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Abstract

Complex Word Identification (CWI) is a task
for the identification of words that are chal-
lenging for second-language learners to read.
Even though the use of neural classifiers is
now common in CWI, the interpretation of
their parameters remains difficult. This paper
analyzes neural CWI classifiers and shows that
some of their parameters can be interpreted as
vocabulary size. We present a novel formal-
ization of vocabulary size measurement meth-
ods that are practiced in the applied linguistics
field as a kind of neural classifier. We also
contribute to building a novel dataset for val-
idating vocabulary testing and readability via
crowdsourcing.

1 Introduction

The readability of second-language learners has
attracted great interest in studies in the field of nat-
ural language processing (NLP) (Beinborn et al.,
2014; Pavlick and Callison-Burch, 2016). As NLP
mainly addresses automatic editing of texts, read-
ability assessment studies in this field have focused
on identifying complex parts by assuming that the
words identified are eventually simplified so that
learners can read them. To this end, complex word
identification (CWI) (Paetzold and Specia, 2016;
Yimam et al., 2018) tasks have been studied exten-
sively. Recently, a personalized CWI task has been
proposed, where the goal of the task is to predict
whether a word is complex for each learner in a
personalized manner (Paetzold and Specia, 2017;
Lee and Yeung, 2018). Neural models are also em-
ployed in these studies and have achieved excellent
performance.

The weights, or parameters, of a personalized
high-performance neural CWI, obviously include
information on how to measure the word difficulty
and learner ability from a variety of features. If
such information could be extracted from the model
in a form that is easy to interpret, it would not only
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be use (Hoshino, 2009; Ehara et al., 2012, 2013,
2014; Sakaguchi et al., 2013; Ehara et al., 2016,
2018; Ehara, 2019). To this end, this paper pro-
poses a method for interpreting the weights of per-
sonalized neural CWI models. Let us suppose that
we have a corpus and that its word frequency rank-
ing reflects its word difficulty. Using our method, a
word’s difficulty can be interpreted as the frequency
rank of the word in the corpus and a learner’s abil-
ity can be interpreted as the vocabulary size with
respect to the corpus, i.e., the number of words
known to the learner when counted in a descending
order of frequency in the corpus.

Our key idea is to compare CWI studies with
vocabulary testing studies in applied linguistics
(Nation, 2006; Laufer and Ravenhorst-Kalovski,
2010). Second-language vocabulary is extensive
and occupies most of the time spent in learning
a language. Vocabulary testing studies focus on
measuring each learner’s second language vocab-
ulary quickly. One of the major findings of these
studies is that a learner needs to “know” at least
from 95% to 98% of the tokens in a target text to
read. Here, to measure if a learner “knows” a word,
vocabulary testing studies use the learner’s vocabu-
lary size and word frequency ranking of a balanced
corpus. Hence, by formalizing the measurement
method used in vocabulary testing studies as a neu-
ral personalized CWI, we can interpret neural per-
sonalized CWI models’ weights as vocabulary size
and word frequency ranking.

Our contributions are summarized as follows:

1. To predict whether a learner knows a word
through the use of a vocabulary test result in
hand, vocabulary size-based methods were
previously used for vocabulary testing. We
show that this method can represent a special
case of typical neural CWI classifiers that take
a specific set of features as input. Furthermore,
we theoretically propose novel methods that
enable the weights of certain neural classifiers
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to become explainable on the basis of the vo-
cabulary size of a learner.

2. To validate the proposed models, we want a
dataset in which each learner/test-taker takes
both vocabulary and reading comprehension
tests. To this end, we build a novel dataset and
make it publicly available.

2 Related Work

2.1 Vocabulary size-based testing

Vocabulary size-based testing studies (Nation,
2006; Laufer and Ravenhorst-Kalovski, 2010) mea-
sure the vocabulary size of second-language learn-
ers. Assuming that all learners memorize words in
the same order, i.e., that the difficulty of words is
identical for each learner, all words are ranked in
one dimension using this method. Subsequently,
it is determined whether or not a learner knows a
target word by checking if the vocabulary size of
the learner is greater than the easiness rank of the
word.

