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Abstract

In this paper we employ a novel approach to
advancing our understanding of the develop-
ment of writing in English and German chil-
dren across school grades using classification
tasks. The data used come from two recently
compiled corpora: The English data come
from the the GiC corpus (983 school children
in second-, sixth-, ninth- and eleventh-grade)
and the German data are from the FD-LEX
corpus (930 school children in fifth- and ninth-
grade). The key to this paper is the com-
bined use of what we refer to as ‘complex-
ity contours’, i.e. series of measurements that
capture the progression of linguistic complex-
ity within a text, and Recurrent Neural Net-
work (RNN) classifiers that adequately capture
the sequential information in those contours.
Our experiments demonstrate that RNN clas-
sifiers trained on complexity contours achieve
higher classification accuracy than one trained
on text-average complexity scores. In a sec-
ond step, we determine the relative importance
of the features from four distinct categories
through a Sensitivity-Based Pruning approach.

1 Introduction

There is growing recognition among researchers,
educators and policymakers that literacy and the
language of schooling (other terms include aca-
demic language, language of education, scientific
language) are key to children’s overall educational
success and academic achievement (see, e.g., Com-
mission, 2019; Lorenzo and Meyer, 2017). Chil-
dren are expected to acquire the ability to com-
prehend and produce complex clause and sentence
structures, sophisticated vocabulary and informa-
tionally dense texts characteristic of language of
schooling as they progress through their school
career (see, e.g., Berman, 2007; Snow, 2010, for
overviews). However, this ability is acquired grad-
ually and for many school children only with diffi-

culty (Snow and Uccelli, 2009; Snow, 2010). Given
the key role of academic language, it is somewhat
surprising that relatively little empirical research
has been conducted on the development of aca-
demic language skills across school grades in chil-
dren’s first language, in particular in the area of
writing (for exceptions, see, Crossley et al., 2011;
Weiss and Meurers, 2019). This paper contributes
to and expands the scant literature by investigat-
ing the development of linguistic complexity in
children’s writing from second-, sixth-, ninth- and
eleventh-grade in English schools and fifth- and
ninth-grade in German schools. We employ a novel
approach to the automatic assessment of text com-
plexity. In this approach, a series of scores for a
given complexity measure is obtained through a
sliding window technique, tracking the progression
of complexity within a text, captured in what we
refer to as ‘complexity contours’ (Ströbel, 2014;
Ströbel et al., 2020). These contours are then fed
into recurrent neural network (RNN) classifiers –
adequate to take into account the sequential infor-
mation in the contours – to perform grade-level
classification tasks. We demonstrate the utility
of the approach by comparing the performance
of ‘contour-based’ RNN models against those of
‘means-based’ RNN models trained on text-average
performance scores. In a second step, we de-
termine which features drive classification accu-
racy through a Sensitivity-Based Pruning (SBP)
approach. The remainder of the paper is organized
as follows: Section 2 provides a concise overview
of related work on automated assessment of text
complexity in combination with machine learning
techniques in the language learning context. Sec-
tion 3 presents the two data sets representing En-
glish and German children’s school writing. Sec-
tion 4 introduces our approach to assessment of
text complexity based on a sliding-window tech-
nique, whereas Section 5 introduces the features
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investigated in the paper. Sections 6 describes the
model architecture and the training procedure (Sec-
tion 6.1) and the SBP method used to determine
the relative feature importance (Section 6.2). Sec-
tions 7 presents the results and concluding remarks
follow in Section 8.

