these segments. While we expect
this to introduce some noise to the training data, our
hypothesis is that the increase in training data size
will outweigh this. For instance, consider the text
new confusion or inability to stay alert and awake;
feeling like you are going to pass out. Flipping the
order of the two segments new confusion or inabil-
ity to stay alert and awake and feeling like you are
going to pass out will not hinder the overall under-
standing of the text. More formally, for a given
pair of sentences S1 and S2, each consisting of a
sequence of segments S1 = {s11, . . . , s1m} and
S2 = {s21, . . . , s2n}, we generate a new pair by
randomly permuting the segment order, effectively
doubling the size of the training corpus.
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Back translation. Inspired by the work of Yu
et al. (2019), we make use of machine translation
tools to perform back translation (BT). Here, we
choose Chinese as the pivot language as it is linguis-
tically distant to English and supported by mature
commercial translation solutions. That is, we first
translate from English to Chinese and then back
to English. We use Google Translate to translate
each sentence in a sentence pair from English to
Chinese, and Baidu Translation3 to translate back
to English. For example, for the original sentence
negative for cough and stridor, the backtranslated
result is bad for coughing and wheezing. We apply
this to each sentence pair, doubling the amount of
training data.

5 Experiments

5.1 Experimental Setup
We evaluate the effectiveness of SR and
BT on N2C2-STS with four baseline mod-
els: BERTbase (Devlin et al., 2019) and
BERTclinical (Alsentzer et al., 2019), both us-
ing CLS-pooling and consisting of 12 layers;
ConvBERTbase, based on BERTbase with hierarchi-
cal convolution and fine-tuning over the last 4 lay-
ers (consistent with our findings of the best model
configuration in Section 3); and ConvBERTSTS-B,
where we take ConvBERTbase and fine-tune first
over STS-B, before N2C2-STS.

We split the training partition of N2C2-STS into
1, 233 (train) and 409 (dev) instances, and report
results on the test set (412 instances).

5.2 Results
Experimental results are presented in Table 2. We
see clear benefits of the two proposed data aug-
mentation methods, consistently boosting perfor-
mance across all categories, with BT providing
larger gains than SR. This is likely caused by the
rather naı̈ve implementation of SR, resulting in un-
natural segment sequences. A possible fix to this is
to further filter out such irregular statements with
a language model pre-trained on clinical corpora.
We leave this for future work.

It is impressive that the best-performing configu-
ration ConvBERTSTS-B + BT is capable of achiev-
ing comparable results with the state-of-the-art
IBM-N2C2, an approach heavily reliant on exter-
nal, domain-specific resources, and an ensemble of
multiple pre-trained language models.

3https://fanyi.baidu.com/

Model r ρ

IBM-N2C2 90.1 —

BERTbase 86.7 81.9
+ SR 87.1 80.8
+ BT 87.2 81.7

BERTclinical 86.1 81.4
+ SR 87.4 82.7
+ BT 88.6 82.4

Conv1dBERTbase 87.7 80.7
+ SR 88.0 81.4
+ BT 88.1 82.2

Conv1dBERTSTS-B 87.9 82.5
+ SR 88.6 83.1
+ BT 89.4 83.0

Table 2: Pearson r and Spearman ρ on N2C2-STS for
models with and without segment reordering (“SR”)
and back translation (“BT”).

We additionally conduct a cross-domain exper-
iment on BIOSSES (Soğancıoğlu et al., 2017),
a biomedical literature STS dataset comprising
100 sentence pairs derived from the Text Analysis
Conference Biomedical Summarization task with
scores ranging from 0 (complete unrelatedness) to
4 (exact equivalence). Specifically, baseline model
Pooling BERTbase and proposed ConvBERTSTS-B +
BT are both fine-tuned on N2C2-STS, and then ap-
plied with no further training to BIOSSES. Despite
the increase in task difficulty, the proposed method
demonstrates strong generalisability, outperform-
ing the baseline by an absolute gain of 2.4 and 3.9
to 85.42/82.83 (r/ρ).

6 Conclusions

In this paper, we have presented an empirical study
of the impact of a number of model design choices
on a BERT-based approach to clinical STS. We
have demonstrated that the proposed hierarchical
convolution mechanism outperforms a number of
alternative conventional pooling methods. Also, we
have investigated parameter fine-tuning strategies
with varying degrees of flexibility, and identified
the optimal number of trainable transformer blocks,
thereby preventing over-tuning. Lastly, we have
verified the utility of two data augmentation meth-
ods on clinical STS. It may be interesting to see the
impact of leveraging target languages other than
Chinese in BT, which we leave for future work.

https://fanyi.baidu.com/
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