The vocabulary size-based method can be for-
malized as follows. Let us consider the case in
which we have J learners {l1,ls,...,l;,...,0;}
and [ words {vy,va,...,v;,...,vr}. j is the in-
dex of the learners and ¢ is the index of the words.
When there is no ambiguity, we denote word v; as
word i and learner [; as learner j, for the sake of
simplicity. We write the rank of word v; as r; and
the vocabulary size of learner [; as s;. Then, to
determine whether learner [; knows word v;, the
following decision function f is used:

fll,vi) =85 — 1 (1)

Interpretting Eq. 1 is simple: if f(I;,v;)
then learner /; knows word v;; if f(l;,v;)
then learner /; does not know word v;.

The performance of Eq. 1 depends solely on how
to determine the vocabulary size of learner /;, s;,
and the easiness rank of word v;, r;. As several
methods have previously been proposed to estimate
this, we describe them in the following subsections.

> 0,
< 0,

2.1.1 Measuring rank of word v;

Easiness ranks of words are important in vocabu-
lary size-based testing. To this end, word frequency
rankings from a balanced corpus, especially the
British National Corpus (BNC Consortium, 2007),
are used: the more frequent words in the corpus are
ranked higher and considered to be easier. Some

previous studies in the field manually adjust the
BNC word frequency rankings to make them com-
patible with language teachers’ intuitions. BNC
collects British English. Recent studies also take
into account word frequency obtained from the
Corpus of Contemporary American (COCA) En-
glish (Davies, 2009) by simply adding the word
frequencies of both corpora in order to obtain a
word frequency ranking.

2.1.2 Measuring the vocabulary size of
learner /;

An intuitive and simple method for measuring the
vocabulary size of learner [; is as follows. First, we
randomly sample some words from a large vocab-
ulary sample of the target language. Second, we
test whether learner /; knows each of the sampled
words and identify the ratio of words known to the
learner. Third, we estimate the learner’s vocabu-
lary size as the ratio x the number of correctly
answered questions.

This is how the Vocabulary Size Test (Beglar and
Nation, 2007) works. Using the frequency ranking
of 20, 000 words from the BNC corpus, the words
are first split into 20 levels, with each level consist-
ing of 1,000 words. It is assumed that the 1,000
words grouped in the same level have similar dif-
ficulty. Then, from the 1, 000 words at each level,
5 words are carefully sampled and a vocabulary
test is built that consists of 100 words in total. Fi-
nally, the number of words that learner /; correctly
answered x 200 is estimated to be the vocabulary
size of learner [;. This simple method was later val-
idated by a study from another independent group
(Beglar, 2010) and is widely accepted.

Examples of the Vocabulary Size Test are pub-
licly available (Nation, 2007). Each question asks
learners taking the test to choose the correct an-
swer by selecting one of the four offered options
that has the same meaning as one of the underlined
words in the question. It should be noted that, in
the Vocabulary Size Test, each word is placed in a
sentence to disambiguate the usage of each word
and each option can directly be replaced with the
underlined part without the need to grammatically
rewrite the sentence, e.g., for singular/plural differ-
ences. Although a typical criticism of vocabulary
tests relates to the fact that they do not take contexts
into account, each question in the Vocabulary Size
Test is specifically designed to account for such
criticism by asking the meaning of a word within a
sentence.
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Figure 1: Probability against # when changing the
value of a.
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Figure 2: Neural network illustration of a vocabulary
size-based prediction.

3 Proposed Formulation

The following notations are used. We have
J learners {li,lo,...,l;,...,l;} and I words
{v1,v2,...,0;,...,vr}. jis the index of the learn-
ers and 7 is the index of the words. When there
is no ambiguity, we denote word v; as word ¢ and
learner [; as learner j, for the sake of simplicity.
Let K; be the number of occurrences of word v;.
While we do not use in our experiments, for gen-
erality, we explicitly write the index for each of
the occurrences, i.e., k. Let u; j be the k-th occur-
rence of word v; in the text. Let b; be the ability
of learner j and let d; ;, be the difficulty of the k-th
occurrence of word v;.