2 Related work

In recent years, there has been an increased interest
in automated assessment of text complexity in au-
thentic contextualized language samples in combi-
nation with machine learning techniques (Meurers,
2020, for a recent overview). As a valuable com-
plement to experimental research, this research has
the potential to advance our current understanding
of (both first and second) language learning and
development (Rebuschat et al., 2017; Ellis, 2019).
Important steps have been made in this direction
through both language input and language output
perspectives: Regarding the former, a number of
studies have examined whether and to what ex-
tent learning materials show an adequate level of
linguistic complexity considered to be of crucial
importance for successful learning outcomes (see,
e.g., François and Fairon, 2012; Pilán et al., 2016;
Xia et al., 2019; Chen and Meurers, 2018; Berendes
et al., 2018). For example, Berendes et al. (2018)
employ a text classification approach to examine
to whether and to what extent reading complex-
ity of school textbooks differ systematically across
grade levels in line with the so-called ‘systematic
complexification assumption’. They build text clas-
sification models using a Sequential Minimal Opti-
mization (SMO) algorithm trained on a wide range
of lexical, syntactic, morphological, and cohesion-
related features to predict the grade level (fifth to
tenth grade) and school track (high vs. low). The
best performing model reached a grade-level clas-
sification accuracy of 53.7%, corresponding to a
20.7% over the random baseline, providing only
partial support for thee systematic complexification
assumption. In addition, they report significant dif-
ferences across grade levels and tracks for some
of the ten linguistic features. Regarding the latter,
a rapidly growing body of research has focused
on language output aiming to determine to what
extent L2 writing and speaking differs from that of
their L1 peers and expert writers/speakers, to dif-
ferentiate levels of language proficiency, to predict
human ratings of the quality of learner productions,
and to examine to the relationship between L1 and

L2 writing complexity and speaking fluency (see,
e.g., Crossley et al., 2014; Lu, 2017; Duran-Karaoz
and Tavakoli, 2020; Ströbel et al., 2020). Much
research in this area has focused on English and
on populations of upper intermediate to advanced
L2 learners (but see Crossley et al., 2011; Durrant
and Brenchley, 2019; Weiss and Meurers, 2019,
for L1 English and German, respectively). Two
recent studies are particularly relevant for the pur-
poses of the present study. Durrant and Brenchley
(2019) zoom-in on the development of vocabulary
sophistication in English children’s writing across
second-, sixth-, ninth- and eleventh grade. Their
corpus (also used in the present paper) consists
of 2,898 texts of children’s writing produced by
983 children. Through a mixed-effects regression
modeling approach, they assess the effects of grade
level and genre on lexical sophistication - measured
through children’s use of low-frequency words and
register appropriate words. Their analysis reveals
no significant differences with regard to the average
frequency of the lexical words used by younger and
older children. However, with increasing age chil-
dren’s writing display a shift from a more fiction-
like vocabulary to a more academic-like vocabulary,
reflecting a development towards more register ap-
propriate word use. Weiss and Meurers (2019)
focus on German children’s writing development
through a text classification approach based on a
broad range of complexity and accuracy measures.
Their dataset includes 1,633 texts of writing from
727 German elementary school children from first
to fourth grade and 906 secondary school students
from fifth to eighth grade, who attended either a
basic or an intermediate school track. Using SMO
classifiers with a linear kernel, their best perform-
ing classification model employed a combination of
linguistic complexity features, error rate and meta
information on topic and school track to reach an
accuracy of 72.68% in classifying four grade level
categories. Their analysis further revealed a shift
in the primary locus of development from accuracy
to complexity within elementary school and an in-
creasing linguistic complexity in secondary school,
in particular in the lexical complexity domain.

3 Data

The data used in this study come from two recently
compiled corpora representing school writing: The
English data come from the the Growth in Gram-
mar corpus (GIG, https://gigcorpus.com/) that