A dichotomous decision using a neural network-
based formulation is typically modeled using a
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probabilistic formulation. Let y;;x be a binary
random variable that takes 1 if learner /; knows
the k-th occurrence of word v;, otherwise it takes
0. Subsequently, it is typical to use a function that
maps a real number to the [0, 1] range so that the
real number can be interpreted as a probability. To
this end, typically o is the logistic sigmoid function,
ie., o(x) = m is used. Then, the proba-
bility that learner [; knows the k-th occurrence of
word v;, namely, u; j, can be modeled as in Eq. 2.

Wik = Huik,lj) = oalb; — di)) (2

Qualitative characteristics of Eq. 2 are explained
as follows. Let § = a(b; — d; 1,). The logistic sig-
moid function maps an arbitrary real number to the
[0, 1] range and makes it possible to interpret the
real number as a probability. Here, 6 is mapped to
the range. As 6 increases, the larger the probability
becomes. We can see that a > 0 is the parameter
that determines the steepness of the slope. A large
a results in a steep slope. When a is large enough,
4.0 for example, numerically, the function is very
close to the identity function that returns 0 if 6 < 0
and 1if 6 > 0.

Probability in a dichotomous classification is
most ambiguous when it takes 0.5. By focusing on
the point the vertical line takes 0.5, we can see that
the sign of b; — d; ;. determines whether or not the
probability is larger than 0.5.

3.1 Vocabulary size-based classification as
neural classification

These characteristics of Eq. 2 enable it to express
the decision function employed in the previous vo-
cabulary size-based decision function Eq. 1 as its
special case. Let us consider the case when a is
large and the curve is very steep, say a = 10, for
example. Then, by setting b; = s; and d; , = 7
for all k for word v;, the decision about whether
learner j knows the k-th occurrence of word v; in
Eq. 1 is virtually identical to that of Eq. 2. In this
manner, the previous vocabulary size-based deci-
sion functions for whether learner /; knows word v;
in applied linguistics can be converted to a neural
network-based classifier and vice versa.

We can see that there exists a freedom in the pa-
rameters. In the above example, we can achieve the
same setting by setting b; = 0.1s;, d; , = 0.17;
and a = 100. In this way, the same vocabulary size
classification can be achieved by different parame-
ter values.



This freedom in terms of parameters is the key
for conversion: by setting an appropriate a, we
can convert neural classifier parameters as each
learner’s vocabulary size and the rank of each word.

3.2 Rewriting parameters

While b; and d; . are parameters, we rewrite them
using one-hot vectors that are widely used to de-
scribe neural network-based models. Let us intro-
duce two types of feature functions: ¢; and ¢,,.
The former returns the feature vector of learner /;,
and the latter returns the feature vector of the k-th
occurrence of word v;, ; k.

Then, the ability and difficulty parameters of
Eq. 2 can be written as the inner product of a weight
vector and a feature vector. Let us introduce w; as
the weight vector for ¢;. Let h be a function that
returns the one-hot representation of the augment.
We write hy(l;) to denote a function that returns
J-dimensional one-hot vector, where only the j-th
element is 1 while the other elements are 0. Then,
we can rewrite b; as the inner product of the weight
vector and the one-hot vector as b; = w; h;(1;).

In the same way, d; ;. can be rewritten as the
inner product of its weight vector and feature vec-
tor. Being reminded that K; denotes the num-
ber of occurrences of word v;, we consider a
very long Zile K;-dimensional one-hot vector
h, (u; 1), where only one element that corresponds
to the k-th element of word v; is 1 and all other
elements are 0. Then, by introducing a weight vec-
tor w, that has the same dimension with h,,(u; 1),
we can rewrite d; ;, as d; j, = w, h, (ui k). Using
these expressions, Eq. 2 can be illustrated using a
typical neural network illustration as in Fig. 2.

Overall, the equation using one-hot vector repre-
sentation can be described as follows:

PWik; = Lluik, ;)
= o(a(w/ hy(l;) — w, hy(u;k))) (3)

3.3 Weights as learner vocabulary sizes and
word frequency ranks

Eq. 3 provides us with a hint to convert neural
classifier weights into vocabulary sizes and word
frequency rankings. To this end, we can do the fol-
lowing. First, we use Eq. 3 to estimate parameters:
a, wi, and w,,. Typically, for a binary classification
setting using the logistic sigmoid function, cross-
entropy loss is chosen as the loss function. We

use L(a, w;, w,) to denote the sum of the cross-
entropy loss function for each of the following: all
data, all learners, and all occurrences of all words.