https://gigcorpus.com/
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comprises 2,898 texts produced by 983 children in
24 different schools from 14 cities in Great Britain.
The texts in the GiG corpus were sampled at four
points that mark ‘key stages’ of the English school
system: the ends of Key Stage (KS) 1 (Year 2,
when children are 6-7 years old) and KS2 (Year
9, when children are 10-11 years old), encompass-
ing the primary phase of the school system, and the
ends of KS3 (Year 9, when children are 13-14 years
old) and KS4 (Year 11, when children are 15-16
years old), encompassing the secondary stage. The
texts were classified into two text types (literary
and non-literary texts) on the basis of their over-
all purpose. Approximately 13% of the texts were
written by children categorized as speaking En-
glish as an additional language. The German data
come from the Forschungsdatenbank Lernertexte
(FD-LEX; https://fd-lex.Uni-koeln.de/), a
research database of learner texts compiled in joint
project of the Mercator Institute for Language Pro-
motion and German as a Second Language. It
contains a total of 5,628 texts from two text types
(report and argumentation) collected from a total
of 930 school children in grades five (when chil-
dren are 10-11 years old) and nine (when children
are 14-15 years old) at comprehensive and gram-
mar schools in two German cities. These texts were
elicited using a narrative and an argumentative writ-
ing prompt. The database contains information on a
number of learner background variables, including
the learners language background distinguishing
monolingual German students from students who
have German as a their first language (L1) and
know at least one additional language and students
for whom German is not their first language. Table
1 shows the distribution of texts along with descrip-
tive statistics of text sizes across grade levels and
registers for each language.

4 Automatic Assessment of Text

Complexity through a Sliding Window

Technique

Text complexity of the writing samples in the two
corpora is automatically assessed using the Com-
plexity Contour Generator (CoCoGen), a computa-
tional tool that implements a sliding-window tech-
nique to generate a series of measurements for a
given complexity measure (CM) (Ströbel, 2014;
Ströbel et al., 2018; Ströbel et al., 2020). This ap-
proach enables a ‘local assessment’ of complexity
within a text, in contrast to the standard approach

English data: GIG

Grade Register N Texts M SD
2 lit 263 83.56 58.36
2 non-lit 376 71.18 43.09
4 lit 23 169.7 111.6
4 non-lit 26 151.58 96.65
6 lit 293 371.58 200.61
6 non-lit 575 208.68 104.53
9 lit 220 422.22 186.69
9 non-lit 584 277.25 187.95

11 lit 63 422.22 186.69
11 non-lit 475 415.3 264.46

German data: FD-LEX

5 arg 1462 49.26 27.94
5 nar 1460 67.65 32.68
9 arg 1282 70.67 32.24
9 nar 1305 80.69 32.54

Table 1: Composition of two corpora of children’s
school writing. ‘lit’ = literary, ‘non-lit’ = non-literary,
‘arg’ = argumentative, ‘nar’ = narrative; M = mean num-
ber of words, SD = standard deviation

that represents text complexity as a single score,
providing a ‘global assessment’ of the complex-
ity of a text. A sliding window can be conceived
of as a window with a certain size (ws) defined
by the number of sentences it contains. The win-
dow is moved across a text sentence-by-sentence,
computing one complexity score per window for a
given CM. The series of measurements generated
by CoCoGen track the progression of linguistic
complexity within a text captured in what we re-
fer to as ‘complexity contours’. These contours
faithfully represent that complexity is typically not
uniformly distributed within a text but rather by
characterized peaks and troughs and that complex-
ity contours of individual measures may exhibit
different trajectories (see Figure 1. For a text com-
prising n sentences, there are w = n � ws + 1
windows.1 To compute the complexity score of a
given window, a measurement function is called
for each sentence in the window and returns a frac-
tion wnS/wdS , where wnS is the numerator of the
complexity score for a sentence and wdS is the de-
nominator of the complexity score for that sentence.
If the window size is specified to be greater than
one sentences, the denominators and numerators
of the fractions from the first to the last sentence

1Given the constraint that there has to be at least one win-
dow, a text has to comprise at least as many sentences at the
ws is wide n � w.