From a, w; and w,, we can estimate the fre-
quency rank of word v; as follows: aw, hy (u; k).
Hence, by comparing the estimate with the ob-
served ranking value r; of word v;, we can also tune
all parameters. We can simply employ R(a, w,) =

I s law, hy (i) — 74]|? for a loss func-
tion that measures how distant the estimated rank
and the observed rank are. Of course, we can com-
pare aw; h;(l;) and s;, the observed vocabulary
size of learner /;. However, since the observed vo-
cabulary size of each learner is usually much more
inaccurate than the ranking of a word, we do not
use this term. As ranks usually take large values
but never larger than 1, we can use the logarithm of
the rank of word v; for r; instead of its raw values.

3.4 Proposed Model

Practically, it is important to note that the one-hot
vector h,(u; ) in L and R functions can be re-
placed with any feature vector of w; j or with the
k-th occurrence of word v;. In our experiments, we
simply used this replacement.

We propose the following minimization problem
that simultaneously tunes both parameters. We
let the parameter v € [0, 1] be the parameter that
tunes the two loss functions, namely, L and R.
Note that, as the optimal value of a is different for
term L and for term R, we modeled the two terms
separately: a; and a9, respectively. Since most of
Eq. 4 consists of continuous functions, then Eq. 4
can easily be optimized as a neural classifier using a
typical deep learning framework, such as PyTorch.

yL(a1,wi, wy) + (1 — v)R(az, wy)
“)
For the input, we prepare the vocabulary test
results of .J learners, the vocabulary feature func-
tion h, and the vocabulary ranking r;. By preparing
these data for input, we can train the model through
estimating the w parameters by minimizing FJq. 4.
The tuning of the ~ value can be conducted us-
ing validation data that are disjointed from both
the training and test data. Or, «y can also be tuned
by jointly minimizing  with other parameters in
Eq. 4. Finally, in the test phase, using the trained
parameter a1 and w; — we can estimate learner /;’s
vocabulary size as a;w; hy(l;). Using the trained
parameter as, W,, we can estimate the rank of the

min
a1,a2,Wi,Wy
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first occurrence of a new word v;, which did not
appear in the training data, as aaw, h, (u; 1).

4 Dataset

4.1 Description

To evaluate Eq. 4, we need a real dataset that covers
both vocabulary size and reading comprehension
tests, assuming that the text coverage hypothesis
of 98% holds true. To our knowledge, there is
no such dataset widely available. There are cer-
tain existing vocabulary test result datasets, such
as (Ehara, 2018), as well as many reading compre-
hension test result datasets - however; we could not
find a dataset in which a second-language learner
subject is asked to provide both vocabulary size
and reading comprehension test results.

To this end, this paper provides such a dataset.
Following (Ehara, 2018), we used the Lancers
crowdsourcing service to collect 55 vocabulary test
results as well as answers to 1 long and 1 short
reading comprehension question from 100 learn-
ers. We paid around 5 USD for each participant.
In comparison to the dataset by (Ehara, 2018), the
number of vocabulary test questions was reduced
so that subjects would have enough time to solve
the reading comprehension test. For the vocabu-
lary test part, we used the Vocabulary Size Test
(Beglar and Nation, 2007). The reading compre-
hension questions were taken from the sample set
of the questions in the Appendix section in (Laufer
and Ravenhorst-Kalovski, 2010). The correct op-
tions for these questions are on a website that can
also be reached from the description of (Laufer and
Ravenhorst-Kalovski, 2010) !

In the same manner as (Ehara, 2018), all partici-
pants were required to have ever taken the Test of
English for International Communication (TOEIC)
test provided by English Testing Services (ETS)
and to write scores on a self-report basis. This
requirement filters out learners who have never
studied English seriously but try to participate for
economical merits.

In the dataset, each line describes all the re-
sponses from a learner. The first columns, which
contain the term TOEIC in their headings, provide
TOEIC scores and dates. Then, the 55 vocabulary
testing questions follow. The columns that start
with “I” denote the responses on the long reading

"For more detailed information for the
dataset, refer to http://yoehara.com/
vocabulary-prediction/.
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Figure 3: Estimated LFRs against Gold LFRs.
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comprehension test and those with denote the

responses on the short one.

4.2 Preliminary Experiments

Finally, we show preliminary experiments by using
our dataset. We used 33 words from the dataset,
i.e., 3, 300 responses. Hereafter, we simply denote
the logarithm of frequency ranks in a descending
order as “LFR”. For r;, we used the LFR of the
BNC corpus (BNC Consortium, 2007). For fea-
tures of h,, we used the logarithm of the frequency
of the COCA corpus (Davies, 2009). We obtained
parameters by optimizing the minimization param-
eters Eq. 4. Then, for 100 words disjoint from the
33 training words, we plotted the estimated LFR
values against the gold LFR values in Fig. 3. We
can easily see that they have a good correlation.
The Spearman’s correlation coefficient for Fig. 3
was 0.70, which can be construed as a strong cor-
relation (Taylor, 1990).

5 Conclusions

In this paper, we theoretically showed that previous
vocabulary size-based classifiers can be seen as a
special case of a neural classifier. We also built a
dataset necessary for this evaluation and made it
publicly available in the form of an attached dataset.
Future work include more detailed experiments on
language learners’ second language vocabularies.

Acknowledgments

This work was supported by JST ACT-I Grant
Number JPMJPR18US and JSPS KAKENHI Grant
Number JP18K18118. We used the Al Bridging
Cloud Infrastructure (ABCI) by the National Insti-
tute of Advanced Industrial Science and Technol-
ogy (AIST), Japan. We thank anonymous reviewers
for their insightful and constructive comments.


http://yoehara.com/vocabulary-prediction/
http://yoehara.com/vocabulary-prediction/

References

David Beglar. 2010. A Rasch-based validation of the
Vocabulary Size Test. Language Testing, 27(1):101-
118.

David Beglar and Paul Nation. 2007. A vocabulary size
test. The Language Teacher, 31(7):9-13.

Lisa Beinborn, Torsten Zesch, and Iryna Gurevych.
2014. Predicting the Difficulty of Language Pro-
ficiency Tests. Transactions of the Association for
Computational Linguistics, 2:517-530.

The BNC Consortium. 2007. The British National Cor-
pus, version 3 (BNC XML Edition).

Mark Davies. 2009. The 385+ million word corpus of
contemporary american english (1990-2008+): De-
sign, architecture, and linguistic insights. Interna-
tional journal of corpus linguistics, 14(2):159-190.

Yo Ehara. 2018. Building an English Vocabu-
lary Knowledge Dataset of Japanese English-as-a-
Second-Language Learners Using Crowdsourcing.
In Proc. of LREC.

Yo Ehara. 2019. Neural rasch model: How word em-
beddings affect to word difficulty? In Proc. of the
16th International Conference of the Pacific Associ-
ation for Computational Linguistics (PACLING).

Yo Ehara, Yukino Baba, Masao Utiyama, and Ei-
ichiro Sumita. 2016. Assessing Translation Ability
through Vocabulary Ability Assessment. In Proc. of
IJCAL

Yo Ehara, Yusuke Miyao, Hidekazu Oiwa, Issei Sato,
and Hiroshi Nakagawa. 2014. Formalizing Word
Sampling for Vocabulary Prediction as Graph-based
Active Learning. In Proc. of EMNLP, pages 1374—
1384.

Yo Ehara, Issei Sato, Hidekazu Oiwa, and Hiroshi Nak-
agawa. 2012. Mining Words in the Minds of Sec-
ond Language Learners: Learner-Specific Word Dif-
ficulty. In Proceedings of COLING 2012, pages
799-814, Mumbai, India. The COLING 2012 Orga-
nizing Committee.

Yo Ehara, Issei Sato, Hidekazu Oiwa, and Hiroshi Nak-
agawa. 2018. Mining words in the minds of second
language learners for learner-specific word difficulty.
Journal of Information Processing, 26:267-275.