https://fd-lex.Uni-koeln.de/
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in the window are added up to form the denom-
inator and numerator of the resulting complexity
score of a given window (see Figure 3 in the Ap-
pendix). The size of the window is user-defined
parameter whose value depends on the goals of the
analysis: When windows is set to the minimum,
i.e. complexity is measured at each sentence of
a text, the resulting complexity contour will typi-
cally exhibit many sharp turns. By increasing the
window size, i.e. the number of sentences in a win-
dow, the complexity contour can be smoothened
akin to a moving average technique (see Figure
4 in the Appendix). To compute the complexity
scores, CoCoGen uses the Stanford CoreNLP suite
(Manning et al., 2014) for performing tokenization,
sentence splitting, part-of-speech tagging, lemmati-
zation and syntactic parsing using the probabilistic
context free grammar parsers for English (Klein
and Manning, 2003) and German (Rafferty and
Manning, 2008).

5 Features

In its current version CoCoGen features 57 com-
plexity measures (CMs) for English of which 13
are also available for German.2 These features
cover (1) surface measures, (2) measures of syn-
tactic complexity, (3) measures of lexical rich-
ness, (4) information theoretic measures, and (5)
register-based n-gram frequency measures. The op-
erationalizations of the syntactic and lexical CMs
follow those given in Lu (2011) and Lu (2012).
For details on the operationalization of the infor-
mation theoretic CMs, see Ströbel (2014). The
operationalization of the register-based n-gram
frequency measures is provided below. Surface
measures concern the length of production units
and include Mean Length of Words in charac-
ters (MLWc), Mean Length of Words in syllable
(MLWs), Mean length of clause (MLC), Mean
length of sentence (MLS), and Mean length of
T-Unit (MLT). Syntactic complexity is typically
quantified in terms of measures of the type and
incidence of embeddings (Sentence complexity
ratio (C/S), T-Unit complexity ratio (C/T), Com-
plex T-Unit ratio (CT/T), Dependent clause ratio
(DC/C), Dependent clauses per T-Unit (DC/T), T-
Units per Sentence (T/S), and Verb Phrases per

2CoCoGen was designed with extensibility in mind, so
that additional CMs can easily be added. It uses an abstract
measure class for the implementation of CMs. Currently,
additional CMs from the cognitive science (psycholinguistic)
literature are being implemented for both English and German.

T-Unit (VP/T)), the types and number of coordina-
tions between clauses and phrasal units (Coordinate
phrases per clause (CP/C), Coordinate phrases per
T-Unit (CP/T)), and the type of particular structures
(Complex nominals per T-Unit(CN/T), Complex
nominals per Clause (CN/C), Noun Phrase Premod-
ification in words (NPpreW), Noun Phrase Post-
modification in words (NPpostW)) (see Lu, 2017,
for a recent overview). The lexical richness mea-
sures fall into three distinct sub-types: (1) Lexical
density, i.e. the ratio of the number of lexical (as
opposed to grammatical) words to the total num-
ber of words in a text (Lexical Density (LD)), (2)
Lexical variation, i.e. the range of a learner’s vo-
cabulary as displayed in his or her language use
(Number of Different Words (NDW), Type-Token
Ratio (TTR), Log Type-Token Ratio (logTTR),
Root Type-Token Ratio (rTTR), Corrected Type-
Token Ratio (cTTR)) and (3) Lexical sophistica-
tion, i.e. the proportion of relatively unusual or ad-
vanced words in the learner’s text (words from the
New Academic Word List (NAWL), words from
the New Academic Formula List (NAFL), words
that are not part of the New General Service List
(NGSL), Lexical Sophistication BNC (LS.BNC),
Lexical Sophistication ANC (LS.ANC)). The three
information-theoretic measures are Kolmogorov
Deflate (KolDef), Kolmogorov Deflate Syntactic
(KolDefSyn), Kolmogorov Deflate Morphological
(KolDefMor) (see Ehret and Szmrecsanyi, 2019,
for the benefits of using these measures in the
assessment of text complexity in the context of
language learning). These measures, use the De-
flate algorithm (Deutsch and Gailly, 1996) to com-
press a given text and obtain performance scores
by relating the size of the compressed file to the
size of the original file (Ströbel, 2014). The fifth
group of register-based n-gram frequency measures
was based on list of the top 100,000 most frequent
ngrams (for n 2 [1, 5]) from the five register sub-
components of the COCA corpus3 (spoken, maga-
zine, fiction, news, academic language). The gen-
eral definition of these CMs is given in (1) and

3The Contemporary Corpus of American English (Davies,
2008) is the largest genre-balanced corpus of American En-
glish, which at the time the measures were derived comprised
560 million words.
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Figure 1: Complexity contours for two different measures (red: Type Token Ratio, blue: Clauses per Sentence) for
six randomly selected texts from different grade levels for each language

(2):

Scoren,s,r =
|Cn,s,r| · log

hQ
c2|Cn,s,r| freqn,r(c)

i

|Un,s|
(1)

where
Cn,s,r = An,s \Bn,r (2)

Let An,s be the list of n-grams (n 2 [0, 5])
contained within a sentence s, Bn,r the list of
n-grams on the n-gram frequency list of a regis-
ter r (r 2 {acad, acad, fic,mag, news, spok}) and
Cn,s,r = An,s \Bn,r the intersection list. Further-
more, Un,s denotes the list of unique n-grams in s,
and freqn,r(a) the frequency of n-gram a in the
n-gram frequency list of register r. The score of a
given n-gram-based CMs is thus obtained by mul-
tiplying the number of n-grams in a sentence that
are on the n-gram list with the log of the product
of the corresponding frequencies of those n-grams
divided by the number of distinct n-grams in the
sentence.

6 Classification Models

6.1 Model Architecture

We used a Recurrent Neural Network (RNN) classi-
fier, specifically a dynamic RNN model with Gated
Recurrent Unit (GRU) cells (Cho et al., 2014). A
dynamic RNN was chosen as it can handle se-
quences of variable length4. As shown in Figure 2,
the input of the contour-based model is a sequence
X = (x1, x2, . . . , xl, xl+1, . . . , xn), where xi, the

4The lengths of the feature vector sequences depends on
the number of sentences of the texts in our corpus.

output of CoCoGen for the ith window of a doc-
ument, is a 13 dimensional vector (for German)
or a 57 dimensional vector (for English), l is the
length of the sequence, n 2 Z is a number, which
is greater or equal to the length of the longest se-
quence in the dataset and xl+1, · · · , xn are padded
0-vectors. The input of the contour-based model is
be fed into a RNN which consists of two layers of
GRU cells with 20 hidden units each. To predict
the class of a sequence, the last output of the RNN,
i.e. the output of RNN right after the feeding of
xl, concatenated with the variables (text type and
learner background), which are encoded into one-
hot vectors, is transformed through a feed-forward
neural network. The feed-forward neural-network
consists of three fully connected layers, whose out-
put dimensions are 512, 256, 1 (German) and 3
(English). The Rectifier Linear Unit (ReLU) was
used as activation function. Two dropout layers
were added between fully connected layers 1 and
2 and between layers 2 and 3, both with a dropout
rate of 0.3. Before the final output, a sigmoid layer
was applied. For the mean-based model, we used
the same neural network as in the contour-based
model, except that the network was trained on vec-
tors of text-average complexity scores. For the
purpose of comparison, we also built two baseline
models based on the control variables and the prior
probability distribution. The first one is a statistics-
based baseline model. We trained this model by
grouping the instances in the dataset by the control
variables and computed the empirical distribution
over grades for each group. For prediction, we
classified instances of the test set into grades by
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p(y|x, c) = p(y|c) =
Nc,y

Nc

where y is the class label, i.e. grade, x the fea-
tures of an instance from the test set, and c is a
control variable. Nc,y denotes the number of in-
stances in the training set, for a control variable
c and class label y, while Nc =

X
y
Nc,y is the

total number of instances in the training set, which
has c as their control variable. The second baseline
model is a neural network model that has the same
structure of the upper part of the RNN model which
is a feedforward neural network. The input of this
model is one-hot encoded control variables and the
output stay the same as the RNN model.