Yo Ehara, Nobuyuki Shimizu, Takashi Ninomiya,
and Hiroshi Nakagawa. 2013. Personalized Read-
ing Support for Second-language Web Documents.
ACM Trans. Intell. Syst. Technol., 4(2):31:1-31:19.

Ayako Hoshino. 2009. Automatic Question Generation
for Language Testing and its Evaluation Criteria.
Ph.D. thesis, Graduate School of Interdisciplinary
Information Studies, The University of Tokyo.

176

Batia Laufer and Geke C. Ravenhorst-Kalovski. 2010.
Lexical Threshold Revisited: Lexical Text Coverage,
Learners’ Vocabulary Size and Reading Comprehen-
sion. Reading in a Foreign Language, 22(1):15-30.

John Lee and Chak Yan Yeung. 2018. Personalizing
lexical simplification. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 224-232, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

I. Nation. 2006. How Large a Vocabulary is Needed
For Reading and Listening? Canadian Modern Lan-
guage Review, 63(1):59-82.

. Nation. 2007. Vocabulary size test. https:
//www.wgtn.ac.nz/lals/about/staff/
paul-nation#vocab-tests.

Gustavo Paetzold and Lucia Specia. 2016. Collecting
and Exploring Everyday Language for Predicting
Psycholinguistic Properties of Words. In Proceed-
ings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical Pa-
pers, pages 1669-1679, Osaka, Japan. The COLING
2016 Organizing Committee.

Gustavo Paetzold and Lucia Specia. 2017. Lexical Sim-
plification with Neural Ranking. In Proc. of EACL,
pages 34-40, Valencia, Spain.

Ellie Pavlick and Chris Callison-Burch. 2016. Simple
PPDB: A Paraphrase Database for Simplification. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 143—148, Berlin, Germany. As-
sociation for Computational Linguistics.

Keisuke Sakaguchi, Yuki Arase, and Mamoru Komachi.
2013. Discriminative Approach to Fill-in-the-Blank
Quiz Generation for Language Learners. In Proc.
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Pa-
pers), pages 238-242, Sofia, Bulgaria. Association
for Computational Linguistics.

Richard Taylor. 1990. Interpretation of the correlation
coefficient: a basic review. Journal of diagnostic
medical sonography, 6(1):35-39.

Seid Muhie Yimam, Chris Biemann, Shervin Mvalmasi,
Gustavo H. Paetzold, Lucia Specia, Sanja Stajner,
Anais Tack, and Marcos Zampieri. 2018. A Report
on the Complex Word Identification Shared Task
2018. arXiv:1804.09132 [cs]. ArXiv: 1804.09132.


https://doi.org/10.1177/0265532209340194
https://doi.org/10.1177/0265532209340194
https://doi.org/10.1162/tacl_a_00200
https://doi.org/10.1162/tacl_a_00200
https://doi.org/10.3115/v1/D14-1143
https://doi.org/10.3115/v1/D14-1143
https://doi.org/10.3115/v1/D14-1143
https://doi.org/10.2197/ipsjjip.26.267
https://doi.org/10.2197/ipsjjip.26.267
https://doi.org/10.1145/2438653.2438666
https://doi.org/10.1145/2438653.2438666
https://eric.ed.gov/?id=EJ887873
https://eric.ed.gov/?id=EJ887873
https://eric.ed.gov/?id=EJ887873
https://www.aclweb.org/anthology/C18-1019
https://www.aclweb.org/anthology/C18-1019
https://www.wgtn.ac.nz/lals/about/staff/paul-nation#vocab-tests
https://www.wgtn.ac.nz/lals/about/staff/paul-nation#vocab-tests
https://www.wgtn.ac.nz/lals/about/staff/paul-nation#vocab-tests
https://doi.org/10.18653/v1/P16-2024
https://doi.org/10.18653/v1/P16-2024
https://www.aclweb.org/anthology/P13-2043
https://www.aclweb.org/anthology/P13-2043
http://arxiv.org/abs/1804.09132
http://arxiv.org/abs/1804.09132
http://arxiv.org/abs/1804.09132