Since the task is to classify instances of the
dataset into a set of ordered categories, i.e. grade
2 < 6 < 9 < 11 for English and grade 5 < 9 for
German, our task can be treated as an ordinal clas-
sification problem. To adapt the neural network
classifier to the ordinal classification task, we fol-
lowed the NNRank approach described in (Cheng
et al., 2008), which is a gerneralization of ordinal
perceptron learning in neural networks(Crammer
and Singer, 2002) and outperforms a neural net-
work classifier on serveral benchmark datasets. In-
stead of one-hot encoding of class labels and using
softmax as the output layer of a neural network,
in NNRank, a class label for class k is encoded
as (y1, y2, . . . , yi, . . . , yC�1), in which yi = 1 for
i  k and yi = 0 otherwise, where C is the number
of classes. For the output layer, a sigmoid function
was used. For prediction, the output of the neural
network (o1, y2, . . . , oC�1) is scanned from left to
right. It stops after encountering oi, which is the
first element of the output vector that is smaller
than a threshold T (e.g. 0.5), or when there is no
element left to be scanned. The predicted class of
the output vector is the index k of the last element,
whose value is greater than or equal to T .

We use ten-fold cross-validation, using a 90%–
10% split into training and testing sets. As the
loss function for training, binary cross entropy was
used:

L(Ŷ , c) = � 1

N

NX

i=1

(yi log(ŷ)+(1�yi) log(1�ŷ))

in which c = (y1, y2, . . . , yN ), N = C � 1 is the
true class label of the current observation encoded
in accordance with the NNRank method, where C
is the number of classes and Ŷ = (ŷ1, ŷ2, . . . , ŷN )
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Figure 2: Roll-out of the RNN model based on com-
plexity contours

is the output vector of the sigmoid layer. For op-
timization, we used Adamax with a learning rate
⌘ = 0.001 and weight decay= 1 ⇥ 10�6. The
minibatch size is 32, which was shown as a reason-
able value for modern GPUs (Masters and Luschi,
2018). All models were implemented using Py-
Torch (Pytorch, 2019).

6.2 Feature Importance

To determine the relative importance of the com-
plexity features, we conducted feature ablation
experiments for the contour-based RNN. Classi-
cal forward or backward sequential selection al-
gorithms that proceed by sequentially adding or
discarding features require a quadratic number of
model training and evaluation in order to obtain a
feature ranking (Langley, 1994). In the context of
neural network model training a quadratic number
of models can become prohibitive. To alleviate
this problem, we used an adapted version of the
iterative sensitivity-based pruning algorithm pro-
posed by Dı́az-Villanueva et al. (2010). This al-
gorithm ranks the features based on a ‘sensitivity
measure’ (see, (Moody, 1994; Utans and Moody,
1991)) and removes the least relevant variables one
at a time. The classifier is then retrained on the re-
sulting subset and a new ranking is calculated over
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the remaining features. This process is repeated
until all features are removed (see Algorithm 1).
In this fashion, rather than training n(n+1)

2 models
required for sequential algorithms, the number of
models trained is reduced to n

m , where m is the
number of features that can be removed at each
step. We report the results obtained with m = 1,
i.e. the results after the removal of a single fea-
ture at each step. At step t, neural network models
Mt,n, n 2 {1, . . . , k} are trained on the training
sets of a 10-fold cross-validation, where n is the
fold ID. The training sets at step t consist of in-
stances with feature set Ft = {f1, f2, . . . , fDt}
where f1, . . . fDt are the remaining features at the
current step, whose importance rank is to be de-
termined. We define Xt,n as the test set of the
nth fold with feature set Ft and Xi

t,n as the same
dataset as Xt,n except we set the ith feature fi
of each instance within the dataset to its average.
Furthermore, we define g(X) as the classification
accuracy of Mt,n for a dataset X . The sensitivity
of feature fi on the nth fold at step t is obtained
from:

Si,t,n = g(Xt,n) � g(Xi
t,n)

The final sensitivity for a feature fi at step t is:

Si,t =
1

k

kX

n=1

Si,t,n

The most important feature at step t can be found
by:

fî : î = arg max
i:fi2Ft

(Si,t)

Then we set the rank for feature fî:

Rankî = t

In the end, feature fî is dropped from Ft and the
corresponding columns in training and test dataset
are also dropped simultaneously:

Ft+1 = Ft � {fî}

This procedure is repeated, until |Ft0 | = 1. To
increase the robustness of the feature importance
rank order, 10-fold cross-validation was applied.

7 Results

We report the results of classification with 10-fold
cross-validation (see Figures 5 and 6 in the Ap-
pendix for a visualization of model accuracy for the

means-based and contour-based models over 200
epochs across the 10 cross-validation folds). We
first present the results of the experiments on the
English data, before moving to results for the Ger-
man data. The performance metrics of the classifi-
cation models for English (global accuracy, preci-
sion, recall and macro F1 scores per grade level) are
presented in Table 2. Both the means-based and the
contour-based models achieved grade-level-based
classification accuracy of > 75%, a substantial im-
provement over the baseline model (28%, see Table
4 in the Appendix for details). These findings indi-
cate that text complexity increases with children’s
age/competence level and provide further empirical
evidence in support of grade-level-based complexi-
fication assumption (see the study by Berendes et al,
2018 described above). The contour-based model
outperforms the means-based model in terms of
both precision and recall across all classes, result-
ing in an increase in global classification accuracy
of 6%, from 76% (means-based model) to 82%
(contour-based model). Precision and recall rates
are found to be highest for grade 2, followed by
grades 6 and 11, and lowest for grade 11. Inspec-
tion of the confusion matrix for the contour-based
model (see Table 7 in the Appendix) indicates that
misclassified samples are close to the actual class,
indicating that the model was sensitive to the grade
ordering.5 These results suggest that the change
in complexity was most pronounced in the earlier
grades and decreased with increasing grade levels.
The results of the feature importance analysis re-
veal that classification is mainly driven by features
related to vocabulary (the feature importance statis-
tics for the top 30 measures can be found in Table 6
in the Appendix). The top 14 of the 57 measures are
related to lexical sophistication, word length and
the use of register-based n-grams. These findings
are consistent with the available body of research
suggesting that the development of children’s writ-
ing during adolescent years is primarily character-
ized by higher proportions of unusual/advanced
words and words of greater surface length (com-
pare same vs. equal vs. identical vs. tantamount)
(see, Berman 2007) and replicate and extend the
findings reported in Durrant and Brenchley (2019)
that the shift towards more academic vocabulary
can also be observed in the use of multi-word se-
quences. The information theoretic measures are

5We also examined all pairwise classification errors among
the four grades (see Table 8).
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Means-based Contour-based
M SD M SD

Accuracy 0.76 0.03 0.82 0.02
Precision 2 0.87 0.06 0.90 0.07
Recall 2 0.85 0.04 0.90 0.04
F1 score 2 0.86 0.03 0.90 0.03
Precision 6 0.78 0.02 0.82 0.04
Recall 6 0.78 0.03 0.81 0.04
F1 score 6 0.78 0.01 0.81 0.03
Precision 9 0.72 0.04 0.76 0.06
Recall 9 0.71 0.05 0.76 0.04
F1 score 9 0.71 0.03 0.76 0.03
Precision 11 0.71 0.09 0.82 0.06
Recall 11 0.75 0.06 0.82 0.05
F1 score 11 0.73 0.07 0.82 0.04

Table 2: Performance statistics of the means-based
(left) and contour-based (right) RNN classifiers aggre-
gated over 10 crossvalidation runs (English data). Base-
line classification accuracy was 28%.

situated at ranks 15, 18 and 22. The group of lexi-
cal diversity measures (NDW and variants of TTR)
is located in the mid-field (ranks 34, 36, 37, 38,
39). Syntactic complexity is found to play only a
subsidiary role: with the exception of one measure
(VP/T, rank 19) features from this class appeared
only after rank 30.

Even with a more restricted features set com-
pared to English, grade-level-based classification
accuracy on the German dataset displays consid-
erable - albeit less pronounced - improvement of
� 19% over the baseline model (51% classifica-
tion accuracy) (see Table 5 in the appendix). These
findings thus provide additional, though somewhat
weaker, empirical evidence in support of grade-
level-based complexification assumption. As is
the case in the English data, the performance of
the model based on complexity contours exceeds
that of the means-based model on the German data
both in terms of precision and recall across the two
school grades, leading to an 4% increase in overall
classification accuracy from 70% to 74%. Table
3 presents the performance statistics. The feature
ablation analysis reveals that the most important
features are more evenly distributed across the four
groups of CMs (see Table 9 in the Appendix): The
top eight features include surface CMs pertaining
to the length of production unit (MLWc, MLC,
MLS), lexical diversity (NDW, RTTR, CTTR), syn-
tactic complexity (Cl/S), and information density

Means-based Contour-based
M SD M SD

Accuracy 0.70 0.02 0.74 0.02
Precision 5 0.71 0.02 0.75 0.02
Recall 5 0.74 0.02 0.79 0.02
F1 score 5 0.72 0.02 0.77 0.01
Precision 9 0.69 0.03 0.74 0.03
Recall 9 0.66 0.03 0.7 0.03
F1 score 9 0.67 0.02 0.72 0.03

Table 3: Performance statistics of the means-based
(left) and contour-based (right) RNN classifiers ag-
gregated over 10 crossvalidation runs (German data).
Baseline classification accuracy was 51%.

(KolDef). Within this set of eight CMs, the re-
moval of individual CMs is associated with a rel-
atively minor drop in classification accuracy of
less than 1.5%, suggesting that the network is able
to compensate for the loss of information from
a given feature by relying on the other features.
However, when the last feature of the top-8 group
is removed, classification accuracy drops by al-
most 5%, indicating that the remaining features
played subsidiary roles in the grade-level classifi-
cation. These findings nicely complement those
reported in the paper by Weiss and Meurers (2019)
described above focusing on basic (Hauptschule)
and intermediate school tracks (Realschule) by as-
sessing writing skills in the other two tracks of
the German educational system: comprehensive
school (Gesamtschule) and grammar school (Gym-
nasium).

8 Conclusion and Outlook

In this paper, we demonstrated how the auto-
matic assessment of text complexity through a
sliding window approach in combination with ma-
chine learning techniques can provide valuable and
unique insights into the development of children’s
writing as they progress through their school edu-
cation. Such an approach has the added advantage
of capturing the progression of complexity within
a text. In classification tasks on two data sets rep-
resenting children’s school writing in L1 English
and German, we showed that the inclusion of this
sequential information can substantially increase
classification performance across grade-levels. We
also show that Sensitivity-Based Pruning is a vi-
able complementary approach to other approaches
aimed at assessing feature importance to identify
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’criterial features’ that are characteristic and in-
dicative of language competencies at a given level
(Hawkins and Filipović, 2012). More generally, the
type of research presented in this paper has the po-
tential to advance our understanding of the develop-
ment of literacy skills in children during adolescent
years, a key stage that is still not well understood.
In future work, we intend to extend the approach
presented here to larger cross-sectional data sets
covering additional school grades in search of valid
and reliable benchmarks and norms that can be
used to inform school curricula and educational
standards.
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